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Tendons transfer forces produced by muscle to the skeletal system and can

therefore have a large influence on movement effectiveness and safety. Tendons are

mechanosensitive, meaning that they adapt their material, morphological and hence

their mechanical properties in response to mechanical loading. Therefore, unloading due

to immobilization or inactivity could lead to changes in tendon mechanical properties.

Additionally, ageing may influence tendon biomechanical properties directly, as a result

of biological changes in the tendon, and indirectly, due to reduced muscle strength

and physical activity. This review aimed to examine age-related differences in human

leg extensor (triceps surae and quadriceps femoris) muscle-tendon unit biomechanical

properties. Additionally, this review aimed to assess if, and to what extent mechanical

loading interventions could counteract these changes in older adults. There appear

to be consistent reductions in human triceps surae and quadriceps femoris muscle

strength, accompanied by similar reductions in tendon stiffness and elastic modulus

with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore,

the observed age-related changes in tendon stiffness are predominantly due to changes

in tendon material rather than size with age. However, human tendons appear to retain

their mechanosensitivity with age, as intervention studies report alterations in tendon

biomechanical properties in older adults of similar magnitudes to younger adults over

12–14 weeks of training. Interventions should implement tendon strains corresponding

to high mechanical loads (i.e., 80–90% MVC) with repetitive loading for up to 3–4

months to successfully counteract age-related changes in leg extensor muscle-tendon

unit biomechanical properties.
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INTRODUCTION

The leg extensor muscle-tendon units (MTUs) play important
roles in locomotion, with the muscles opposing gravity and
controlling and generating progression by decelerating and
accelerating the center of mass and the tendons storing and
returning elastic energy to the musculoskeletal system (Biewener
and Roberts, 2000; Roberts, 2002; Pandy and Andriacchi, 2010).
As a consequence, the tendons can have a large influence
on movement effectiveness (Hof et al., 2002; Lichtwark and
Wilson, 2007; Pandy and Andriacchi, 2010; Huang et al., 2015).
Specifically, the mechanical properties of the Achilles (AT) and
patellar (PT) tendons (e.g., tendon stiffness) can greatly influence
the contributions of the triceps surae (TS) and quadriceps
femoris (QF) to forward propulsion and energy absorption
during gait.

In the literature, it is well established that ageing mammalian
tendons experience biochemical, cellular, mechanical and
pathological alterations, causing progressive deterioration
(Noyes and Grood, 1976; Vogel, 1991; Kjaer, 2004; Komatsu
et al., 2004). In vitro, the connective tissues of older adults have
a declined failure stress compared to younger adults (Noyes and
Grood, 1976). In vitro animal studies have associated ageing with
an increase in irreducible collagen cross-linking, a reduction
in collagen fibril diameter and its crimp angle, an increase in
more extensible elastin content, a reduction in extracellular
water and glycosaminglycans content and an increase in collagen
type V (Vogel, 1991; Nakagawa et al., 1994; Tuite et al., 1997;
Dressler et al., 2002; Kjaer, 2004). These changes may lead to
altered biomechanical properties of tendons in vivo, which in
turn, could affect the overall function of the MTUs. In addition
to biological changes, altered environmental mechanical stress
may influence ageing tendon. Unloading of the leg extensor
MTUs can occur due to immobilization and inactivity, and can
lead to muscle atrophy. In vivo studies have demonstrated that
chronic inactivity (20–90 days bed rest) results in a reduction
in tendon stiffness (Kubo et al., 2004; Reeves et al., 2005).
Collectively, this means that ageing tendon is affected not
only by processes of biological ageing per se, but also the
reduced habitual loading due to decreased physical activity and
muscle strength (Iannuzzi-Sucich et al., 2002; Lauretani et al.,
2003).

Since tendon is a mechanosensitive and adaptive tissue,
its properties can change depending on its exposure to
mechanical loading (Tkaczuk, 1968; Butler et al., 1978;
Woo et al., 1980, 1982). Such changes are believed to be
regulated through mechanotransduction (Chiquet et al., 2009).
Mechanical load generated by the muscle contractions deforms
the tendinous tissue, whereby the resultant tendon strain is
transferred to its cellular cytoskeleton via the extracellular
matrix, causing structural changes (Wang, 2006) and various
molecular responses (Robbins and Vogel, 1994; Pins et al., 1997;
Arnoczky et al., 2002; Yang et al., 2004; Olesen et al., 2006).
These responses have been linked to modifications in tendon
mechanical properties following long-term mechanical loading
(Kjaer, 2004; Wang, 2006; Heinemeier and Kjaer, 2011; Galloway
et al., 2013).

For older adults in particular, the capacities of the leg-
extensor MTUs are highly relevant for locomotion. Karamanidis
and Arampatzis (2007) and Karamanidis et al. (2008) found
significant associations between leg extensor MTU mechanical
properties (i.e., TS and QF muscle strength and PT stiffness)
and stability control following sudden release from a forward-
inclined body position and Onambele et al. (2006) reported
that AT stiffness was a decisive predictor of single leg stance
ability. Additionally, Stenroth et al. (2015) found that lower AT
stiffness was associated with slower timed “up and go” test and 6-
min walk test results among healthy older adults. Interventions
to counteract age-related changes in the leg extensor MTU
mechanical properties may have the potential to positively
influence the safety and effectiveness of human locomotion.

This review aims to examine age-related differences in human
leg extensor MTU biomechanical properties and if changes in
these properties can be counteracted in older adults. Therefore,
we provide an overview of recent literature examining age-
related differences in human leg extensor MTU biomechanical
properties in young and older healthy adults, including muscle
strength and the mechanical (tendon stiffness), morphological
(tendon cross sectional area: CSA) and material (Young’s
modulus of the tendon) properties of the AT and PT. Secondly,
mechanical loading interventions to trigger alterations in these
properties in older adults are reviewed, in order to determine if
and to what extent age-related changes can be counteracted and
if particular criteria for successful interventions exist.

AGE-RELATED CHANGES IN HUMAN
MUSCLE-TENDON UNIT BIOMECHANICAL
PROPERTIES

Muscle Strength
As the leg extensor MTUs are comprised of muscular and
tendinous tissue, any alterations in the tendon biomechanical
properties must be interpreted in parallel with changes in the
muscle. Twelve articles discussed in this review that examined the
tendon biomechanical properties also reported muscle strength
[determined during maximum voluntary contractions (MVC)
and reported in kg, N, Nm or body weight normalized values].
Seven of the 12 articles analyzed the TS and six assessed the QF
MTU. The median number of older adults assessed in the studies
was 11 (range of 6–67), with mean ages from the studies ranging
from 64 to 79 years. Overall, the age-related changes in muscle
strength ranged from −52 to −26.4% for the TS and −29.3 to
−1.4% for the QF with an overall median of−29% (Figure 1).

Tendon Stiffness
Tendon stiffness describes the force-elongation relationship of
the tendon, assessed in the linear region of the tendon force-
elongation relationship. Eleven articles that examined age-related
differences in tendon stiffness are discussed in this review
(Figure 1). Seven of the articles analyzed the AT and six assessed
the PT. The median number of older adults assessed in the
studies was 12 (range of 6–67), with mean ages from the studies
ranging from 64 to 79 years. Overall, the age-related differences
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FIGURE 1 | Percentage differences in triceps surae and quadriceps femoris MTU biomechanical properties between older (mean age of 60 years or older) and

younger (mean age of 30 years or younger) adults reported in the literature. The black lines represent the median values of the means taken from the studies and the

circle size is an approximate representation of the relative sample size. *Indicates the studies that assessed tendon CSA with MRI. Muscle strength was determined

during maximum voluntary contractions and reported in the original studies in kg, N, Nm or body weight normalized values.

in tendon stiffness ranged from −55 to −3.9% for the AT
and −31.2 to −2.4% for the PT with an overall median of
−20.3% (Figure 1). One study (Csapo et al., 2014) used combined
MRI and dynamometry to assess tendon stiffness, whereas
all other articles employed synchronized ultrasonography and
dynamometry (e.g., Mademli and Arampatzis, 2008). Despite the
large range in percentage differences, which may have been a
result of methodological differences affecting the assessment of
tendon elongation and stiffness such as imaging method (i.e.,
Csapo et al., 2014), contraction protocol (Kösters et al., 2014;
McCrum et al., 2017) or technical differences between the studies
(Finni et al., 2013; Seynnes et al., 2015), the literature shows a
consistent reduction in tendon stiffness with age.

Tendon Cross Sectional Area
Ten of the discussed studies examined tendon CSA, six of which
assessed the AT, with the other four analyzing the PT (Figure 1).
Four of the six studies that analyzed the AT used ultrasonography
(Onambele et al., 2006; Stenroth et al., 2012, 2015; Tweedell et al.,
2016), with the other two using MRI (Magnusson et al., 2003;
Csapo et al., 2014), whereas all of the studies examining the PT
used MRI to assess the CSA (Carroll et al., 2008; Couppé et al.,
2009, 2012, 2014). The median number of older adults included
in the studies was 15 (range of 6–67), with a range of mean
ages from the studies of 65–79 years. Two of the studies found
significantly smaller tendon CSA in the older adults (−18.7 and
−7.8%; Onambele et al., 2006; Carroll et al., 2008), while four
found significantly greater CSA (Magnusson et al., 2003; Stenroth
et al., 2012, 2015; Couppé et al., 2014; Tweedell et al., 2016),
with an overall median of 9.1% greater tendon CSA in the older
adults (Figure 1). As the accuracy of ultrasound-based methods
for determining both AT and PT CSA has been shown to be
insufficient (Ekizos et al., 2013; Bohm et al., 2016), we suggest

that more weight should be given to studies which have used
MRI to determine tendon CSA and Young’s modulus. If only
MRI studies are taken into account, the median difference drops
to 4.6%. Aside from imaging methodology, there is variation in
how CSA was determined. Most AT studies assessed CSA at a
specific tendon length (usually where the CSA is assumed to be
smallest), which varied between three and four cm proximal to
the insertion of the AT to the calcaneus (Magnusson et al., 2003;
Stenroth et al., 2012, 2015; Csapo et al., 2014). The remaining
AT and PT studies used multiple (usually three) lengths from
which the CSAwas averaged. As a result, potential region-specific
differences in the CSA between younger and older adults may
be excluded, as no existing study has compared the AT or PT
CSA between older and younger adults along the entire tendon
length; a potentially important gap in the literature. Training-
induced regional changes have previously been reported in young
adults (Magnusson and Kjaer, 2003; Arampatzis et al., 2007;
Kongsgaard et al., 2007; Seynnes et al., 2009). Due to the diversity
in methodologies and results, no firm conclusion can be made
about the age-effects on tendon CSA.

Tendon Young’s Modulus
The Young’s modulus of a material is defined as the slope of
the stress-strain relationship, where stress is tendon force relative
to CSA and strain is tendon elongation in relation to resting
length. Nine of the discussed studies assessed the tendon Young’s
modulus, with four and five studies analyzing the AT and PT,
respectively. The median number of older adults included was
19 (range of 6–67), with a range of mean ages from 64.5 to 76.7
years. One of the four studies of the AT (Csapo et al., 2014)
and all but one (Hsiao et al., 2015) of the five studies of the
PT used MRI to assess the tendon CSA, with the others using
ultrasound to assess tendon CSA. All but one of the studies
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used synchronized dynamometry and ultrasound to assess the
force-elongation behavior of the tendon, with the final study
(Csapo et al., 2014) using combined MRI and dynamometry.
A median difference of −27.8% in Young’s modulus (−23.9%
when only including the MRI-based studies) was found, with no
studies showing a higher Young’s modulus in older, compared
to younger adults (Figure 1). There is a relatively consistent
reduction in Young’s modulus with age, although the above
described limitations regarding region-specific CSA should also
be kept inmind. Thus, we can conclude that the observed changes
in tendon stiffness due to ageing are predominantly due to
changes in tendon material properties rather than reduced CSA.

EFFECTS OF INCREASED MECHANICAL
LOADING ON MUSCLE-TENDON UNIT
BIOMECHANICAL PROPERTIES IN OLDER
ADULTS

In this section, we provide an overview and discussion of
intervention studies conducted with older adults (mean age
of 60 years or older) that analyzed the leg extensor MTUs’
biomechanical properties. Nine intervention groups from six
articles are discussed (Figure 2; Reeves et al., 2003a,b; Onambele-
Pearson and Pearson, 2012; Grosset et al., 2014; Karamanidis
et al., 2014; Epro et al., 2017). All interventions consisted of
predominantly resistance-based exercise and lasted 12–14 weeks
in length, with one study also conducting a 1.5 year long
intervention (Epro et al., 2017). All conducted two or three
sessions per week that were partly or completely supervised. The
exercise protocols ranged from highly specific and controlled
protocols (i.e., five sets and four repetitions of isometric plantar
flexions at 90% MVC held for 3 s guided by visual feedback in
Epro et al., 2017) to more mixed ecological training interventions
with multiple strength exercises, as well as hopping or running
(Onambele-Pearson and Pearson, 2012; Grosset et al., 2014;
Karamanidis et al., 2014). The number of contractions per
exercise ranged from 16 to 44 spread over a range of two to five
sets, and all but one of the interventions in the study of Grosset
et al. (2014) aimed to impose high mechanical loads (e.g., 80–
90%MVC or 80% of five repetition maximum for 10 repetitions).
Grosset et al. (2014) compared low and high intensity training
groups (40% vs. 80%MVC) and Onambele-Pearson and Pearson
(2012) compared male and female groups of older adults. One
article (two intervention durations) focused exclusively on the
AT (Epro et al., 2017), four articles (six intervention groups)
focused exclusively on the PT (Reeves et al., 2003a,b; Onambele-
Pearson and Pearson, 2012; Grosset et al., 2014) and one article
conducted an intervention targeting both the TS and QF MTUs
(Karamanidis et al., 2014). One study did not report muscle
strength values (Grosset et al., 2014) but all other articles reported
significant muscle strength increases (Figure 2) (13.4–25.5% for
the TS and 9.2–25.4% for the QF), measured either by maximum
joint moments, maximum force during isometric contractions
or by one or five repetition maximum values (Reeves et al.,
2003a,b; Onambele-Pearson and Pearson, 2012; Karamanidis
et al., 2014; Epro et al., 2017). All but one intervention resulted

in significant increases in AT (19.6–22.5%) or PT (10.1–82.5%)
stiffness (Figure 2), with the one non-significant result coming
from the low intensity (40%MVC) training group of Grosset et al.
(2014). Young’s modulus of the tendons was assessed by four of
the articles, generally showing significant increases in both the
AT (19–22%) and PT (9.5–68.4%), with the low intensity group of
Grosset et al. (2014) showing no change (Figure 2). Tendon CSA
was also assessed by four of the articles, three of which assessed
the PT and found no differences post-intervention (Reeves et al.,
2003a; Onambele-Pearson and Pearson, 2012; Grosset et al.,
2014) and one reported significant increases in ATCSA after both
14 weeks and 1.5 years of intervention (Epro et al., 2017). It is
noteworthy that Epro et al. (2017) analyzed the CSA over the
entire length of the AT usingMRI, whereas the other studies used
ultrasound and did not assess the entire length of the AT. This
may suggest that the ultrasound method is not sensitive enough
to consistently detect the usual range of changes in tendon CSA
following exercise interventions (a range of 3.7–9.6% from the
studies using MRI reported in the review of Bohm et al., 2015
and in Epro et al., 2017).

Older tendons appear to preserve their adaptability to
mechanical loading with age (Reeves et al., 2003a,b; Onambele-
Pearson and Pearson, 2012; Grosset et al., 2014; Karamanidis
et al., 2014; Epro et al., 2017), but a few results are worth noting
when considering the effectiveness of the interventions. Firstly,
Epro et al. (2017) found that 14 weeks of resistance exercise
was a sufficient time period to trigger adaptive changes in the
biomechanical properties of the AT and that these adaptations
were maintained for 1.5 years by continuing training, suggesting
that there is a non-linear time-response relationship of ageing
tendons subjected to mechanical loading. However, the lack
of further adaptation may have been related to a plateau in
plantarflexion MVC force after 11–12 weeks of training (Epro
et al., 2017). These long-term adaptation processes should be
investigated in future research. Secondly, the intervention with
the lowest exercise intensity (Grosset et al., 2014) and therefore,
lowest tendon strain magnitudes, was the only intervention
that found no significant changes in the tendon biomechanical
properties. This finding is in accordance with evidence from
young adults, demonstrating that tendon adaptation is triggered
only when a specific threshold of strain magnitude is exceeded
during the loading exercise (Arampatzis et al., 2007; Bohm
et al., 2015). This might also explain the absence of differences
in lower limb MTU biomechanical properties in a number of
cross-sectional studies of older endurance runners and their age-
matched sedentary counterparts (Karamanidis and Arampatzis,
2005, 2006). Future research should continue to explore viable
activities for stimulating tendon adaptation in older adults.

In young adults, studies have reported increased tendon
stiffness, CSA and Young’s modulus in response to tendon
loading exercise over 12–14 weeks (Kubo et al., 2001; Arampatzis
et al., 2007; Kongsgaard et al., 2007; Bohm et al., 2015; Wiesinger
et al., 2015). The importance of strain magnitude for tendon
adaptation was originally demonstrated by Arampatzis et al.
(2007) and two systematic reviews concluded that resistance
training can lead to tendon adaptation providing that sufficient
tendon strain magnitudes (or intensities greater than 70% MVC)
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FIGURE 2 | Percentage differences in triceps surae and quadriceps femoris MTU biomechanical properties between pre and post-intervention assessments with

older adults. The black lines represent the median values of the means taken from the studies and the circle size is an approximate representation of the relative

sample size. Muscle strength was determined during maximum voluntary contractions and reported in the original studies in kg, N, Nm or body weight normalized

values. *Indicates the studies that assessed tendon CSA with MRI. Where an article applied more than one intervention, the data were split so that each circle

represents the results of the individual interventions within the studies.

are applied (Bohm et al., 2015; Wiesinger et al., 2015). This
is in agreement with the results found in the current review
in the study of Grosset et al. (2014). Considering the results
in older adults, the adaptation magnitudes in stiffness and
Young’s modulus are similar to those observed after 12–14 weeks
exercise in younger adults (increases of 16–36% and 15–45%
respectively; Arampatzis et al., 2007, 2010; Kubo et al., 2007;
Fletcher et al., 2010; Fouré et al., 2013; Bohm et al., 2014).
Moreover, the changes in tendon CSA values after exercise are
consistent with younger adults (mean AT CSA increases of
between 0.5 and 10%; Arampatzis et al., 2007, 2010; Kongsgaard
et al., 2007; Bohm et al., 2014). Importantly, the cyclic tendon
strain exercise protocol of Epro et al. (2017) in older adults
was the same as Arampatzis et al. (2007) in young adults and
relative adaptations in the TS MTU biomechanical properties
were similar. Overall, it appears that the leg extensor MTUs
of older adults respond to increased mechanical loading in a
way that involves similar magnitudes of tendon and muscle
adaptation.

CONCLUSION

Based on the available literature, increasing age appears to
result in reductions in human TS and QF muscle strength
accompanied by reductions in AT and PT stiffness and elastic
modulus, whereas the effect on AT and PT CSA is unclear.
Therefore, the observed changes in tendon stiffness due to
ageing are predominantly due to changes in tendon material

properties rather than changes in tendon CSA. However,
tendons appear to retain their mechanosensitivity with age,
showing similar alterations in their biomechanical properties
in older adults compared to younger adults following training
interventions. Exercise interventions should implement tendon
strains corresponding to high, repetitive mechanical loading
(i.e., 80–90% of MVC) for up to 3 or 4 months in order to
successfully counteract age-related changes in leg extensor MTU
biomechanical properties.

AUTHOR CONTRIBUTIONS

Conception of the work: CM and PL; literature acquisition: MK,
GE, PL, and CM; literature synthesis: PL, CM, and MK; analysis
and interpretation: all authors; drafted the manuscript: CM;
prepared figures: CM, PL, and MK; revised the manuscript for
important intellectual content: all authors; final approval of the
version to be published: all authors; agreement to be accountable
for the work: all authors.

FUNDING

CM was funded by the Kootstra Talent Fellowship awarded
by the Centre for Research Innovation, Support and Policy
(CRISP) and by the NUTRIM Graduate Programme, both of
Maastricht University Medical Center+. MK was supported by
the German Social Accident Insurance (Deutsche Gesetzliche
Unfallversicherung, Postgraduate Scholarship).

Frontiers in Physiology | www.frontiersin.org 5 February 2018 | Volume 9 | Article 150

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McCrum et al. Ageing and Tendon Biomechanical Properties

REFERENCES

Arampatzis, A., Karamanidis, K., and Albracht, K. (2007). Adaptational responses

of the human Achilles tendon by modulation of the applied cyclic strain

magnitude. J. Exp. Biol. 210, 2743–2753. doi: 10.1242/jeb.003814

Arampatzis, A., Peper, A., Bierbaum, S., and Albracht, K. (2010). Plasticity of

human Achilles tendon mechanical and morphological properties in response

to cyclic strain. J. Biomech. 43, 3073–3079. doi: 10.1016/j.jbiomech.2010.08.014

Arnoczky, S. P., Tian, T., Lavagnino, M., Gardner, K., Schuler, P., and

Morse, P. (2002). Activation of stress-activated protein kinases (SAPK)

in tendon cells following cyclic strain: the effects of strain frequency,

strain magnitude, and cytosolic calcium. J. Orthop. Res. 20, 947–952.

doi: 10.1016/S0736-0266(02)00038-4

Biewener, A. A., and Roberts, T. J. (2000). Muscle and tendon contributions to

force, work, and elastic energy savings: a comparative perspective. Exerc. Sport

Sci. Rev. 28, 99–107. Available online at: https://journals.lww.com/acsm-essr/

Citation/2000/28030/Muscle_and_Tendon_Contributions_to_Force,_Work,.

2.aspx

Bohm, S., Mersmann, F., and Arampatzis, A. (2015). Human tendon adaptation

in response to mechanical loading: a systematic review and meta-analysis

of exercise intervention studies on healthy adults. Sports Med. Open 1:7.

doi: 10.1186/s40798-015-0009-9

Bohm, S., Mersmann, F., Schroll, A., Mäkitalo, N., and Arampatzis, A.

(2016). Insufficient accuracy of the ultrasound-based determination

of Achilles tendon cross-sectional area. J. Biomech. 49, 2932–2937.

doi: 10.1016/j.jbiomech.2016.07.002

Bohm, S., Mersmann, F., Tettke, M., Kraft, M., and Arampatzis, A. (2014). Human

Achilles tendon plasticity in response to cyclic strain: effect of rate and duration.

J. Exp. Biol. 217, 4010–4017. doi: 10.1242/jeb.112268

Butler, D. L., Grood, E. S., Noyes, F. R., and Zernicke, R. F. (1978). Biomechanics

of ligaments and tendons. Exerc. Sport Sci. Rev. 6, 125–181.

Carroll, C. C., Dickinson, J. M., Haus, J. M., Lee, G. A., Hollon, C. J., Aagaard,

P., et al. (2008). Influence of aging on the in vivo properties of human patellar

tendon. J. Appl. Physiol. 105, 1907–1915. doi: 10.1152/japplphysiol.00059.2008

Chiquet, M., Gelman, L., Lutz, R., and Maier, S. (2009). From

mechanotransduction to extracellular matrix gene expression in fibroblasts.

Biochim. Biophys. Acta 1793, 911–920. doi: 10.1016/j.bbamcr.2009.01.012

Couppé, C., Hansen, P., Kongsgaard, M., Kovanen, V., Suetta, C., Aagaard,

P., et al. (2009). Mechanical properties and collagen cross-linking of the

patellar tendon in old and young men. J. Appl. Physiol. 107, 880–886.

doi: 10.1152/japplphysiol.00291.2009

Couppé, C., Suetta, C., Kongsgaard, M., Justesen, L., Hvid, L. G., Aagaard, P.,

et al. (2012). The effects of immobilization on the mechanical properties of

the patellar tendon in younger and older men. Clin. Biomech. 27, 949–954.

doi: 10.1016/j.clinbiomech.2012.06.003

Couppé, C., Svensson, R. B., Grosset, J. F., Kovanen, V., Nielsen, R. H.,

Olsen, M. R., et al. (2014). Life-long endurance running is associated with

reduced glycation and mechanical stress in connective tissue. Age 36:9665.

doi: 10.1007/s11357-014-9665-9

Csapo, R., Malis, V., Hodgson, J., and Sinha, S. (2014). Age-related greater

Achilles tendon compliance is not associated with larger plantar flexor

muscle fascicle strains in senior women. J. Appl. Physiol. 116, 961–969.

doi: 10.1152/japplphysiol.01337.2013

Dressler, M. R., Butler, D. L., Wenstrup, R., Awad, H. A., Smith, F.,

and Boivin, G. P. (2002). A potential mechanism for age-related

declines in patellar tendon biomechanics. J. Orthop. Res. 20, 1315–1322.

doi: 10.1016/S0736-0266(02)00052-9

Ekizos, A., Papatzika, F., Charcharis, G., Bohm, S., Mersmann, F., and Arampatzis,

A. (2013). Ultrasound does not provide reliable results for the measurement

of the patellar tendon cross sectional area. J. Electromyogr. Kinesiol. 23,

1278–1282. doi: 10.1016/j.jelekin.2013.08.004

Epro, G., Mierau, A., Doerner, J., Luetkens, J. A., Scheef, L., Kukuk, G. M., et al.

(2017). The Achilles tendon is mechanosensitive in older adults: adaptations

following 14 weeks versus 1.5 years of cyclic strain exercise. J. Exp. Biol. 220,

1008–1018. doi: 10.1242/jeb.146407

Finni, T., Peltonen, J., Stenroth, L., and Cronin, N. J. (2013). Viewpoint: on

the hysteresis in the human Achilles tendon. J. Appl. Physiol. 114, 515–517.

doi: 10.1152/japplphysiol.01005.2012

Fletcher, J. R., Esau, S. P., and Macintosh, B. R. (2010). Changes in tendon stiffness

and running economy in highly trained distance runners. Eur. J. Appl. Physiol.

110, 1037–1046. doi: 10.1007/s00421-010-1582-8

Fouré, A., Nordez, A., and Cornu, C. (2013). Effects of eccentric training on

mechanical properties of the plantar flexor muscle-tendon complex. J. Appl.

Physiol. 114, 523–537. doi: 10.1152/japplphysiol.01313.2011

Galloway, M. T., Lalley, A. L., and Shearn, J. T. (2013). The role of mechanical

loading in tendon development, maintenance, injury, and repair. J. Bone Joint

Surg. Am. 95, 1620–1628. doi: 10.2106/JBJS.L.01004

Grosset, J. F., Breen, L., Stewart, C. E., Burgess, K. E., and Onambélé, G.

L. (2014). Influence of exercise intensity on training-induced tendon

mechanical properties changes in older individuals. Age 36:9657.

doi: 10.1007/s11357-014-9657-9

Heinemeier, K. M., and Kjaer, M. (2011). In vivo investigation of tendon

responses to mechanical loading. J. Musculoskelet. Neuronal Interact.

11, 115–123. Available online at: http://www.ismni.org/jmni/pdf/44/

05HEINEMEIER.pdf

Hof, A. L., Van Zandwijk, J. P., and Bobbert, M. F. (2002). Mechanics of human

triceps surae muscle in walking, running and jumping.Acta Physiol. Scand. 174,

17–30. doi: 10.1046/j.1365-201x.2002.00917.x

Hsiao, M. Y., Chen, Y. C., Lin, C. Y., Chen, W. S., and Wang, T. G.

(2015). Reduced patellar tendon elasticity with aging: in vivo assessment

by shear wave elastography. Ultrasound Med. Biol. 41, 2899–2905.

doi: 10.1016/j.ultrasmedbio.2015.07.008

Huang, T. W., Shorter, K. A., Adamczyk, P. G., and Kuo, A. D. (2015). Mechanical

and energetic consequences of reduced ankle plantar-flexion in humanwalking.

J. Exp. Biol. 218, 3541–3550. doi: 10.1242/jeb.113910

Iannuzzi-Sucich, M., Prestwood, K. M., and Kenny, A. M. (2002). Prevalence

of sarcopenia and predictors of skeletal muscle mass in healthy, older

men and women. J. Gerontol. A Biol. Sci. Med. Sci. 57, M772–M777.

doi: 10.1093/gerona/57.12.M772

Karamanidis, K., and Arampatzis, A. (2005). Mechanical and morphological

properties of different muscle-tendon units in the lower extremity and running

mechanics: effect of aging and physical activity. J. Exp. Biol. 208(Pt 20),

3907–3923. doi: 10.1242/jeb.01830

Karamanidis, K., and Arampatzis, A. (2006). Mechanical and morphological

properties of human quadriceps femoris and triceps surae muscle-

tendon unit in relation to aging and running. J. Biomech. 39, 406–417.

doi: 10.1016/j.jbiomech.2004.12.017

Karamanidis, K., and Arampatzis, A. (2007). Age-related degeneration in leg-

extensor muscle-tendon units decreases recovery performance after a forward

fall: compensation with running experience. Eur. J. Appl. Physiol. 99, 73–85.

doi: 10.1007/s00421-006-0318-2

Karamanidis, K., Arampatzis, A., and Mademli, L. (2008). Age-related deficit

in dynamic stability control after forward falls is affected by muscle

strength and tendon stiffness. J. Electromyogr. Kinesiol. 18, 980–989.

doi: 10.1016/j.jelekin.2007.04.003

Karamanidis, K., Oberländer, K. D., Niehoff, A., Epro, G., and Brüggemann, G.

P. (2014). Effect of exercise-induced enhancement of the leg-extensor muscle-

tendon unit capacities on ambulatory mechanics and knee osteoarthritis

markers in the elderly. PLoS ONE 9:e99330. doi: 10.1371/journal.pone.

0099330

Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon

and skeletal muscle to mechanical loading. Physiol. Rev. 84, 649–698.

doi: 10.1152/physrev.00031.2003

Komatsu, K., Shibata, T., Shimada, A., Viidik, A., and Chiba, M. (2004). Age-

related and regional differences in the stress-strain and stress-relaxation

behaviours of the rat incisor periodontal ligament. J. Biomech. 37, 1097–1106.

doi: 10.1016/j.jbiomech.2003.11.013

Kongsgaard, M., Reitelseder, S., Pedersen, T. G., Holm, L., Aagaard, P.,

Kjaer, M., et al. (2007). Region specific patellar tendon hypertrophy

in humans following resistance training. Acta Physiol. 191, 111–121.

doi: 10.1111/j.1748-1716.2007.01714.x

Kösters, A., Wiesinger, H. P., Bojsen-Møller, J., Müller, E., and Seynnes, O. R.

(2014). Influence of loading rate on patellar tendon mechanical properties in

vivo. Clin. Biomech. 29, 323–329. doi: 10.1016/j.clinbiomech.2013.12.010

Kubo, K., Akima, H., Ushiyama, J., Tabata, I., Fukuoka, H., Kanehisa, H., et al.

(2004). Effects of resistance training during bed rest on the viscoelastic

Frontiers in Physiology | www.frontiersin.org 6 February 2018 | Volume 9 | Article 150

https://doi.org/10.1242/jeb.003814
https://doi.org/10.1016/j.jbiomech.2010.08.014
https://doi.org/10.1016/S0736-0266(02)00038-4
https://journals.lww.com/acsm-essr/Citation/2000/28030/Muscle_and_Tendon_Contributions_to_Force,_Work,.2.aspx
https://journals.lww.com/acsm-essr/Citation/2000/28030/Muscle_and_Tendon_Contributions_to_Force,_Work,.2.aspx
https://journals.lww.com/acsm-essr/Citation/2000/28030/Muscle_and_Tendon_Contributions_to_Force,_Work,.2.aspx
https://doi.org/10.1186/s40798-015-0009-9
https://doi.org/10.1016/j.jbiomech.2016.07.002
https://doi.org/10.1242/jeb.112268
https://doi.org/10.1152/japplphysiol.00059.2008
https://doi.org/10.1016/j.bbamcr.2009.01.012
https://doi.org/10.1152/japplphysiol.00291.2009
https://doi.org/10.1016/j.clinbiomech.2012.06.003
https://doi.org/10.1007/s11357-014-9665-9
https://doi.org/10.1152/japplphysiol.01337.2013
https://doi.org/10.1016/S0736-0266(02)00052-9
https://doi.org/10.1016/j.jelekin.2013.08.004
https://doi.org/10.1242/jeb.146407
https://doi.org/10.1152/japplphysiol.01005.2012
https://doi.org/10.1007/s00421-010-1582-8
https://doi.org/10.1152/japplphysiol.01313.2011
https://doi.org/10.2106/JBJS.L.01004
https://doi.org/10.1007/s11357-014-9657-9
http://www.ismni.org/jmni/pdf/44/05HEINEMEIER.pdf
http://www.ismni.org/jmni/pdf/44/05HEINEMEIER.pdf
https://doi.org/10.1046/j.1365-201x.2002.00917.x
https://doi.org/10.1016/j.ultrasmedbio.2015.07.008
https://doi.org/10.1242/jeb.113910
https://doi.org/10.1093/gerona/57.12.M772
https://doi.org/10.1242/jeb.01830
https://doi.org/10.1016/j.jbiomech.2004.12.017
https://doi.org/10.1007/s00421-006-0318-2
https://doi.org/10.1016/j.jelekin.2007.04.003
https://doi.org/10.1371/journal.pone.0099330
https://doi.org/10.1152/physrev.00031.2003
https://doi.org/10.1016/j.jbiomech.2003.11.013
https://doi.org/10.1111/j.1748-1716.2007.01714.x
https://doi.org/10.1016/j.clinbiomech.2013.12.010
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McCrum et al. Ageing and Tendon Biomechanical Properties

properties of tendon structures in the lower limb. Scand. J. Med. Sci. Sports 14,

296–302. doi: 10.1046/j.1600-0838.2003.00368.x

Kubo, K., Kanehisa, H., Ito, M., and Fukunaga, T. (2001). Effects of isometric

training on the elasticity of human tendon structures in vivo. J. Appl. Physiol.

91, 26–32. doi: 10.1152/jappl.2001.91.1.26

Kubo, K., Morimoto, M., Komuro, T., Yata, H., Tsunoda, N., Kanehisa, H.,

et al. (2007). Effects of plyometric and weight training on muscle-tendon

complex and jump performance. Med. Sci. Sports Exerc. 39, 1801–1810.

doi: 10.1249/mss.0b013e31813e630a

Lauretani, F., Russo, C. R., Bandinelli, S., Bartali, B., Cavazzini, C., Di Iorio,

A., et al. (2003). Age-associated changes in skeletal muscles and their effect

on mobility: an operational diagnosis of sarcopenia. J. Appl. Physiol. 95,

1851–1860. doi: 10.1152/japplphysiol.00246.2003

Lichtwark, G. A., and Wilson, A. M. (2007). Is Achilles tendon compliance

optimised for maximum muscle efficiency during locomotion? J. Biomech. 40,

1768–1775. doi: 10.1016/j.jbiomech.2006.07.025

Mademli, L., and Arampatzis, A. (2008). Mechanical andmorphological properties

of the triceps surae muscle-tendon unit in old and young adults and their

interaction with a submaximal fatiguing contraction. J. Electromyogr. Kinesiol.

18, 89–98. doi: 10.1016/j.jelekin.2006.09.008

Magnusson, S. P., Beyer, N., Abrahamsen, H., Aagaard, P., Neergaard, K., and

Kjaer, M. (2003). Increased cross-sectional area and reduced tensile stress of the

Achilles tendon in elderly compared with young women. J. Gerontol. A Biol. Sci.

Med. Sci. 58, 123–127. doi: 10.1093/gerona/58.2.B123

Magnusson, S. P., and Kjaer, M. (2003). Region-specific differences in Achilles

tendon cross-sectional area in runners and non-runners. Eur. J. Appl. Physiol.

90, 549–553. doi: 10.1007/s00421-003-0865-8

McCrum, C., Oberländer, K. D., Epro, G., Krauss, P., James, D. C., Reeves, N.

D., et al. (2017). Loading rate and contraction duration effects on in vivo

human Achilles tendon mechanical properties. Clin. Physiol. Funct. Imaging.

doi: 10.1111/cpf.12472. [Epub ahead of print].

Nakagawa, Y., Majima, T., and Nagashima, K. (1994). Effect of ageing on

ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons.

Acta Physiol. Scand. 152, 307–313. doi: 10.1111/j.1748-1716.1994.tb09810.x

Noyes, F. R., and Grood, E. S. (1976). The strength of the anterior cruciate ligament

in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58, 1074–1082.

doi: 10.2106/00004623-197658080-00006

Olesen, J. L., Heinemeier, K. M., Haddad, F., Langberg, H., Flyvbjerg, A., Kjaer,

M., et al. (2006). Expression of insulin-like growth factor I, insulin-like growth

factor binding proteins, and collagen mRNA in mechanically loaded plantaris

tendon. J. Appl. Physiol. 101, 183–188. doi: 10.1152/japplphysiol.00636.2005

Onambele, G. L., Narici, M. V., and Maganaris, C. N. (2006). Calf muscle-tendon

properties and postural balance in old age. J. Appl. Physiol. 100, 2048–2056.

doi: 10.1152/japplphysiol.01442.2005

Onambele-Pearson, G. L., and Pearson, S. J. (2012). The magnitude and character

of resistance-training-induced increase in tendon stiffness at old age is gender

specific. Age 34, 427–438. doi: 10.1007/s11357-011-9248-y

Pandy, M. G., and Andriacchi, T. P. (2010). Muscle and joint function

in human locomotion. Annu. Rev. Biomed. Eng. 12, 401–433.

doi: 10.1146/annurev-bioeng-070909-105259

Pins, G. D., Christiansen, D. L., Patel, R., and Silver, F. H. (1997). Self-assembly

of collagen fibers. Influence of fibrillar alignment and decorin on mechanical

properties. Biophys. J. 73, 2164–2172. doi: 10.1016/S0006-3495(97)78247-X

Reeves, N. D., Maganaris, C. N., Ferretti, G., and Narici, M. V. (2005). Influence

of 90-day simulated microgravity on human tendon mechanical properties

and the effect of resistive countermeasures. J. Appl. Physiol. 98, 2278–2286.

doi: 10.1152/japplphysiol.01266.2004

Reeves, N. D., Maganaris, C. N., and Narici, M. V. (2003a). Effect of strength

training on human patella tendon mechanical properties of older individuals. J.

Physiol. 548, 971–981. doi: 10.1113/jphysiol.2002.035576

Reeves, N. D., Narici, M. V., and Maganaris, C. N. (2003b). Strength training

alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve

28, 74–81. doi: 10.1002/mus.10392

Robbins, J. R., and Vogel, K. G. (1994). Regional expression of mRNA for

proteoglycans and collagen in tendon. Eur. J. Cell Biol. 64, 264–270.

Roberts, T. J. (2002). The integrated function of muscles and tendons during

locomotion. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 133,

1087–1099. doi: 10.1016/S1095-6433(02)00244-1

Seynnes, O. R., Bojsen-Moller, J., Albracht, K., Arndt, A., Cronin, N. J.,

Finni, T., et al. (2015). Ultrasound-based testing of tendon mechanical

properties: a critical evaluation. J. Appl. Physiol. 118, 133–141.

doi: 10.1152/japplphysiol.00849.2014

Seynnes, O. R., Erskine, R. M., Maganaris, C. N., Longo, S., Simoneau, E.

M., Grosset, J. F., et al. (2009). Training-induced changes in structural

and mechanical properties of the patellar tendon are related to muscle

hypertrophy but not to strength gains. J. Appl. Physiol. 107, 523–530.

doi: 10.1152/japplphysiol.00213.2009

Stenroth, L., Peltonen, J., Cronin, N. J., Sipilä, S., and Finni, T. (2012). Age-related

differences in Achilles tendon properties and triceps surae muscle architecture

in vivo. J. Appl. Physiol. 113, 1537–1544. doi: 10.1152/japplphysiol.00

782.2012

Stenroth, L., Sillanpää, E., Mcphee, J. S., Narici, M. V., Gapeyeva, H., Pääsuke,

M., et al. (2015). Plantarflexor muscle-tendon properties are associated with

mobility in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 70, 996–1002.

doi: 10.1093/gerona/glv011

Tkaczuk, H. (1968). Tensile properties of human lumbar

longitudinal ligaments. Acta Orthop. Scand. 39(Suppl. 115), 1–69.

doi: 10.3109/ort.1968.39.suppl-115.01

Tuite, D. J., Renstrom, P. A., and O’Brien, M. (1997). The aging tendon. Scand. J.

Med. Sci. Sports 7, 72–77. doi: 10.1111/j.1600-0838.1997.tb00122.x

Tweedell, A. J., Ryan, E. D., Scharville, M. J., Rosenberg, J. G., Sobolewski, E. J., and

Kleinberg, C. R. (2016). The influence of ultrasound measurement techniques

on the age-related differences in Achilles tendon size. Exp. Gerontol. 76, 68–71.

doi: 10.1016/j.exger.2016.01.015

Vogel, H. G. (1991). Species differences of elastic and collagenous tissue–

influence of maturation and age. Mech. Ageing Dev. 57, 15–24.

doi: 10.1016/0047-6374(91)90021-Q

Wang, J. H. (2006). Mechanobiology of tendon. J. Biomech. 39, 1563–1582.

doi: 10.1016/j.jbiomech.2005.05.011

Wiesinger, H. P., Kösters, A., Müller, E., and Seynnes, O. R. (2015). Effects of

increased loading on in vivo tendon properties: a systematic review. Med. Sci.

Sports Exerc. 47, 1885–1895. doi: 10.1249/mss.0000000000000603

Woo, S. L., Gomez, M. A., Woo, Y. K., and Akeson, W. H. (1982).

Mechanical properties of tendons and ligaments. II. The relationships of

immobilization and exercise on tissue remodeling. Biorheology 19, 397–408.

doi: 10.3233/BIR-1982-19302

Woo, S. L., Ritter, M. A., Amiel, D., Sanders, T. M., Gomez, M. A., Kuei, S. C., et al.

(1980). The biomechanical and biochemical properties of swine tendons–long

term effects of exercise on the digital extensors. Connect. Tissue Res. 7, 177–183.

doi: 10.3109/03008208009152109

Yang, G., Crawford, R. C., and Wang, J. H. (2004). Proliferation and collagen

production of human patellar tendon fibroblasts in response to cyclic

uniaxial stretching in serum-free conditions. J. Biomech. 37, 1543–1550.

doi: 10.1016/j.jbiomech.2004.01.005

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 McCrum, Leow, Epro, König, Meijer and Karamanidis. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physiology | www.frontiersin.org 7 February 2018 | Volume 9 | Article 150

https://doi.org/10.1046/j.1600-0838.2003.00368.x
https://doi.org/10.1152/jappl.2001.91.1.26
https://doi.org/10.1249/mss.0b013e31813e630a
https://doi.org/10.1152/japplphysiol.00246.2003
https://doi.org/10.1016/j.jbiomech.2006.07.025
https://doi.org/10.1016/j.jelekin.2006.09.008
https://doi.org/10.1093/gerona/58.2.B123
https://doi.org/10.1007/s00421-003-0865-8
https://doi.org/10.1111/cpf.12472
https://doi.org/10.1111/j.1748-1716.1994.tb09810.x
https://doi.org/10.2106/00004623-197658080-00006
https://doi.org/10.1152/japplphysiol.00636.2005
https://doi.org/10.1152/japplphysiol.01442.2005
https://doi.org/10.1007/s11357-011-9248-y
https://doi.org/10.1146/annurev-bioeng-070909-105259
https://doi.org/10.1016/S0006-3495(97)78247-X
https://doi.org/10.1152/japplphysiol.01266.2004
https://doi.org/10.1113/jphysiol.2002.035576
https://doi.org/10.1002/mus.10392
https://doi.org/10.1016/S1095-6433(02)00244-1
https://doi.org/10.1152/japplphysiol.00849.2014
https://doi.org/10.1152/japplphysiol.00213.2009
https://doi.org/10.1152/japplphysiol.00782.2012
https://doi.org/10.1093/gerona/glv011
https://doi.org/10.3109/ort.1968.39.suppl-115.01
https://doi.org/10.1111/j.1600-0838.1997.tb00122.x
https://doi.org/10.1016/j.exger.2016.01.015
https://doi.org/10.1016/0047-6374(91)90021-Q
https://doi.org/10.1016/j.jbiomech.2005.05.011
https://doi.org/10.1249/mss.0000000000000603
https://doi.org/10.3233/BIR-1982-19302
https://doi.org/10.3109/03008208009152109
https://doi.org/10.1016/j.jbiomech.2004.01.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading
	Introduction
	Age-Related Changes in Human Muscle-Tendon Unit Biomechanical Properties
	Muscle Strength
	Tendon Stiffness
	Tendon Cross Sectional Area
	Tendon Young's Modulus

	Effects of Increased Mechanical Loading on Muscle-Tendon Unit Biomechanical Properties in Older Adults
	Conclusion
	Author Contributions
	Funding
	References


