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Rotational activations, or spiral waves, are one of the proposed mechanisms for atrial

fibrillation (AF) maintenance.We present a system for assessing the presence of rotational

activity from intracardiac electrograms (EGMs). Our system is able to operate in real-time

with multi-electrode catheters of different topologies in contact with the atrial wall,

and it is based on new local activation time (LAT) estimation and rotational activity

detection methods. The EGM LAT estimation method is based on the identification of

the highest sustained negative slope of unipolar signals. The method is implemented

as a linear filter whose output is interpolated on a regular grid to match any catheter

topology. Its operation is illustrated on selected signals and compared to the classical

Hilbert-Transform-based phase analysis. After the estimation of the LAT on the regular

grid, the detection of rotational activity in the atrium is done by a novel method based on

the optical flow of the wavefront dynamics, and a rotation pattern match. The methods

have been validated using in silico and real AF signals.

Keywords: atrial fibrillation, multi-electrode catheter, signal processing, real-time, rotors, rotational activity

1. INTRODUCTION

Atrial fibrillation (AF) is one of the most frequent sustained arrhythmias in clinical practice
(Kirchhof et al., 2016), and is associated to increased morbidity (heart failure, ictus) (Wakili
et al., 2011). The underlying mechanisms initiating and sustaining AF are still under debate, and
this situation prevents electrophysiologists to cure the arrhythmia using catheter ablation and/or
antiarrhythmic drugs.

The traditional theory for AF maintenance relies on multiple wavelets propagating at random
in the atrial tissue (Moe, 1962; Allessie et al., 1985). The wavelet hypothesis states that a minimum
number of simultaneous wavelets would perpetuate AF. However, its maintenance possibly involves
some form of reentry circuit caused by wavebreaks (Shiroshita-Takeshita et al., 2005).

Alternatively, spatiotemporal stable sources (rotors) were proposed as the maintenance
mechanism of AF (Jalife et al., 2002). In in silico simulations and preclinical experiments rotors
are formed and maintained when a wavefront interacts with obstacles, scars, or heterogeneous
tissues with anisotropic conduction. The temporal stability characteristic of a rotor and its spiral
wave pattern, compared to the multiple wavelet irregular propagation, facilitates the development
of new algorithms that could detect and confirm the role of rotors as AF drivers. Unfortunately, in
the clinical practice the role of rotors as AF drivers is still controversial, with no confirmation nor
acceptance of the rotor paradigm (Allessie and de Groot, 2014a,b; Narayan and Jalife, 2014).

In recent years new solutions have been proposed to study the existence of rotors and their
relationship with AF termination. These works detect and characterize drivers using imaging of
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complex activation patterns in real-time. Specific examples are
the invasive systems RhythmView (Topera) (Narayan et al.,
2012), CartoFinder (Biosense Webster) (Daoud et al., 2017),
AcQMap (Acutus Medical) (Grace et al., 2017; Martin et al.,
2017), and non-invasive CardioInsight ECVUE (Medtronic)
(Yamashita et al., 2015).

The RhythmView system, one of the leading technologies in
clinical practice, was developed as part of the Focal Input and
Rotor Modulation (FIRM) method (Narayan et al., 2012). For
the detection of rotors, the method requires two basket catheters
deployed in both atria, exporting the data to perform offline
signal processing, and one trained operator to determine the
presence of the rotors. The method is based on the detection
of electrode local activation to construct isochronal maps. Then,
it performs phase analysis by directly applying the Hilbert
transform to unipolar EGMs to detect phase singularity points
where the tip of the rotor spins (Gray et al., 1998).

Despite of its promising preliminary results, the above
described method presents several limitations: The phase
mapping correlates poorly with temporal activation maps
(Vijayakumar et al., 2016). The method needs two basket
catheters, which is intrusive for the patient. The catheter
topology presents no efficient deployment and electrode contact
(Laughner et al., 2016). The low spatial resolution mapping of
the atria, is prone to false detections (Roney et al., 2017). The
solution requires signal exportation plus post-processing, which
extends the duration of the clinical procedure and prevents
reproducibility of results (Benharash et al., 2015; Buch et al.,
2016).

Similar to RhythmView, the novel CartoFinder software was
developed to detect and characterize drivers in AF (Daoud
et al., 2017), with recent studies confirming rotational activations
(Calvo et al., 2017). This solution also employs a basket
catheter to acquire the signals and identify rotational repetitive
activation patterns (RAPs). The main difference with respect
RhythmView resides in the identification of the unipolar
activation in a determined time window defined by the bipolar
information of the electrode pairs. The detection of RAPs
is based upon visual inspection. The compatibility with the
Carto 3D electroanatomical system allows CartoFinder to project
the activations onto the electroanatomical 3D map, instead of
unfolding the atrium into a 2D grid for visualization. However,
as it requires the use of basket catheters, CartoFinder presents
the same limitations in terms of electrode deployment and atrial
contact as RhythmView.

The AcQMap system employs a basket catheter with 48
electrodes and 48 ultrasound transducers to perform non-contact
3D electroanatomical reconstruction and signal acquisition. The
ultrasound technology generates maps faster than by using
traditional mapping catheters. The electrical activations are
calculated with algorithms applied to intracardiac voltage signals
and represented as unipolar voltage and Dipole DensityTM

maps. This system has the advantage of embedding the
generated activation maps in the 3D anatomical model for
visualization. Nevertheless, the non-contact feature is sensitive
to the distance of the electrode to the atrial wall and catheter
positioning.

Sharing the same goal, non-invasive methods aim to
characterize AF prior to the surgical procedure. One example
is the CardioInsight ECVUE, based on a multi-electrode vest
recording body surface electrocardiograms (ECGs) which are
combined with CT scan data. While the system is able to display
3D cardiac epicardial activation maps, it has potential limitations
compared to invasive approaches which map endocardial tissue.
The assessment of drivers is limited in some particular regions
like the septal area, and some tissues between the body surface
and the epicardium may affect the signals. Finally, the signal
to noise ratio of the system limits its accuracy in the detection
for short and small amplitude drivers, and it may not correlate
with reentries identified by other systems, although important
advances focusing on demonstating this correspondance have
been done (Rodrigo et al., 2017).

In this work, we present a new automatic rotational activity
detection method that operates in near real-time with atrial
contact. In contrast to other invasive mapping methods, our
system can be easily configured for different multi-electrode
topologies (e.g., circular, spiral, pentameric). This avoids contact
problems and allows electrophysiologists to study if reentries
can be explained by micro-rotors (which are too small to be
mapped with other catheter models or missed by phase analysis
approaches).

To our knowledge this is the first near real time rotational
activity detection methodology providing multiple catheter
topology compatibility. The proposed methods have been
validated in simulated, experimental and clinical environments
by means of direct comparison with other methods and error
performance measurements.

2. MATERIALS AND METHODS

2.1. Objectives and Validation
The objective of the system is to achieve rotational activation
detection in real-time with a new methodology based on optical
flow. For the validation of the methods we employed real AF
signals acquired from patients with persistent AF and in silico
simulations. The details on signal acquisition are included in
the subsection Rotational Activation Detection System, and the
in silico scenarios are presented in subsection Interpolation.
Experienced electrophysiologists validated the outcomes of the
methods and assessed the utility of the system, as shown in
section 3 Results.

2.2. Rotational Activation Detection System
The rotational activity detection system is based on an analog
to digital converter (ADC), a processing unit and a monitor to
display the results. The system can be easily integrated with other
equipment commonly used in electrophysiology laboratories, as
shown in Figures 1A,B. In this article we consider a pentametric
shape catheter that consists of five branches with 4 electrodes,
20 in total, but other models can be used, i.e., circular, spiral, or
basket.

The amplifier at the laboratory provides unipolar intracavitary
EGMs from a multi-electrode catheter, and a reference external
ECG. Although bipolar signals are preferred in clinical practice
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FIGURE 1 | System implementation. (A) Common equipment in the electrophysiology laboratory. (B) Operating room monitors displaying the real-time rotational

activity detection solution in the rightmost monitor. (C) Signal processing unit diagram implementing the rotational activity detection system. It receives as inputs N

unipolar EGMs and one ECG lead, processes the signals and presents results in real-time.

because of the far-field cancellation feature, they lack to
provide precise local electrical activation information, as the
electrical activation time instant cannot be accurately identified
(Shenasa et al., 2009). For this reason unipolar configuration
is preferred as the electrical activation timing is well defined
by the point of maximum negative slope, and therefore
activation maps can be built, on the expense of recording far-
field ventricle activity, which can be later removed by using
signal processing techniques. Other mapping solutions, i.e.,
RhythmView, CartoFinder, or AcQMap, also employ unipolar
signals (Narayan et al., 2012; Daoud et al., 2017; Grace et al.,
2017).

The sequence of operations to detect rotational activity
from the acquired signals is shown in Figure 1C. We remove
the baseline wandering present in unipolar signals and cancel
the ventricle contribution to isolate the atrial activations.
Then, we approximate the slope of the unipolar deflections
related to the activation times of the atrium. By applying
signal spatial interpolation on a regular bidimensional grid, we
achieve independence from the catheter topology employed for
mapping the atrium. Finally, we identify atrial activation times
and perform the rotational activity detection. The results are
presented in real-time in a monitor inside the operating room
(Figure 1B).

2.3. Signal Pre-processing and Ventricle
Cancelation
Unipolar signals suffer from low frequency baseline drift caused
by the respiratory movement of the patient (see Figure 2A). We
estimate the DC signal component applying a causal median filter
of 500 ms window length (de Chazal et al., 2003), and subtract it
from the unipolar signal (Figure 2B).

Unipolar recordings are also affected by far-field signal
contributions. The stronger ventricle signal overlays the atrial

activity which has lower-amplitude, occluding atrial activations
in the EGMs recordings (see Figure 2B). We cancel the ventricle
contribution and recover hidden atrial activations calculating
the ventricle unipolar pattern affecting each electrode signal,
similarly to the average beat subtraction method described in the
literature (Slocum et al., 1985), and current EPmapping solutions
(Daoud et al., 2017). We calculate independent patterns for each
channel as the electrodes record different atrial positions. To this
end, the catheter is assumed to be stationary during the signal
acquisition.

A reference ECG signal identifies the scope of the ventricular
contribution in the unipolar signals. The ventricle onset and
offset are associated in the ECG to the Q-peak and to the
T-wave end time instants respectively, as Figure 3A shows. The
number of beats included for analysis varies depending on the
heart rate of the patient and the duration of the acquisition.
For this reason we set the minimum signal acquisition time
to be at least 10 s, i.e., 10 beats for a 60 beats per minute
rhythm. We guarantee at least 5 consecutive QRST complexes
for a minimum heart rate of 30 bpm. Having 5 QRST complexes
is enough to perform ventricle cancellation as demonstrated
in other studies (Laughner et al., 2016). The 2nd Discrete
Wavelet Transformation (DWT) scale of the ECG signal, using

Daubechies DB4wavelet, detects the R-peaks locationsR(i)j (Chui,
1992). Superscript i = 1, . . . ,N corresponds to the i-th channel,
and subscript j = 1, . . . , J refers to the j-th ventricle activation
in the ECG signal containing a total of J activations. This scale
corresponds to the 0− 125 Hz frequency band of the signal for a
sampling frequency fs = 1 KHz. This frequency band covers the
typical 0.05 − 100 Hz processing bandwidth for diagnostic ECG
signals (Venkatachalam et al., 2011).

We threshold the signal and detect the R-peaks. A local search

(±20 ms) corrects the R
(i)
j time shifts when the DWT peak is

converted back to the original scale. Once R
(i)
j is found, a local
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FIGURE 2 | Signal processing for unipolar EGMs. (A) Raw unipolar EGM with ventricle contribution overlaying atrial activations delimited in dark and light gray for the

QRS and ST intervals respectively. Level zero DC in dashed red shows the wandering DC offset affecting the signal. (B) Signal after baseline wandering correction. (C)

Signal after ventricle cancellation, recovering occluded atrial activations shown in green. (D) Linear pattern approximation of the unipolar slope β[n] (M = 30 ms in the

example). (E) Unipolar LATs in red detected from β+[n] in blue using an exponential decaying threshold, Th[n] in dashed green line.

search to the left of R-Peaks obtains the Q-Peaks in the ECG
signal. The minimum in the [R(i)j − 50 ms,R(i)j − 10 ms] interval

corresponds to the Q(i)
j locations. Following the same searching

procedure, the S-Peak is the minimum located within the [R(i)j +5

ms,R(i)j + 50 ms] temporal window. An algorithm designed for
positive T-waves detects the T-wave ends (Zhang et al., 2006).
From all the external ECG leads the method needs one exhibiting

T-wave concave morphology, i.e., lead I, V3, V4, or V5. The area
under the curve is calculated using a 32 ms length overlapping
sliding window with a one sample shift in an interval containing
the T-wave. The time instant maximizing the area value gives the

T
(i)
j location.
Then, for each i-th channel we align all the unipolar segments

in the range [Q(i)
j ,T(i)

j ] and obtain the ventricle pattern as
the median of the channel segments (Figure 3B). The T-wave
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FIGURE 3 | Ventricle cancellation in unipolar EGMs. (A) AF ECG with the reference points highlighted in red used for calculating the ventricle pattern. We can see the

absence of a P wave, characteristic of AF since the atrium is not properly depolarized. (B) Averaged ventricle pattern in black calculated using 36 segments of

unipolar channel i. Segments corresponding to the QR, RS, and ST subintervals are represented in red, green and blue respectively. (C) Unipolar recording after

ventricle cancelation with depolarizations in red and their durations annotated between dashed lines in black.

contribution to the unipolar signal is smaller than the QRS
complex, for this reasonwe represent the QS and ST sub-intervals
overlaying the atrial signal in dark and light gray respectively in
Figures 2A–C. To cancel every ventricle contribution, the pattern
and each segment are aligned before subtraction. The time shift
is given by the maximum correlation time instant between the
two signals. Finally, the pattern subtraction removes the ventricle
contribution from the unipolar segment (Figure 2C).

2.4. Detection of Local Activation Times
Depolarizations are characterized by an abrupt deflection of the
action potential recorded by the catheter. Depending on different
factors (i.e., conduction speed, atrium area, antiarrhythmic
drugs) the downward slope duration of an atrial activation varies.
Figure 3C shows this variation with falls lasting 23, 29, 26, 25,
and 33 ms. We propose a new method to identify local activation
times (LATs) in EGMs by searching a pattern exhibiting a linear
deflection.

We approximate the EGM signal x[n] by the linear function
in the interval defined by a 2M + 1 samples window centered at
time instant n0, expressed as:

x̂ [n] = β[n0](n− n0), for n ∈ [n0 −M, n0 +M], (1)

where β[n0] represents the function slope value at time n0. We
estimate β[n0] by minimizing the Mean Square Error (MSE) of
the error function ζ [n0] defined as:

ζ [n0] =
M
∑

n=−M

|x[n0+n]−x̂[n]|2 =
M
∑

n=−M

|x[n0+n]−β[n0]·n|
2.

(2)
We include the β̂MSE[n0] derivation. We calculate the first
derivative of ζ [n0] with respect to β[n0], and set it to zero:

∂ζ [n0]

∂β[n0]
=

∂

∂β[n0]

{

M
∑

n=−M

|x[n0 + n]− β[n0] · n|
2

}

=

M
∑

n=−M

{

− 2n · x[n0 + n]+ 2n2 · β[n0]

}

= 0. (3)

Solving for β[n0] in Equation (3), we obtain the value of β[n0]
minimizing the MSE,

β̂MSE[n0] =

M
∑

n=−M
n · x[n0 + n]

M
∑

n=−M
n2

. (4)

The denominator of Equation (4) is a constant that depends on
the window lengthM which simplifies the expression to:

β̂MSE[n0] = M ·

M
∑

n=−M

n · x[n0 + n], (5)

whereM =

(

M
∑

n=−M
n2

)−1

.

Additionally, we characterize the linear pattern
approximation, which applied to EGMs resembles the outcome
of a first derivative operator multiplied by the constant that
depends on the window size M. The expression in Equation (5)
can be seen as a filter with impulse response:

h[n] = M ·

M
∑

τ=−M

τ · δ[n− τ ], (6)

and frequency response H(f ) (Figure 4B), equivalent to a
discrete-time low pass differentiator. In section Results, we
analyze the effects of selecting the window length M on the
amplitude and frequency components of the signal.

In the following, and since there is no ambiguity, we shall
drop the subindex in the n0 and simply refer to it as n. The
signal β[n] (Figure 2D) is inverted and rectified obtaining a new
signal β+[n] (Figure 2E). The inversion pairs deflections with
positive peaks of the signal, and the rectification discards the
atrial components with positive slope. Then, the position of the
positive peaks are assumed to correspond to the LATs.
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FIGURE 4 | Signal slope characterization. (A) Top. Unipolar signal first derivative. Bottom. Unipolar signal slope approximation for different window length values, M in

ms. (B) Frequency response of the equivalent filter h[n] in Equation (6) for different M values.

The amplitude of the β+[n] peaks varies from activation to
activation. These deviations are a consequence of the constant
heart activity that prevents the electrodes from having a uniform
atrial contact, resulting in amplitude changes. An exponentially
decaying threshold after a peak detection is implemented to
search for the local activation times (Barbaro et al., 1998). The
threshold Th[n] is updated at each time instant as:

Th[n] =

{

(Mi − σ )e−
Mi−σ

τ
(n−(ni+b)) + σ , if n > ni + b,

Mi, if ni < n ≤ ni + b.
(7)

Variables Mi and ni are the amplitude and time instant of the
last detected peak. Time variable τ defines the decay rate of
the exponential function. The constant σ specifies a lower limit
for the threshold, filtering out small interferences or weak far-
field contributions. The threshold is initialized to M0 = σ .
Close depolarizations are physiologically improbable due to the
refractory period of the tissue. To avoid false positives in this
period, the threshold maintains its value for a blank period
b before detecting a new peak. The algorithm detects a local
activation time when a peak of the signal is above the threshold
value, as Figure 2E shows. A local search for possible undetected
peaks in a window of length b around each detected peak prevents
false local maxima to be considered as activation instants.

2.5. Interpolation
In the atrium, depolarization flanks propagate locally as a
consequence of the ionic sodium currents firing the cardiac
cells through neighboring atrial tissue. We use signal spatial
interpolation to represent the atrial activity in the area
covered by the catheter. The subsequent processing thus
becomes independent of the electrode topology employed. We
have several potential magnitude candidates for interpolation:
unipolar signals, local activations, and unipolar slopes. From
the interpolation candidates, unipolar signals after ventricle
cancellation produce noisy and ambiguous maps. The noise
component inherent in the unipolar signal affects the LATs

outcome, therefore performing an interpolation with noisy data
is not recommended and should be avoided. Local activation
times using binary signals (value 1 for LATs and 0 otherwise) offer
poor discontinuous representation when recovering wavefronts.
This interpolation does not preserve the dynamics of the
wavefront since the nodes are only active one time instant
corresponding to the LAT of the electrode associated to the
grid node. To overcome these potential issues we choose to
interpolate the signal β[n]. It provides a continuous transition,
noise reduction, and contains information about the activation
measures, coherent with the depolarization propagation basis in
the atrium.

For the interpolation, we use a 2 dimensional (2D) squared
grid consisting of J × J nodes, namely nj,k with j, k ∈ [1, J],
representing the atrial tissue covered by the catheter. The grid
size is also related to the spatial resolution, e.g., for a PentaRay
catheter range of 32 mm and J = 32 each node represents 1 mm2.
In the grid, each β(i)[n] signal is mapped to the fixed spatial
coordinate proportional to their location in the physical catheter,
referring to these information nodes as n(i). All these nodes
belong to the setN . Grid nodes containing no signal are filled by
means of interpolation using Shepard’s method (Shepard, 1968).
This interpolation technique uses inverse distance weighting to
find an interpolated value based on the signals β(i)[n] for i =
1, . . . ,N, and their node positions in the grid n(i). The function
for obtaining the interpolated signal β(j,k)[n] is defined as:

β(j,k)[n] =







β(i)[n], if n(j,k) ∈ N ,
∑N

i=1 w
(i)(n(j,k))·β

(i)[n]
∑N

i=1 w
(i)(n(j,k))

, otherwise,
(8)

where

w(i)(n(j,k)) =
1

d(n(j,k), n(i))p
, (9)

being d(·, ·) any distance metric operator and p a positive
real number power parameter. We use the Euclidean distance
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between the node positions since we employ two dimensional
coordinates. In presence of 2D data, choosing p ≤ 2 causes the
interpolated data to be dominated by far away points, so choosing
p = 3 or 4 provides a better interpretation of local region
information. After the interpolation, we apply LATs detection to
all the grid nodes. While electrode positions are assumed to be
not known in our method, Equations (8) and (9) can be easily
adapted to reflect variable electrode position dependency in time
and update the grid positions accordingly.

The interpolation method necessarily needs reliable ground
truth data to prove its efficacy. For this reason we validated
the spatial interpolation using in silico signals generated from a
realistic atrial 3D model developed at the Karlsruhe Institute of
Technology (Seemann et al., 2006). The model implements fiber
orientation, spatial heterogeneities, and anisotropy conduction
for both conduction velocity and ionic currents. Simulations were
performed as in a previous study (Sánchez et al., 2017), with
the AF-remodeled version of the cellular model by Maleckar
et al. (2009). Simulations were run with the software Elvira
(Heidenreich et al., 2010), and unipolar pseudo-electrograms
(pEGMs) were calculated at each of these electrodes (Baher et al.,
2007). The integration time step for the 3D atria simulations
was 0.04 ms to properly generate the fast upstrokes of the action
potential. The output voltages were post-processed every 1 ms
to match the real AF signal acquired at a sampling frequency of
fs = 1 KHz.

In the in silico simulations (Figure 5), we considered
different activity scenarios: sinus rhythm, rotor, and chaotic
wavefront collisions exhibiting different propagation directions.
The stimulation protocol applied a periodic stimuli for the sinus
rhythm case, and forced extra-stimuli to generate reentries and
fibrillatory behavior for the other cases. The recording positions
in the atrium were manually chosen for the three scenarios.
We deployed a squared 16 × 16 node grid, emulating 256
different electrodes recording the pEGM and AP signals. The

grid was seized to fit the same area as the one covered with a
PentaRay catheter. We simulated 10 s at a sampling frequency
fs = 1 KHz. We include the simulation videos as Supplementary
Material.

2.6. Rotational Activity Detection
From the LATs, we represent the activations on the grid using
isochronal maps (Ideker et al., 1989). Themap takes value 0 when
the node is active and linearly decrements its value until next
activation occurs. The last P previous time instants of the signal
are displayed (e.g., P = 40 ms), with smaller intervals producing
narrower wavefronts. The most recent activated node will take
a hotter color (red) and will cool down as time passes (blue)
until a new activation occurs. Figure 6 provides an example of
isochronal maps for P = 50 ms.

We propose to detect the presence of rotational activity on the
isochronal maps estimating their optical flow (Ogle, 1951). Given
two consecutive images (Figures 7A,B), it returns the velocity
vectors Eu and Eυ based on the difference of the two images,
providing the propagation direction of the atrial wavefronts at
each grid node, as Figure 7C shows.

Defining image intensity I(Ex, t) as a function of time t and
space Ex = [x, y]T , the intensity translation can be expressed as:

I(Ex, t) = I(Ex+ Er, t + 1), (10)

where Er = [u, v]T is the 2D velocity vector. In our case, I(Ex, t)
corresponds to the elapsed time since an activation occurred
at node nj,k. Although many estimation approaches exist in the
literature (Fleet and Weiss, 2006), an early method proposed by
Horn and Schunck is used, based on non-parametric motion
models and assuming smoothness in the whole image flow (Horn
and Schunck, 1981). They proposed an energy functional for the
flow:

E(Er) =

∫∫

((∇I · Er + It)
2 + λ(‖∇u‖2)+ ‖∇v‖2))dxdy. (11)

FIGURE 5 | In silico simulation scenarios. (A) Sinus rhythm, 500 ms period. (B) Rotor. (C) Chaotic wavefront collisions.
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FIGURE 6 | Real data propagation. Signals acquired with a PentaRay catheter at 8 different time instants showing the thresholded grid in the [−P, 0] ms range when a

wavefront propagates, P = 50ms. (A) Sinus rhythm activity propagating from top to bottom. (B) Propagation exhibiting counterclockwise rotational activity.

FIGURE 7 | Optical flow. Horn-Schunck method on two consecutive images (Horn and Schunck, 1981). (A) Isochronal frame at t− 1. (B) Isochronal frame at t.
(C) Velocity vectors applying Horn-Schunck method to the frames. (D) Clockwise rotation mask, grid size J = 32 nodes.

The solution to this equation can be iteratively computed for u
and υ , the two components of the velocity vector Er. It obtains the
partial derivatives fx, fy, and ft by 2D-convolution of the images
It and It−1 with respect to the convolution kernels Kx,Ky and Kt ,
namely:

fx = It ∗ Kx + It−1 ∗ Kx, (12)

fy = It ∗ Ky + It−1 ∗ Ky, (13)

ft = It ∗ Kt − It−1 ∗ Kt , (14)

where the convolution kernels are:

Kx =
1

4

[

−1 1
−1 1

]

, (15)

Ky =
1

4

[

−1 −1
1 1

]

, and (16)

Kt =
1

4

[

1 1
1 1

]

. (17)

Values u and υ are approximated by iteratively calculating N
times the solutions for

un = ūn −
fx[(fx · ūn)+ (fy · ῡn)+ ft]

α2 + f 2x + f 2y
, (18)

υn = ῡn −
fy[(fx · ūn)+ (fy · ῡn)+ ft]

α2 + f 2x + f 2y
, (19)

for n = 1, . . . ,N and u0 = 0, υ0 = 0, where α is the smoothing
factor and the local averages ūn and ῡn are calculated as:

ūn = un−1 ∗ K̄, (20)

ῡn = υn−1 ∗ K̄, (21)

with the averaging kernel:

K̄ =





1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12



 . (22)

This method to approximate the integration and derivatives
allows a large system of linear equations to be solved by iterative
computation. We found N = 25 iterations to be enough to
approximate the derivatives, since larger values produced almost
identical results. The regularization parameter α provides global
smoothing on the grid. For the computations, we selected a value
α = 1 which makes the propagation of information over far
distant points in the image possible.

We apply the HS method to the reconstructed wavefront
images at each time instant, obtaining a two element vector Erj,k =

[uj,k, vj,k]
T for each node. Vectors are normalized so |Erj,k| = 1,

and Erj,k = [0, 0]T if there is no propagation.
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We introduce a circular pattern, see Figure 7D, consisting of
unitary vectors Ecj,k = [dj,k, ej,k]

T arranged in a spiral-like layout
satisfying:

Ecj,k =

{

dj,k = sin(αj,k +
π
2 ), for j, k ∈ [1, J],

ej,k = cos(αj,k +
π
2 ), for j, k ∈ [1, J],

(23)

where αj,k is the angle defined by each node nj,k and the pattern
center located at nj∗ ,k∗ calculated as:

αj,k = atan2

(

d(j, j∗)

dist(k, k∗)

)

, (24)

where in this case the distance operator d(A,B) (introduced in
Equation 9) stands for the euclidean distance between two points
A and B.

This layout serves as comparison mask to quantify the
rotation level. Vector velocity components of the wavefront and
the reference mask are split into matrices [U,V] and [Û, V̂]
respectively. We apply element-wise scalar product at each time
instant n to calculate the rotational intensity, normalized with
respect to the number of nodes constituting the J-squared grid,
as:

T[n] =
1

J2

J
∑

i=1

J
∑

j=1

uj,k[n]dj,k[n]+ υj,k[n]ej,k[n]. (25)

The following step performs time integration ofT[n] in a range of
γ samples. Only values contained in the time interval [n − γ , n]
are included to capture the wavefront dynamics, obtaining the
expression for our new indicator

Ŵ[n] =
n
∑

τ=n−γ

T[τ ]. (26)

We detect rotational activity when Ŵ[n] exhibits high or low
values above or below a double decision threshold ±Ŵth, see
Figures 8A–C, 9A–C. The sign determines the circular direction
of the wavefront, clockwise or counterclockwise. Depending on
the chosen spin turn of the reference mask, i.e., if clockwise,
positive Ŵ[n] peaks correspond to clockwise rotations and
negative values to counterclockwise gyres.

2.7. Real-Time Implementation
The system (patent pending) is currently implemented in real-
time using an ADCmanufactured by National Instruments and a
PC (Figure 1A). The dynamic range of the amplifier is ±2mV
for intracavitary EGMs, and ±5mV for ECGs, with a voltage
gain of 60 dB at the ADC input. Wilson central terminal acts
as the indifferent electrode in unipolar configuration. Signals are
filtered using a 50Hz Notch filter, band pass filtered 0.05–50Hz
for unipolar EGMs, and 0.05–100 Hz for ECG leads. The ADC
connected to the amplifier works at a sampling frequency of
1 KHz.

The computer has one 8-core Intel R© Xeon R© CPU 3.40 GHz
processor, 16 GB RAM, on 64 bits Windows 7 Professional.

A GPU, Nvidia Tesla K20c with 2496 CUDA cores, parallelizes
the computation minimizing the time for delivering rotational
activity detection.

The ventricle cancelation method requires to buffer signals
long enough to capture several ventricle beats, we buffer the last
B seconds of the signals to estimate each channel ventricular
pattern, e.g., B = 10 s. Computations take less than 7 s for B = 10
s, and a screen inside the operating room presents the results
immediately. Wavefront propagation intervals where the value
of Ŵ[n] exceeds the detection threshold are presented to the
electrophysiologist in a monitor at reduced speed, as Figure 1B
shows. Then, the rotor location in the atrium can be annotated in
any 3D electroanatomical mapping system as guiding reference
during ablation.

3. RESULTS

3.1. Local Activation Times Results
We evaluated the LATs detection in real AF and computer model
EGMs. We validated our method by direct look at the EGMs and
LATs outcomes with expert knowledge from electrophysiologists
and fine adjustment of the parameters taking into account noise
reduction, electrode adjacency to maximize the detection of
activations (for both real and simulated signals). We considered
a range of 20 − 40 ms as the span of a depolarization, which
corroborates previous results (Yue et al., 2005; Narayan et al.,
2008).

We used the unipolar signal in Figure 3C to analyze the
filtering effect of parameter M comparing it with the unipolar
signal first derivative used by other authors to identify LATs.
Our method provides a smoother and less noisy signal than the
one obtained with the first derivative, see Figure 4A. This makes
it easier to identify the LATs, where our method presents high
β̂MSE[n] values when the pattern matches a deflection.

In terms of frequency effects, small values of M produce a
higher cut-off frequency, whereas big values ofM present a more
restrictive low pass characteristic which filters more noise, see
Figure 4B. This is helpful in noisy EGMs, where small residual
peaks appear, and complementary, the exponential decaying
threshold demonstrated to recover from false high peaks. The
steep threshold drop avoids LAT error propagation that would
lead tomiss the next atrial activations. Value τ was set empirically
to τ = 3.5 · 10−3 by reviewing atrial activations. We also
found threshold parameter b crucial in the event of fragmented
EGMs, by adjusting the blank period to several ms (60 ms)
the fragmented activity can be detected and taken into account
in the reconstructed wavefront. This value was selected to be
above the classical dominant frequency (DF) range of 4 − 9 Hz
shown by most studies (Ropella et al., 1988). On the other hand,
higher values would not allow the threshold to decay fast enough
for the next activation to be detected, missing LATs. The value
of b = 60 ms was also proposed according to the closeness
of consecutive atrial activations and the recovery time for the
exponential threshold to reach its minimum value σ . When the
next activation exhibited smaller peak amplitude, values greater
than 60 ms incurred in missing atrial activations, since the
threshold was not fast enough to decay and identify the β+[n]
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FIGURE 8 | Rotational activity detector in in silico signals. Detection performed on the three simulation scenarios. The method detects rotational activation if the value

of Ŵ[n] exceeds the upper threshold +Ŵth or falls below the lower threshold −Ŵth. The sign of Ŵ[n] reflects the rotational gyre direction, being positive if the gyre

matches the rotation mask spin (clockwise/counterclockwise depending on the chosen pattern), or negative if the propagation rotates in the opposite mask direction.

For the simulation cases we applied the detection on the full Ŵ[n] and the interpolated Ŵ̂[n] grids to compare both outcomes. Signals from top to bottom: (A) Sinus

rhythm. (B) Rotor. (C) Chaotic wavefront collision. Parameters were γ = 150 samples and Ŵth = γ /7.

positive peak. We tried different values for b and finally selected
b = 60 ms.

In terms of amplitude, the window selection has a direct
effect on the amplitude of the filtered signal. From Figure 4A

(bottom) we can see this behavior as the value of the window
M is increased. The signal becomes softened at the expense
of reducing its amplitude. The same interpretation is derived

from the frequency response analysis in Figure 4B, where the
amplitude of the frequency spectrum becomes reduced as M
increases.

After analyzing the effect on the window length selection, we
can conclude that employing an over-sized window length would
lead the peaks to be less well defined because the signal becomes
flatter, but as an advantage unipolar noise is greatly reduced.
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FIGURE 9 | Rotational activity detector in real AF signals. Detection performed on the three real AF signals from three different patients. Same methods and

parameters are applied as in Figure 8. (A) Sustained multiple rotational activation example. (B) Non-sustained multiple gyre rotations. (C) Another example of rotation

detection.

On the other hand, having a window too narrow (small M)
would produce sharper transitions but would be more sensitive
to small deflections that might be miss-detected as LATs. From
the in silico simulation scenarios used to validate the methods,
see Interpolation subsection, Figure 5, we found that a value of
M = 20 − 30 samples reports a good trade-off between signal
amplitude and noise reduction.

Furthermore, we want to compare our LAT detection method
vs. the phase signal obtained with the Hilbert transform (Kuklik
et al., 2016). One representative example comparing both

methods is shown in Figures 10A–C, using the same unipolar
signal as in Figure 3C. In the example, our method is able to
capture all the activation time instants, denoted as diamonds
Figure 10C. We can clearly identify the missing phase transition
at the 4th and 5th atrial activations. In this situation the Hilbert
transform is not reliable, confirming previous results on weak
correlation between phase and activation maps (Vijayakumar
et al., 2016). Moreover, the Hilbert transform requires an
estimation of the signal period, calculated as the dominant
frequency of the segment which can vary in time. Additionally
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in Figure 10B we can see how the first phase transition drops
from π to −π preceding the first two activations (34 ms and
13 ms respectively), and after them it gets delayed (10 ms) in
the third activation. This is a meaningful variation that may lead
to a potential misinterpretation of the atrial activity. Since our
method relies on beat to beat detection it does not shift the LATs
from activation to activation.

3.2. Signal Interpolation Results
We used in silico signals to validate the wavefront reconstruction.
From the 256 pEGM signals, we chose 20 signals according
to the spatial position of the PentaRay electrodes in the grid.
We obtained their slope information β[n], performed the
interpolation and the LATs detection to obtain the reconstructed
wavefronts. To evaluate the outcome of the interpolationmethod,
we also processed the whole 256 pEGMs grid to obtain the
isochronal propagation so we could compare both interpolations.

We evaluated the interpolation reconstruction for different
M, p and σ parameter values. We quantified the interpolation
performance by measuring the LATs relative root mean square
error (rRMSE) between the interpolated and full grid versions for
all the parameter combinations. The rRMSE is defined as:

rRMSE =

√

1
N

N
∑

n=1

J
∑

i=1

J
∑

j=1

(

Li,j[n]− L̂i,j[n]
)2

√

1
N

N
∑

n=1

J
∑

i=1

J
∑

j=1

(

Li,j[n]
)2

, (27)

where Li,j[n] and L̂i,j[n] are the full grid and interpolated LAT
signals at node ni,j and time instant n ∈ [1,N] samples. The

Li,j[n] and L̂i,j[n] take value 0 when a LAT is detected and

linearly decrease their values until a new activation occurs.
We used value ranges M = 2, 3, 4, . . . , 20, p = 1, 2, 4 and
σ = 0.05, 0.06, . . . , 0.29, 0.30. As Supplementary Material we
include the videos generated for the three simulation scenarios
(sinus rhythm, rotor, and chaotic wave collisions) comparing the
full and interpolated grids for the values minimizing the rRMSE.

Best error results were achieved for p = 4 in all cases.
Figure 11 shows the rRMSE values for theM and σ combinations
for p = 4. For the rotor case (Figure 11A) the value minimizing
the reconstruction error was rRMSE = 0.314 (rRMSE mean ±
std, 0.348 ± 0.025) achieved for p = 4, M = 20 and σ = 0.14.
Sinus rhythm (Figure 11B) scored rRMSE = 0.121 (0.131 ±
0.011) for p = 4, M = 2 and σ = 0.05, and the wave collision
case (Figure 11C) rRMSE = 0.337 (0.357 ± 0.019) for p = 4,
M = 20 and σ = 0.12.

The interpolation using Shepard’s method was compared
against bilinear interpolation. Statistical significance analysis was
perform, comparing the rRMSE group means and standard
deviations using the Kruskal-Wallist test. Significance was
considered for a two-sided p-value (p) of less than 0.01. The
minimum rRMSE for rotor case was rRMSE = 0.328 (0.375 ±
0.026) for M = 20 and σ = 0.14 (same parameters as the
Shepard’s approach). The SR case achieved rRMSE = 0.120
(0.126 ± 0.012) for M = 6 and σ = 0.28, and the chaotic case
rRMSE = 0.362 (0.401 ± 0.026) for parameters M = 16 and
σ = 0.21. In the rotor and chaotic cases the bilinear interpolation
offered significant worse minimum error than the one obtained
with the Shepard’s interpolation method (p = 7.6 × 10−59 and
p = 4.6× 10−110 respectively). Only in the sinus rhythm case the
bilinear interpolation was significantly better than the Shepard’s
method, rRMSE = 0.120 and rRMSE = 0.121 respectively
(p = 4.6 × 10−43). Since the system is expected to operate

FIGURE 10 | Signal slope and Hilbert transform phase comparison. (A) Unipolar signal. Bottom. Unipolar signal slope approximation for different window length

values, M in ms. (B) Hilbert transform phase applied to the signal in (A). (C) Unipolar slope approximation applied to the signal in (A), M = 30 ms. Red circles denote

the LATs calculated with our method.
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FIGURE 11 | Shepard’s interpolation method performance. The relative RMSE (rRMSE) is represented for each case for p = 4. (A) Rotor. rRMSE = 0.314 for p = 4,

M = 20 and σ = 0.14. (B) Sinus rhythm. rRMSE = 0.121 for p = 4, M = 2 and σ = 0.05. (C) Chaotic. rRMSE = 0.337 for p = 4, M = 20 and σ = 0.12.

when patients are in AF, Shepard’s interpolation method provides
better performance. We include the Supplementary Figure 1 for
the three in silico scenarios rRMSE as Supplementary Material,
analogous to Figure 11.

We now study the effect on the interpolation performance
when a catheter branch differs from the fixed position in the
grid for the three in silico cases. To characterize this behavior,
we rotated the positions of one of the branches of the catheter,
i.e., the PentaRaymodel, from its predefined position.We rotated
the 4 electrodes in the branch covering a rotation range [−θ , θ],
with θ = 2π

5 radians (or 72◦), establishing as rotation limits the
angle where the branch overlaps its two neighboring branches.
At the rotated electrode positions we took the signals from the
full simulated grid and used them to perform the interpolation
on the fixed interpolation positions. This way the interpolation
maintains the fixed electrode layout but the information signals
come from shifted positions emulating the behavior of the
catheter when a branch does not match the predefined layout.
We iterated in steps of θ

20 and calculated the rRMSE for
all the rotated interpolations. We include the results in the
Supplementary Figure 2. The figure shows the interpolation
rRMSE for the three cases in the [−θ , θ] in radians and also
with respect the length of the arc of the rotation angle. The
arc length is calculated from the circumference of radius 32
mm determined by the most distant PentaRay electrode with
respect to the center of the catheter. The rRMSE remains almost
the same for a rotation of π

50 radians (±2 mm) and worsens
as the rotation angle moves away from the reference fixed
position.

The interpolated reconstructions for the parameters
minimizing the rRMSE criterion in the three in silico cases
were presented to the electrophysiologists for final validation.
They agreed that the sinus rhythm and the rotor cases presented
almost identical representation compared to the simulated
ground truth. The wave collisions case also exhibited good
results in the presence of chaotic behavior. In all the cases the
interpolation managed to recover all the activations present in
the pEGM grid, and the wavefront morphologies also matched
the original ones. This evaluation supports the effectiveness of the
proposed interpolation method, and discards any interpolation
effect that may introduce uncertainty in the rotational activity
detection system.

3.3. Rotational Activity Detection Results
The lack of available rotor signals, not even being a consensus
about their existence, presents a challenge when evaluating the
system’s ability to detect rotors. For this reason scientists resort
to in silico simulated environments to test their methods. We
applied the detection on the three in silico scenarios for the full
and interpolated grids, with γ = 150 (150 ms window for fs = 1
KHz), obtaining signals Ŵ[n] and Ŵ̂[n] respectively. As shown
in Figures 8A–C, the interpolated and the full versions behave
similarly when we capture their dynamics with the rotation
mask. We set the same threshold Ŵth = ±γ /7 for the three
cases, which succeeded to completely detect the rotor simulation
during the whole interval the spiral is active, Figure 8B. In the
sinus rhythm case, Figure 8A, no rotational activity is detected,
as expected from its homogeneous propagation. The chaotic
wavefront collisions, Figure 8C triggers the detector at some
points in the full grid Ŵ[n] signal. The randomness of the
activation makes the wavefront to partially rotate around the
grid center, but since the rotation is not sustained in time nor
exhibits a complete turn it does not yield a false detection
positive.

The results using the in silico simulations allowed us to
adjust the system parameters to automatically detect rotational
activity in real-time in patients. We acquired signals from 28
AF patients using the PentaRay catheter mapping different atrial
areas per patient. We created a database with more than 600
registers containing EGM and ECG signals. We analyzed the
EGMs and reconstructed wavefronts, and conclude that the in
silico simulations threshold value of Ŵth = γ /7 exhibited
great detection performance for rotational activity in real AF
signals. As detection examples, we include the Ŵ[n] signal
of a rotational activation detected in three of the patients,
Figures 9A–C. We acquired the signal at fs = 1 KHz and used
γ = 150 to match the same integration interval as the computer
simulations.

In the first example, Figure 9A, Ŵ[n] captures the atrial
activity as it performs multiple continuous gyres around the
center in the 2–5 s interval. The video corroborating presence of
the rotational activity is included in the Supplementary Material.
The method also captures activations that exhibit single or
incomplete gyres. A couple of not maintained rotations are
also captured at the beginning and end of the acquisition,
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FIGURE 12 | Detection robustness. Scalar product for the rotation mask in

Figure 7D, when it is compared with its shifted version in the Eu axis (blue), Eυ

axis (green) and the Eu− Eυ diagonal (red). The shift is expressed in J units

(nodes).

0–1 s and 9–10 s intervals respectively. This is important since
the gyre incompleteness can be related to areas in which
the activation experiments a change of direction that may
explain AF maintenance, or can be even related to meandering
rotational activation. In the second example, Figure 9B, the
wavefronts describe a multiple gyre between 1.2 and 1.8 s that
evolves into some incomplete gyres, around 4.3, and 8.7 s. The
incomplete gyre at 4.3 s precedes a complete gyre at 5.3 s. In
the third example, Figure 9C, we show another case of multiple
gyre detection at the 4.7–5.4 s interval which evolves into an
incomplete gyre at time instant 5.74 s. The activity triggers
again the detector at 7 s, and again detects a multiple gyre
around the end of the acquisition, interval 9.2–9.5 s. With these
examples we show the capability of the system to detect rotational
activation concerning incomplete, complete and multiple gyres.
The latter, exceeds the threshold for a more prolonged duration
in time, which is useful to differentiate the complexity of the
gyre.

Additionally, the method is robust against non-centered
rotational activations. We tested the rotational activity detection
robustness against non-centered rotational activations. Figure 12
shows the scalar product T[n] (Equation 25) between the
reference mask and its shifted version in the Eu and Eυ axis,
emulating a rotation whose center moves away from the origin.
With no shift, the pattern overlaps itself and the scalar product
is maximum. If the center of rotation moves further, T̄ decreases
its value. For a distance of 0.3J nodes, the scalar product scores
70% of the centered pattern value, i.e., 10 nodes with J = 32
or 19 nodes with J = 64, capturing the rotational activity. The
approximate J correspondence in mm attaining the PentaRay
catheter coverage when it is fully deployed is 32mm. That means
that for a rotational activity mask shifted 0.3J we capture at
least 70% of its dynamics at 9.6mm, which extends the operative
physical range of the detector.

4. DISCUSSION

Catheter AF ablation was developed more than 20 years ago.
Since its outbreak, this clinical technique obtained international

acceptance among the clinicians. In the process with the
development of new tools, it increased its safety and decreased the
procedure duration. However, there is no perfect AF treatment
procedure described yet, since our understanding of the AF
mechanisms remains poor. In this way new ablation procedures
are evolving with the technology, trying new strategies besides the
standard isolation of the pulmonary veins.

Under these circumstances, we provide an assessment tool for
evaluating the influence of rotational activity in AF. Although
the presence of rotational activity is itself controversial, we
individually validated each of the steps of the procedure and
obtained evidence of the presence of rotational activity in AF
patients.

We believe that technology and clinical practice must go
hand in hand, as new and more sophisticated technological
advances emerge every year. In this way, one of most demanding
requirements is to deliver results in real-time. We integrate
signal acquisition and processing in our system, which allows
direct acquisition of the signals from the amplifier without
requiring signal exportation from a recording device and
additional post-processing (which introduce an unacceptable
delay in the clinical procedure). We address the computational
time handicap by designing parallelizable signal processing
steps. We employ multi-core processors and GPU based code
to distribute the computations and minimize the processing
times, achieving near real-time results. The latency of the
system can be further reduced by a combination of more fine-
grained parallelization and custom hardware, allowing also the
implementation of more complex algorithms and additional
assessment tools.

We identify that LAT information in unipolar EGMs can
be of potential value as an alternative to phase mapping
analysis. More particularly, our EGM filtering and LAT
detection approach emerges as an alternative for EGM signal
processing, being extendable to other kind of biological signals,
e.g., electroencephalograms, electromyograms, or galvanic skin
response. The present pattern match, for rotational activation
detection, allows other pattern layouts to be studied which could
be of help in other studies. These patterns can be predefined at
the beginning of the procedure or they can be learned by means
of machine learning methods during signal acquisition.

In silico simulations need to be part of any new method
development, as they provide validation tools, reproducibility
and variety in controlled scenarios. The in silico signal
simulations have been proven useful to validate the interpolation
of the signals as prior step to reconstruct the propagation grid.
This provided us with a framework to study how the selection of
the different parameters affect the signal processing steps. Using
a value of σ which is too large prevents the detection of LATs,
while a large value of M also limits the LAT detection because
the signal is low-pass filtered and attenuated. With the study
of different parameter combinations, we reached a compromise
between the noise reduction and the LAT detection which
succeeded to minimize the error committed when interpolating
the signals.

The unavailability of the electroanatomical 3D system to
provide the real-time position of the electrodes forces our
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method to rely on a fixed layout. This constraint requires
the electrophysiologist to operate the catheter and align it to
the fixed electrode layout. But on the other hand, this ensures
the electrode contact against the atrial wall, and helps to better
interpret the behavior of local atrial areas complementary to
other methods based on basket catheters. We analyzed the effect
of a branch drift with respect to the reference layout, concluding
that a shift of ±2 mm produces almost identical results as
the correctly placed electrodes, Supplementary Figure 2. We
note that some areas of the left atrium cannot be so easily
mapped, since deployment of catheters sometimes presents a
challenge even for experienced electrophysiologists. But this
goes in parallel with basket catheters, whose geometry does not
allow to access and map certain areas due to limited coverage
and deformations of the catheter. Further studies on tissue
characterization could relate atrial areas of restricted access
with measurable indices, e.g., bipolar voltage or impedance
values.

In this line, the relationship between the atrial sites presenting
rotational activity in AF and its association with scar tissue was
studied employing our system (Ruiz Hernandez et al., 2017). The
complexity of rotational activity (i.e., if the rotation exhibits an
incomplete, complete, multiple or no gyre) was compared with
the scar value at the observed atrial sites (dense < 0.1 mV,
non-dense [0.1, 0.5] mV, or non-scar [0.5, 1.5] mV). The results
identified rotational activity locations not associated with any
particular left atrial location, and significant positive correlation
between the voltage (scar level) and the gyre complexity. This
initial study offers promising results to characterize the areas
that may be prone to anchor rotational activity but that are
difficult to access with mapping catheters. In this sense, the
system is currently being used in a new ablation strategy study,
radial ablation. The study proposes to ablate the rotor locations
and connect the rotor sites with the standard pulmonary vein
isolation (PVI) ablation lines, as new studies in monolayer
atrial tissue confirm (Feola et al., 2017). The purpose of this
novel ablation strategy will assess if radial ablation reduces
AF recurrence with respect to single PVI ablation, and it will
help to improve the system with direct feedback from the
electrophysiologists.

Nevertheless, further study is necessary for corroborating
the validity of our approach. The rotor assessment using other
catheter topologies in real-time, and the results of forthcoming
studies will further validate the system and its inherent
methods.
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Supplementary Video 1 | In silico sinus rhythm. The file contains the sinus

rhythm simulation scenario with a single activation source every 500 ms emulating

the normal activation pattern in the atrium.

Supplementary Video 2 | In silico rotor. The file contains the rotor case where a

clockwise activation spins around the grid center. After sinus rhythm and some

collisions the rotor manages to anchor and remains stable in the grid location,

exhibiting complete reentry rotations that are maintained in time.

Supplementary Video 3 | In silico chaotic waves. The file focus on an area of

chaotic wave collisions in the center of the atrium during simulated AF. The

wavefronts collide and break forming in some cases rotor-like patterns that are not

maintained in time.

Supplementary Video 4 | In silico sinus rhythm interpolation. The file represents

the pseudo-electrograms (pEGMs) propagation wavefronts vs. the best

reconstruction for the sinus rhythm case (Figure 5A), obtained for the values,

M = 2, p = 4, and σ = 0.05.

Supplementary Video 5 | In silico rotor interpolation. The file represents the

pEGMs propagation wavefronts vs. the best reconstruction for the rotor case

(Figure 5B), obtained for the values M = 20, p = 4, and σ = 0.14.

Supplementary Video 6 | In silico chaotic waves interpolation. The file represents

the pEGMs propagation wavefronts vs. the best reconstruction for the wavefront

collision case (Figure 5C), obtained for the values M = 20, p = 4, and σ = 0.12.

Supplementary Video 7 | Real AF signal. The file contains the reconstructed

wavefront of a rotor spinning multiple times. We acquired the signals during

a live AF ablation procedure using a PentaRay catheter. The video shows

10 s of the atrial activity present in the acquired signals. Figure 9A

represents the Ŵ[n] signal associated to the video were the rotational activity

detection is performed. The rotational activity starts at 2,400 ms, where some

reentry pattern is observed but not maintained. At 3,200 ms a multiple gyre

appears spinning 4 times in a row. After this event some partial and one complete

rotation is detected, but the rotation is not maintained in time as the previous

multiple gyre.

Supplementary Figure 1 | The figure shows the rRMSE for the bilinear

interpolation applied to the three in silico scenarios, and serves as direct

performance comparison to the Shepard’s interpolation method in Figure 11. (A)
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Rotor. rRMSE = 0.328 for M = 20 and σ = 0.14. (B) Sinus rhythm.

rRMSE = 0.120 for M = 6 and σ = 0.28. (C) Chaotic. rRMSE = 0.362 for

M = 16 and σ = 0.21.

Supplementary Figure 2 | The figure shows the rRMSE when the electrodes

in a catheter branch are rotated an angle θ from the predefined interpolation

position. The top x-axis covers the [−θ , θ ] angle range for θ = 2π
5 radians

(or 72◦). The bottom x-axis is in linear units and represents the length of the

rotated arc of the 32 mm circumference containing the most distal electrode

of the PentaRay catheter. The figure displays the three in silico cases: rotor, SR

and chaotic wavefronts. The rRMSE error remains almost identical for a shift of

± 2mm.
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