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Immunity and cellular metabolism are tightly interconnected but it is not clear whether
different pathogens elicit specific metabolic responses. To address this issue, we studied
differential metabolic regulation in peripheral blood mononuclear cells (PBMCs) of healthy
volunteers challenged by Candida albicans, Borrelia burgdorferi, lipopolysaccharide, and
Mycobacterium tuberculosis in vitro. By integrating gene expression data of stimulated
PBMCs of healthy individuals with the KEGG pathways, we identified both common
and pathogen-specific regulated pathways depending on the time of incubation. At 4 h
of incubation, pathogenic agents inhibited expression of genes involved in both the
glycolysis and oxidative phosphorylation pathways. In contrast, at 24 h of incubation,
particularly glycolysis was enhanced while genes involved in oxidative phosphorylation
remained unaltered in the PBMCs. In general, differential gene expression was less
pronounced at 4 h compared to 24 h of incubation. KEGG pathway analysis allowed
differentiation between effects induced by Candida and bacterial stimuli. Application
of genome-scale metabolic model further generated a Candida-specific set of 103
reporter metabolites (e.g., desmosterol) that might serve as biomarkers discriminating
Candida-stimulated PBMCs from bacteria-stimuated PBMCs. Our analysis also identified
a set of 49 metabolites that allowed discrimination between the effects of Borrelia
burgdorferi, lipopolysaccharide and Mycobacterium tuberculosis. We conclude that
analysis of pathogen-induced effects on PBMCs by a combination of KEGG pathways
and genome-scale metabolic model provides deep insight in the metabolic changes
coupled to host defense.

Keywords: innate immunity, metabolism, peripheral blood mononuclear cell, Candida albicans,
lipopolysaccharides, Mycobacterium tuberculosis, Borrelia burgdorferi, genome scale metabolic model
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1. INTRODUCTION

As the first line of host defense, the innate immune system can
immediately sense and combat foreign pathogens (McGettrick
and O’Neill, 2013; Mills and O’Neill, 2014). Cells of the innate
immune system, such as monocytes and neutrophils recognize
pathogens via pattern recognition receptors (PRRs) (McGettrick
and O’Neill, 2013; Cheng et al., 2014; Mills and O’Neill, 2014).
These PRRs, such as Toll-like receptors, NOD-like receptors, C-
type lectin receptors, and Rigl-helicases, are found on the plasma
membrane of innate immune cells (McGettrick and O’Neill,
2013; Cheng et al., 2014; Mills and O’Neill, 2014). Activation
of these PRRs leads to profound changes in gene expression
and subsequent production of inflammatory mediators such as
cytokines and chemokines (McGettrick and O’Neill, 2013; Pearce
and Pearce, 2013; Cheng et al., 2014). Once innate immune cells
are activated, they can trigger responses of the adaptive immune
system (e.g., activate T lymphocytes) (Pearce et al., 2013; Mills
and O’Neill, 2014).

Although often not realized, the responses of immune cells
against pathogens are tightly linked to endogenous changes of
metabolism (Mills and O'Neill, 2014). It is known that upon
activation, immune cells (e.g., monocytes and T lymphocytes)
dramatically shift from oxidative phosphorylation to aerobic
glycolysis, in order to meet the rapidly increasing energy demand
by processes such as cytokine production and cell proliferation
(McGettrick and O’Neill, 2013; Pearce and Pearce, 2013; Pearce
et al,, 2013; Cheng et al,, 2014). In addition, immune cells also
increase the activity of the pentose phosphate pathway to provide
sufficient nucleotide precursors for accelerated cell proliferation
(e.g., T lymphocytes) (Pearce et al., 2013; Mills and O’Neill, 2014).
Also, in lipopolysaccharide (LPS) challenged macrophages,
succinate and citrate accumulate to regulate production of IL-
1 B (Tannahill et al., 2013). Thus far, however, metabolism
of activated immune cells has been mainly investigated after
challenges with LPS, which only activates Toll-like receptor 4
(Bordbar et al., 2012; McGettrick and O’Neill, 2013; Tannahill
et al., 2013). A recent study on the modulation of glycolysis
and oxidative phosphorylation in immune cells stimulated with
LPS and other TLR stimuli supported the concept that different
stimuli may induce various metabolic programs in immune cells
(Lachmandas et al., 2016).

To our knowledge, a comprehensive understanding of the
metabolism of immune cells after stimulation of various
PRRs (e.g., TLRs, NOD-like receptors—NLRs, C-type lectin
receptors—CLRs, and Rigl-helicases) has not yet been reported.
In the current study, we interrogate which metabolic pathways
and metabolites are altered upon activation by various pathogens.
To this end, we systematically measured gene expression
profiles in human peripheral blood mononuclear cells (PBMCs)
stimulated by heat inactivated Candida albicans (Candida),
Borrelia burgdorferi (Borrelia), Escherichia coli-derived LPS,
and Mycobacterium tuberculosis (MTB). These four are typical
stimuli of innate immune pathways. LPS is the prototypical
stimulus recognized by TLR 4 (Ngkelo et al., 2012). Candida
is recognized by TLRs and CLRs, and causes mucosal and
systematic infection in immunocompromised individuals (Mayer

et al., 2013). Borrelia is recognized by TLRs, NLRs, CLRs, and
Rigl-helicases and causes Lyme disease (Oosting et al., 2016).
MTB is recognized by TLRs, NLRs, and CLRs and causes
tuberculosis (Kleinnijenhuis et al., 2011).

To identify gene expression changes involved in metabolism,
we ran Kyoto Encyclopedia of Genes and Genomes (KEGG)
based metabolic pathway analysis and genome-scale metabolic
model (GEM) based reporter metabolite analysis, respectively.
KEGG pathway analyses are widely and successfully used in
biomedical research over the last decade as a routine step
of interpreting gene expression data (Kanehisa et al., 2012).
As an alternative, genome scale metabolic models (GEMs)
are increasingly used to interpret large-scale gene expression
data sets. GEMs are represented by networks in which the
nodes are metabolites and the connecting edges are metabolic
reactions (Mardinoglu et al., 2013b; Bordbar et al., 2014). Generic
human GEMs, such as Recon2 (Thiele et al., 2013) and HMR2
(Mardinoglu et al., 2014) represent our current knowledge of
all established metabolic reactions involved in human energy
metabolism and macromolecule biosynthesis. GEMs have mostly
been used to identify key enzymes and metabolites that may serve
as potential biomarkers and drug targets for non-alcoholic fatty
liver disease, obesity, Alzheimer’s disease, and cancer (Lewis et al.,
2010; Mardinoglu et al., 2013a, 2014; Agren et al.,, 2014; Yizhak
et al., 2014). Our analysis showed that KEGG pathway analysis
allowed differentiation between effects induced by Candida and
bacterial stimuli, and application of genome-scale metabolic
model further generated a Candida-specific set of 103 reporter
metabolites that might serve as biomarkers discriminating
Candida-stimulated PBMCs from bacteria-stimulated PBMCs.

2. MATERIALS AND METHODS

2.1. Study Populations

As described in the previous study (Smeekens et al, 2013),
blood was collected after written informed consent from
healthy volunteers. The study was approved by the Institutional
Review Boards at Radboud University Nijmegen Medical
Centre (RUNMC, Nijmegen, The Netherlands). The study was
performed in accordance with the declaration of Helsinki. After
informed consent was given, blood was collected by venipuncture
into 10 ml EDTA syringes (Monoject, s-Hertogenbosch, The
Netherlands).

2.2. Gene Expression Microarray Data of
Stimulated PBMCs

As reported in in the previous study (Smeekens et al., 2013), we
isolated PBMCs from healthy subjects by density centrifugation
and stimulated them with heat-killed C. albicans(UC 820) (1 x
10® per ml), heat-killed B. burgdorferi, E. coli-derived LPS (10
ng per ml), or heat-killed MTB (1 pg per ml), respectively for
4 or 24 h. PBMCs that were cultured in only RPMI medium were
used as controls. Illumina Human HT-12 Expression BeadChips
were used to measure gene expression levels at 4 and 24h.
Details about the experiment and processed data are available in
GSE42606 archived by Gene Expression Omnibus.
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2.3. Identification of Differentially

Expressed Genes

The raw gene expression data were preprocessed by using the
lumi R package with default settings, which includes background
correction, variance stabilizing transformation and quantile
normalization (Lin et al., 2008). Principal component analysis
was performed with the full gene expression data set by using
the function prcomp in R. Valid paired samples were selected to
perform differential expression analysis at 4 and 24 h separately.
At 4 h, the size of paired samples for each stimulation were
19 (Candida), 25 (Borrelia), 19 (LPS), and 18 (MTB). At 24 h,
the size of paired samples were 29 (Candida), 29 (Borrelia), 20
(LPS), and N = 30 (MTB). lllumina probe IDs were mapped
to Ensembl gene IDs (Ensembl version 73) or Entrez gene IDs
by using the lumiHumanIDMapping and biomaRt R packages
(Durinck et al., 2009; Du et al., 2016). To exclude the influence
of ambiguous probes (a probe ID corresponding to two or
more gene IDs), only the probes that have unique gene IDs
were used for differential gene expression analysis. Moreover,
the hidden batch effect originated from microarray analysis were
adjusted by applying surrogate variable analysis which is built
in the sva R package (Leek and Storey, 2007, 2008; Leek et al.,
2012). Gene expression levels of stimulated PBMCs were then
compared to controls by using linear models and empirical
Bayes statistics (Smyth, 2004). Both methods were implemented
in the limma R package (Ritchie et al, 2015). Significance
inference of differential expression was done with moderated t
test (Ritchie et al., 2015) and the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) was performed to calculate
False Discovery Rate (FDR). In cases when a gene has multiple
probes on the chip, the probe-level statistical test results were
aggregated into a single gene-level statistic based on the smallest
FDR.

2.4. Gene Set Enrichment Analysis

In this study, the KEGG pathways and the generic human
genome-scale metabolic model, HMR2 were used to analyze
the gene expression data of human PBMCs stimulated by
different pathogenic agents for 4 or 24 h. The KEGG pathway
information was downloaded from the Molecular Signature
Database v5.1 (Subramanian et al., 2005). There are in total
186 pathways and the related gene identifiers are Entrez gene
IDs. Here we focused on 68 metabolic pathways since this
study aims to identify metabolic signatures of stimulated human
PBMCs. The HMR2 (SBML format) was downloaded from
Human Metabolic Atlas (Pornputtapong et al., 2015). HMR2
contains 3,765 genes, 6,007 metabolites, and 8,181 reactions
(Mardinoglu et al., 2014). Essentially, KEGG pathway analysis
and reporter metabolite analysis are two gene set enrichment
analysis methods. The difference between them is that KEGG
pathway analysis uses protein constituted pathways to group
genes, whereas reporter metabolite analysis uses metabolites
to define gene sets. Since every metabolite serves as a gene
set in reporter metabolite analysis, the information of which
genes belonged to which metabolite was attained through
using the piano R package (Viremo et al., 2013). The gene

identifiers in HMR2 were annotated by Ensemble gene IDs
(version 73). When KEGG pathways were used as gene sets,
we computed average t statistics of pathways as the summary
statistics:
Nﬂ wa
¥ pathway t;

Zpathway = ==
athway =
r 4 V4 Npathway

This simple approach was first introduced by Irizarry et al.
(2009).  Zpathway is the summary statistic of a pathway.
Npathway is the number of genes in the pathway and ¢ is
the modified t statistics of gene i in the pathway. When
metabolites of HMR2 were translated to gene sets, the
original reporter metabolite algorithm (Patil and Nielsen, 2005)
was adapted to calculate summary statistics for metabolites.
Patil and Nielsen (2005) defined reporter metabolites of
which the expression levels were significantly changed. In
the original reporter metabolite algorithm (Patil and Nielsen,
2005), the gene-level P-values were first converted to Z
scores by using the inverse normal cumulative distribution.
Then an aggregated Z score (gene set summary statistic)
was calculated for each metabolite from the gene-level Z
scores of its associated genes. Here we calculated summary
statistics for metabolites directly with the gene-level modified t
statistics:

(1)

ZNmetabolite t:
i=1 !
—— ()
hY% Ninetabolite

Zmetabolite 18 the summary statistics of a metabolite, and t;
is the t statistics of gene i associated with the metabolite.
Nietabolite 15 the number of genes associated with the
metabolite.

Regarding statistical inference, we calculated a P-value for
each gene set based on its background distribution of summary
statistics. However, unlike the original reporter metabolite
algorithm (Patil and Nielsen, 2005), which derived background
distributions by randomly sampling genes from the GEM,
we applied sample permutations to derive such background
distributions. Comparing gene/sample permutations is out of
the scope of this manuscript. Goeman and Bithlmann (2007)
extensively discussed this topic previously. The sample labels
(stimulated or control) were randomly shuffled within each pair
of samples (PBMCs derived from the same donor). As the next
step, we repeated the same procedures as described previously
to recalculate the gene-level as well as the summary statistics.
In total, we performed such permutations 10,000 times for each
stimulation case. The resulted permutation Z scores were used to
represent the enrichment:

Zinetabolite =

Z - Z
Enrichment score = Z — mean(Zyun) 3)
Sd(znull)

Z is the summary statistic of a gene set (either Zpgyay or
Zmetabolite)- Znyn refer to the summary statistics of that gene set
based on the sample permutations.

Permutation P-values were then calculated by using the
function permp in the statmod R package. The algorithm
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underlying the permp function was developed by Phipson
and Smyth (2010). Since we tested a number of pathways
or metabolites simultaneously, we performed the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) to derive
the FDR. When a metabolite had a FDR value below 0.05, we
defined that particular metabolite as a reporter metabolite.

2.5. Identification of Discriminating
Metabolic Pathways and Reporter
Metabolites

We were interested in metabolic pathways and metabolites
that can discriminate Candida-stimulated PBMCs from Borrelia,
LPS, and MTB-stimulated PBMCs. We were also interested
in metabolic pathways and metabolites that can discriminate
Borrelia, LPS, and MTB-stimulated PBMCs. To this end, we first
compared gene set enrichment results across PBMCs stimulated
by Candida, Borrelia, LPS, and MTB after treatment at 4 and
24 h. We compared the 4-h gene expression profile of PBMCs
stimulated by Candida, Borrelia, LPS, and MTB to the paired
RPMI-treated PBMCs. We did the same regarding the 24-h gene
expression profile. When a pathway or a metabolite had a FDR
value below 0.05 and a positive enrichment score, we labeled
its transcriptional regulation as “Up.” When a pathway or a
metabolite had a FDR value below 0.05 and a negative enrichment
score, we marked its transcriptional regulation as “Down.” The
remaining pathways and metabolites were then denoted as “N.S.;
meaning no significant transcriptional changes. In the following
analysis, comparisons of pathways or metabolites in PBMCs
stimulated by various pathogens were done based on their
“Up,” “Down,” and “N.S.” patterns. The euclidean distance was
calculated to quantify similarity between two metabolic pathway
gene expression patterns. The ggdendro R package was used to
produce the dendrogram and the cmdscale function of the stat
R package was used to produce the multidimensional scaling
plot. To identify metabolic pathways and metabolites that were
differentially regulated in a specific bacterial stimulation at both
4 and 24 h, we also compared gene set enrichment results across
PBMCs stimulated by Borrelia, LPS, and MTB. Considering
difficulty of interpretation, HMR2 subsystems (equivalent to
pathways), including “Isolated,” “Artificial reactions,” “Exchange
reactions,” “Pool reactions,” “Miscellaneous,” “Other amino acid,”
and “Blood group biosynthesis” were not included in the analysis.
To simplify data visualization, all the transport subsystems
were not included as well. If a metabolite could be mapped to
multiple subsystems, all the subsystems were included in the final
results.

To evaluate whether pathogen-specific —metabolism
corresponded to a specific immune response, we focused
on innate immunity genes provided by the database innateDB
(Breuer et al., 2013). According to the innateDB, there are 1,057
innate immune genes in human. Our microarray platform
measured 850 of these innate immune genes. Similar to the
procedures in pathway analysis, when an innate immune gene
had a FDR value below 0.05 and a positive t statistic, we labeled
its transcriptional regulation as “Up.” When an innate immune
gene had a FDR value below 0.05 and a negative t statistic, we

marked its transcriptional regulation as “Down.” The remaining
innate immune genes were then denoted as “N.S.” meaning
no significant transcriptional changes. Again we performed the
multidimensional scaling analysis.

3. RESULTS

3.1. Transcriptional Regulation in Metabolic
Pathways of Human PBMCs Stimulated by

Various Pathogenic Challenges

Depending on the duration and type of pathogenic stimulant,
gene expression patterns of human PBMCs varied considerably.
Along the axis of the first principal component, a clear separation
of 4 and 24 h gene expression patterns was observed (Figure 1).
To identify differentially regulated metabolic pathways in human
PBMCs stimulated by heat-killed Candida, heat-killed Borrelia,
LPS, and heat-killed MTB, we ran gene set enrichment analysis
with KEGG metabolic pathways. In general, we observed more
down than up-regulated metabolic pathways in stimulated
PBMCs at 4 h. However, this was reversed at 24 h (Figure 2).
Hierarchical cluster analysis revealed that metabolic pathway
regulations were very different between 4 and 24 h irrespective
of the stimuli used (Figure3). Multidimensional scaling
analysis confirmed the result of hierarchical clustering analysis.
Furthermore, we observed that the clustering result based on
metabolic pathways was consistent with the clustering outcome
based on innate immunity genes at 24 h after stimulation
(Figure 4).

3.2. Transcriptional Regulation of Energy
Metabolism in Human PBMCs Stimulated

by Various Pathogenic Challenges

At 4 h after stimulation, glycolysis pathway was down-regulated
in Candida (Enrichment score = —5.88, FDR = 2.41 x 107%),
Borrelia (Enrichment score = —5.96, FDR = 3.09 x 107%),
LPS (Enrichment score = —5.83, FDR = 3.21x107%), and
MTB-stimulated (Enrichment score = —4.17. FDR = 0.0013)
PBMCs. Oxidative phosphorylation pathway was also down-
regulated in Candida (Enrichment score = —4.90, FDR =
2.41 x 107%), Borrelia (Enrichment score = —4.60, FDR
3.09 x 10™%), LPS (Enrichment score = —5.21, FDR = 3.21 x
10™%), and MTB-stimulated (Enrichment score = —3.82. FDR
= 0.0013) PBMCs. At 24 h after stimulation, glycolysis pathway
was up-regulated in Candida (Enrichment score = 4.33, FDR
= 2.12 x 107%), Borrelia (Enrichment score = 7.52, FDR =
3.09 x 107%), LPS (Enrichment score = 2.99, FDR = 0.0019),
and MTB-stimulated (Enrichment score = 7.51, FDR = 4.25
x 10~*) PBMCs. However, oxidative phosphorylation was not
significantly changed in PBMCs stimulated by Candida, Borrelia,
LPS, and MTB.

3.3. Discriminating Metabolic Pathways in
Human PBMCs Stimulated by Various

Pathogenic Challenges
We focused on metabolic pathways that had the same
transcriptional patterns in PBMCs stimulated by Borrelia, LPS,
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and MTB, but differed from Candida-stimulated PBMCs at
both 4 and 24 h. The detail statistics for pathways were
provided in the Supplementary Table 1. The pentose phosphate
pathway was down-regulated in Borrelia, LPS, and MTB-
stimulated PBMCs, but not in Candida-stimulated PBMCs at
4 h (Figure5). However, at 24 h, the pentose phosphate
pathway was up-regulated in Candida-stimulated PBMCs,
but had no significant change in Borrelia, LPS, and MTB-
stimulated PBMCs (Figure 5). Riboflavin, beta alanine and

histidine metabolism were differentially regulated in Candida-
stimulated PBMCs, but not significantly changed in Borrelia,
LPS and MTB-stimulated PBMC:s at both 4 and 24 h (Figure 5).
Aminoacyl tRNA biosynthesis was up-regulated in Borrelia,
LPS and MTB-stimulated PBMCs but not significantly changed
in Candida-stimulated PBMCs at 4 h. However, this pathway
was up-regulated in Candida-stimulated PBMCs but down-
regulated in Borrelia, LPS, and MTB-stimulated PBMCs at 24 h
(Figure 5).
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Regarding the metabolic pathways that discriminated
Borrelia, LPS and MTB-stimulated PBMCs, we observed that
glycosylphosphatidylinositol GPI anchor biosynthesis was
up-regulated in LPS-stimulated PBMCs but did not change
in Borrelia and MTB-stimulated PBMCs at 4 h. However,
at 24 h, this pathway was down-regulated in Borrelia and
MTB-stimulated PBMCs whereas it remained unchanged
in LPS-stimulated PBMCs (Figure 6). Similarly, fatty acid
metabolism and glycerolipid metabolism were down-regulated
in LPS-stimulated PBMCs but not in Borrelia and MTB-
stimulated PBMCs at 4 h. This pathway was up-regulated in
Borrelia and MTB-stimulated PBMCs but did not change in LPS-
stimulated PBMCs at 24 h (Figure 6). Tryptophan metabolism
was differentially regulated in MTB-stimulated PBMCs, but not
significantly changed in Borrelia and LPS-stimulated PBMCs
at both 4 and 24 h (Figure 6). We did not identify a metabolic
pathway that can discriminate Borrelia-stimulated PBMCs from
LPS and MTB-stimulated PBMCs.

3.4. Discriminating Metabolites in Human
PBMCs Stimulated by Various Pathogenic
Challenges

In an attempt to identify metabolites that discriminated PBMCs
with various stimuli, we ran reporter metabolite analysis with the
human genome-scale metabolic model, HMR2. A total number
of 4,548 metabolites were involved in the reporter metabolite
analysis. We observed more down-regulated than up-regulated
reporter metabolites in the stimulated PBMCs at 4 h. However,
this pattern was reversed at 24 h (Figure 7). In a next step, we
focused on reporter metabolites that were differentially regulated
in Candida-stimulated PBMCs but not in PBMCs with bacterial
stimuli at both 4 and 24 h. Among the identified reporter
metabolites at 4 and 24 h, 103 of them were found specific

for Candida-stimulated PBMCs. These 103 Candida-specific
reporter metabolites participated in 45 pathways including
nucleotide metabolism (15 reporter metabolites), and fatty
acid biosynthesis (10 reporter metabolites; Figure 8). We also
focused on reporter metabolites that can discriminate between
Borrelia, LPS and MTB-stimulated PBMCs at both 4 and
24 h. We identified 32, 7, and 10 reporter metabolites that
were specific for Borrelia, LPS and MTB-stimulated PBMCs,
respectively (Figure9). Statistics of all the pathogen-specific
reporter metabolites were provided in Supplementary Table 2.

4. DISCUSSION

The main finding of our study is that characterization of
pathogen-dependent metabolic reprogramming in immune cells
treated by various stimuli of innate immune pathway. For
this purpose, we performed gene set enrichment analysis on
gene expression data of human PBMCs treated with heat-killed
Candida, heat-killed Borrelia, E. coli-derived LPS and heat-
killed MTB. Either KEGG metabolic pathways or metabolites
in human genome-scale metabolic models were used as gene
sets. Our particular experimental setup with one fungal pathogen
(Candida) and three bacterial inflammatory stimuli (Borrelia,
LPS, and MTB) allowed us to identify metabolic signatures
of Candida-induced host response, but also host response
differences between bacterial challenges.

A very strong temporal effect on the expression of metabolic
genes was observed. This observation is in line with the
concept that stimulation period is a critical factor in immune
response (Nagy and Haschemi, 2015; Hotamisligil, 2017).
At 4 h after stimulation, both oxidative phosphorylation
and glycolysis were down-regulated. At 24 h, however, gene
expression of glycolysis showed up-regulation, whereas gene
expression of oxidative phosphorylation remained unaltered
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in PBMCs. The observation of down-regulation of glycolysis
genes after 4 h of stimulation is novel, and its impact for
cell function warrants future studies. However, the observation
at 24 h is consistent with literature data showing that
activated immune cells shift toward glycolysis and away
from oxidative phosphorylation (McGettrick and O’Neill, 2013;
Pearce and Pearce, 2013; Pearce et al, 2013; Cheng et al,
2014).

For the purpose of identifying pathogen-dependent metabolic
reprogramming in immune cells, we focused on metabolic
pathways and metabolites that allow discrimination between
various stimuli at both 4 and 24 h.

4.1. Five Metabolic Pathways Can
Discriminate Candida-Stimulated PBMCs
from Borrelia, LPS, and MTB-Stimulated
PBMCs

Five pathways, i.e., the pentose phosphate pathway, histidine
metabolism, beta alanine metabolism, riboflavin metabolism, and

aminoacyl tRNA biosynthesis, were identified to discriminate
Candida-stimulated PBMCs from Borrelia, LPS, and MTB-
stimulated PBMCs. Interestingly, we observed that the pentose
phosphate pathway was differentially regulated in PBMCs
stimulated by Borrelia, LPS, and MTB but not in Candida-
stimulated PBMCs at 4 h. In contrast, at 24 h, this pathway was
differentially regulated only in Candida-stimulated PBMCs but
not significantly changed in Borrelia, LPS, and MTB-stimulated
PBMCs. The pentose phosphate pathway was reported to support
cytokine secretion in dendritic cells (Everts et al., 2014). Since
cytokine production of human PBMCs depends on the type
of stimulus (Henderson and Rippin, 1995), our observation of
differential regulation in the pentose phosphate pathway likely
indicates a specific function for Candida stimulated cytokine
production. Indeed, our findings corroborate those of a recent
study in which Candida-stimulated PBMCs were identified
to have different cytokine profiles from bacteria-stimulated
PBMCs (Li et al,, 2016). On the other hand, little is known
about the specific roles of the other four Candida-specific
metabolic pathways in regulation of the immune response,
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and further investigation is warranted to validate these novel
findings.

4.2. Four Metabolic Pathways Can
Differentiate between Borrelia, LPS, and
MTB-Stimulated PBMCs

We further noted that three pathways
(glycosylphosphatidylinositol ~ GPI  anchor  biosynthesis,
glycerolipid metabolism, fatty acid metabolism) discriminated
LPS-stimulated PBMCs from Borrelia and MTB-stimulated
PBMCs. Meanwhile, tryptophan metabolism differentiates
MTB-stimulated PBMCs from Borrelia and LPS-stimulated
PBMCs. We failed to identify pathways that allow discrimination
Borrelia-stimulated PBMCs from LPS and MTB-stimulated
PBMCs. Activation of tryptophan metabolism was previously
reported in human marcophages in vitro upon MTB stimulation
(Blumenthal et al., 2012), and a recent study (van Laarhoven
etal., 2018) has identified a crucial role of tryptophan metabolism
for the pathophysiology of tuberculous meningitis. In addition,
enhancement of tryptophan catabolism is an IFN (interferon)
y-induced immune response in many different host cell
types, and has been postulated to reduce the supply of
tryptophan to bacterial pathogens (Moffett and Namboodiri,
2003; O'Neill et al, 2016). A reduced supply of tryptophan
is linked to suppress T cell proliferation (Munn et al., 1999).
Our observation of differential regulation of tryptophan in
MTB-stimulated PBMCs might be related to different T cell
proliferation after stimulation of MTB, compared to Borrelia
and LPS.

4.3. Genome-Scale Metabolic Model

Provides Metabolic Pathways with Details
The KEGG pathway based analysis failed to identify metabolic
pathways that discriminate Borrelia-stimulated PBMCs from
LPS- and MTB-stimulated PBMCs. To explore potential
differences in more depth, we ran the reporter metabolite
analysis, which is a gene set enrichment analysis with a
genome-scale metabolic model. A genome-scale metabolic
model is comprised of metabolites and reactions between
them. Compared to KEGG metabolic pathway information, the
genome-scale metabolic model makes use of detailed information
on biochemical reactions of pathways. For instance, for any
enzyme catalyzing reaction, we can retrieve the genes encoding
that enzyme in the genome-scale metabolic model. Moreover,
metabolites can be products of some reactions and meanwhile
act as substrates in other reactions. Consequently, reporter
metabolite analysis based on genome-scale metabolic model does
not repeat but complement results from KEGG pathway analysis.
We used HMR?2 in our analysis since we did not perform flux
balance analysis.

4.4. 103 Reporter Metabolite Can
Discriminate Candida-Stimulated PBMCs
from Borrelia, LPS, and MTB-Stimulated
PBMCs

In this study, we identified 103 reporter metabolites that were
differentially regulated in Candida-stimulated PBMCs, but not
in PBMCs stimulated with bacterial stimuli at both 4 and 24
h. A considerable number of these Candida-specific reporter
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metabolites were found to be related to lipid metabolism. The
previous study (Smeekens et al.,, 2013) reported that Candida
induced a type I IFN response that was distinct from Borrelia,
LPS, and MTB stimulation. Interestingly, type I IFN was
identified to influence de novo cholesterol biosynthesis and fatty
acids biosynthesis in murine marcophages (York et al., 2015).

Desmosterol, one of the Candida-specific reporter metabolites,
is the last intermediary metabolite in the Bloch pathway of
cholesterol biosynthesis. This metabolite was previously reported
to coordinate cholesterol and fatty acid homeostasis, and affect
anti-inflammatory function in macrophage (Spann et al., 2012).
Taken together, we proposed that desmosterol might serve as
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a metabolic read out of the type I IFN response in Candida-
stimulated PBMCs.

4.5. 49 Reporter Metabolites Can
Discriminate between Borrelia, LPS, and

MTB-Stimulated PBMCs

In PBMCs stimulated by Borrelia, LPS, and MTB, 49 metabolites
were identified to discriminate different kinds of pathogenic
challenges. Within LPS-specific reporter metabolites, we
observed intermediate metabolites present in the Bloch pathway
and Kandutsch-Russell pathway (e.g., 4c-carboxy-5c-cholesta-
8,24-dien-3-ol). With mass spectrometry and isotope labeling
techniques, (Mitsche et al, 2015) previously showed that
different tissues or cell types were characterized by different flux
distributions in the Bloch and Kandutsch-Russell pathway. Our
observation indicates that there also might be condition-specific
flux distribution in these two parallel cholesterol biosynthesis
pathways. Within MTB-specific reporter metabolites, we
observed two kind of epoxyeicosatrienoic acids, synthesized
from arachidonic acid. Epoxyeicosatrienoic acids were reported
to inhibit inflammatory gene expression in immune cells and
animal models (Thomson et al., 2012).

5. CONCLUSIONS

In summary, by integrating gene expression data with KEGG
metabolic pathways in combination with the human genome-
scale metabolic model, a very sensitive method to characterize
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