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Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest,

hindlimb unloading, immobilization, spaceflight and reduced step) can result in a

significant loss of musculoskeletal mass, size and strength which ultimately lead to

muscle atrophy. With advancement in understanding of the molecular and cellular

mechanisms involved in disuse skeletal muscle atrophy, several different signaling

pathways have been studied to understand their regulatory role in this process. However,

substantial gaps exist in our understanding of the regulatory mechanisms involved, as

well as their functional significance. This review aims to update the current state of

knowledge and the underlying cellular mechanisms related to skeletal muscle loss during

a variety of unloading conditions, both in humans and animals. Recent advancements

in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR,

MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload

and ROS overproduction, as well as their role in skeletal muscle protein adaptation to

disuse is emphasized. We have also elaborated potential therapeutic countermeasures

that have shown promising results in preventing and restoring disuse-induced muscle

loss. Finally, identified are the key challenges in this field as well as some future

prospectives.

Keywords: disuse muscle atrophy, mechanical unloading, protein synthesis, protein degradation, molecular and

cellular pathways, therapeutic countermeasures

INTRODUCTION

Skeletal muscle is composed of muscular fibers and fascicles. It possesses a variety of functions in
an organism’s body and plays a vital role in the regulation of body metabolism. Skeletal muscles
may differ significantly in mass, size, shape, and arrangement, depending upon their location and
physical function in the organism. Elevated physical activity, like exercise, leads to increase the
muscle mass (Bogdanis, 2012). On the other hand, decreased or limited use of skeletal muscle is
one of the greatest contributing factors leading to muscle atrophy. Muscle atrophy may occur in
a variety of conditions in unhealthy and healthy individuals, e.g., many common illnesses (Evans,
2010) including diabetes (Bonaldo and Sandri, 2013), cancers (Stephens et al., 2010), renal/heart
failure, sepsis (Gordon et al., 2013), muscle genetic diseases (Sandri, 2010) and neurodegenerative
disorders (Verdijk et al., 2012) cause significant loss of muscle mass. While in healthy
individuals, muscle atrophy can also occur during conditions like spaceflight, bed rest, reduced
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step, hindlimb unloading (HLU) and immobilization.
Furthermore, aging is also associated with muscle loss (Keller
and Engelhardt, 2013; Hughes et al., 2017). Over the years, disuse
skeletal muscle atrophy has been widely studied in humans as
well as in animals.

Low skeletal muscle mass, decreased muscle fiber cross-
sectional area (mCSA), muscle fiber transition from slow to
fast and the change of functional properties have been observed
in different muscle types under disuse conditions (Booth and
Gollnick, 1983; Baldwin, 1996; Baldwin and Haddad, 2001; Fitts
et al., 2001; Ohira et al., 2006). Several studies indicated that bed
rest and immobilization cause disturbances in protein turnover
(Goldspink, 1977; Janssen et al., 2000; Phillips et al., 2009; Rennie,
2009). It is commonly believed that a disproportion in the rate of
protein synthesis and protein degradation is the main cause of
muscle loss (Boonyarom and Inui, 2006; Bialek et al., 2011).

This review provides a summary of disuse muscle atrophy.
In the first section, the functional and structural adaptations
or alterations of skeletal muscle to disuse are discussed in
different unloading models such as spaceflight, head down
bed rest (HDBR), immobilization and reduced step in humans
as well as HLU and immobilization in animals. The second
section of the review provides a detailed discussion of anabolic
and catabolic pathways and potential triggers involved in
muscle protein synthesis and degradation under disuse-induced
muscle atrophy. These include insulin-like growth factor-1-
protein kinase B-mammalian target of rapamycin (IGF-1-
Akt/PKB-mTOR), muscle ring finger 1/muscle atrophy F-box
(MuRF1/MAFbx) and forkhead family of transcription factors
(FOXO) pathways. The third section discusses the efficiency of
potential countermeasures (antioxidants, resistance exercises and
protein supplements) to counteract the loss of skeletal muscle.

MECHANICAL UNLOADING MODELS

Spaceflight, bed rest, immobilization (cast/leg brace), step
reduction and HLU are the key models extensively used to
study the muscle loss in humans as well as in animals. These
models provide deeper insights into the molecular and cellular
mechanisms underlying disuse-induced muscle atrophy.

Human Models of Disuse-Induced Muscle
Atrophy
The primary models of disuse in human research include
microgravity induced muscle changes during spaceflight (Fitts
et al., 2010; Goswami, 2017), bed rest immobilization (Spector
et al., 2009), as well as other forms of immobilization (cast or
leg brace) (Wall et al., 2013) and step reduction (Breen et al.,
2013; McGlory et al., 2017). The majority of the published
results of spaceflight experiments indicate that significant
declines in skeletal muscle size, volume, CSA and strength
occur after exposure to microgravity. It appear that longer
sojourns in space lead to further atrophy and weakening
of the muscles: 115–197 days in space were associated with
significant decreases in muscle volume of gastrocnemius 17%,
soleus 17%, and quadriceps 10% (LeBlanc et al., 2000). Another

study also reported that prolonged spaceflight (approximately
180 days) significantly reduced force and fibers size in the
gastrocnemius and soleus muscles. Specifically, the atrophy
order (greatest-least) was: atrophy in soleus type I > soleus
type II > gastrocnemius type I > gastrocnemius type II
(Fitts et al., 2010). Furthermore, two long term spaceflight
studies (140 and 175 days) reported a considerable decrease in
characteristics of gastrocnemius muscle strength (Kozlovskaya
et al., 1981). Similarly, 6 months Mir-mission in space found
that isometric maximal voluntary contractions of the triceps
surae muscle and peak tetanic force (Po) decreased by 42
and 25%, respectively (Koryak, 2001). In addition, short term
spaceflight studies have also been reported to cause muscle
weakness. For instance, volume changes in the knee extensor,
knee flexor and plantar flexor muscle ranged from −15.4 to
−5.5, −14.1 to −5.6 and −8.8 to −15.9, respectively, after
2 weeks in spaceflight (Akima et al., 2000). Edgerton and
colleagues found that the size of all muscle fiber types of
the vastus lateralis (VL) muscle decreased after 5–11 days of
spaceflight (e.g., type I 16%, IIa 23%, and IIb 36%) and the
percentage of type I myofibers decreased 6–8% (Edgerton et al.,
1995). For instance, up to 8% decrease in CSA of the knee
extensor and the gluteal muscles as well as 10% decrease of
strength were observed after 17 days of spaceflight (Tesch et al.,
2005).

In addition, differential rates of muscle atrophy have also been
observed in response to disuse induced by HDBR in different
muscle and fiber types. For example, prolonged bed rest with
a 6◦ HDBR is one of the commonly used methods to mimic
the effects of microgravity on muscle and bone turnover (Pavy-
Le Traon et al., 2007; Spector et al., 2009). It was repeatedly
demonstrated that HDBR leads to significant reduction inmuscle
strength and mass. Using magnetic resonance imaging (MRI),
up to 17 and 40% loss in VL muscle volume and function were
seen following 84-day HDBR (Trappe et al., 2004). Another
90-day study of HDBR reported up to 26% reduction in
mCSA in young, healthy males (Rittweger et al., 2005). Indeed,
similar results were obtained following 35 days of bed rest
study (e.g., type I fiber CSA of VL showed greater loss than
type II fiber) (Brocca et al., 2012). Similarly, a short duration
HDBR study of 17–20 days also showed a 10–12% decrease
in muscle size (Akima et al., 1997, 2001). On the other hand,
Miokovic and associates observed that during prolonged bed rest,
intramuscular differential atrophy did occur in most muscles, but
some muscles of the lower limb remained unaffected (Miokovic
et al., 2012).

In addition to bed rest, various other forms of immobilization
have been used in ground-based studies of disusemuscle atrophy.
Two week limb immobilization (casting) studies on young males
reported reduction in quadriceps muscle volume, mCSA and
strength by 9, 5–8, and 23%, respectively (Glover et al., 2008;
Suetta et al., 2009). Even some shorter duration disuse studies
have also reported significant reductions in muscle size (Wall
et al., 2014). A five day study reported a 9% reduction in strength
and 4% in quadriceps CSA (Dirks et al., 2014). Furthermore,
immobilization appeared to impact the knee extensors to a
greater degree than knee flexors (Veldhuizen et al., 1993;
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Deschenes et al., 2002). In addition to the above models of
disuse, reduced step model has been demonstrated to influence
muscle functions (Olsen et al., 2008; Knudsen et al., 2012; Breen
et al., 2013). For example, reduced daily ambulatory activity has
shown to lead to 2.8% loss in lean leg mass (Krogh-Madsen
et al., 2010). Further data have shown that loss in muscle
mass through lower limb disuse is more pronounced in older
individuals (as they show increased vulnerability to loss of muscle
size and strength) compared to younger individuals (Trappe,
2009; Degens and Korhonen, 2012; Tanner et al., 2015). It was
observed in older participants (aged 68 ± 5 years) that 10-day
bed rest leads to 7% reductions in muscle mass (lean tissue)
(Kortebein et al., 2006). These findings were consistent with
the results from a 7-day bed rest study involving six 60–73-
year old participants, which reported 3.0 and 4.1% loss in total
lean mass and lean leg mass, respectively (Drummond et al.,
2012). Moreover, it has been observed that both contractile rate
of force (torque) development and maximal isometric muscle
strength are reduced significantly in the elderly as compared
to younger men after 2 weeks of unilateral leg casting (Hvid
et al., 2010). The discussed differences between young and old
subjects are correlated with the effects of age-associated muscle
atrophy (sarcopenia). Sarcopenia has been defined specifically
as related to a subgroup of older persons with muscle-mass
depletion, whose appendicular skeletal muscle mass (kg)/height2

(m2) is less than two standard deviations below the mean
of a young reference group (Baumgartner et al., 1998). The
muscle loss of sarcopenia has been attributed to the reduction in
muscle fiber size (predominately in type II) and the muscle fiber
number (Nilwik et al., 2013). Further detailed characteristics,
mechanisms and functional significance of sarcopenia have been
discussed in previous reviews (Evans, 2010; Narici and Maffulli,
2010).

From the foregoing discussion, it can be seen that the effects
of several models of disuse (spaceflight, HDBR, immobilization
and reduced step) on loss of muscle mass and strength have been
widely investigated. Not all the studies have, however, reported
consistent findings. This could be due to the fact that in most
of these studies, either the study was restricted to investigation
of only one muscle type or the immobilization was of short
duration (≤14 days). Therefore, it is difficult to determine
the details regarding differential rate of atrophy from these
studies. Additionally, an important limiting factor in human
studies is that most of the available data on atrophy and fiber
CSA are based on a small biopsy sample taken from a single
site.

Animal Models of Disuse-Induced Muscle
Atrophy
Among all models of disuse-induced muscle atrophy, HLU and
immobilization are, by far, the most widely employed animal
models to study skeletal muscle atrophy in small mammals (Fitts
et al., 1989; Morey-Holton and Globus, 2002; Caron et al., 2009).
Generally, disuse muscle atrophy in rodents results in a rapid loss
of muscle mass as well as in fiber CSA and function (within 14
days of unloading; Bodine, 2013). In the following section, we

will attempt to evaluate the effectiveness of these twomodels with
specific regards to the adaptations that are thought to occur in
skeletal muscle.

The rodent HLU model is extensively used to simulate the
physiological effects of microgravity (Morey-Holton and Globus,
2002; Lawler et al., 2003; Baehr et al., 2016). Most rodent studies
focused on the slow soleus muscle, as it showed rapid atrophy
(Wang et al., 2006; Sandonà et al., 2012). After 14 days of HLU
34-50% decrease of soleus muscle wet weight and 49% CSA were
observed in rats (Ohira et al., 1992; Zhang et al., 2017). Similarly,
another study indicated that electromyography of soleus was
reduced at the start of unloading but then recovered fully within
a week but muscle atrophy continued to increase (Ohira et al.,
2015). Furthermore, fast type muscles (including gastrocnemius,
plantaris and tibialis anterior but not extensor digitorum longus)
also showed significant reduction in muscle mass following HLU
(Tsika et al., 1987; Kyparos et al., 2005).

Another key model is limb immobilization, in which the
desired part of the animal is covered with a plaster bandage
or with a spiral wire and surgical skin staplers, which helps to
maintain the joint in a particular position (Caron et al., 2009;
Du et al., 2011). It is now well documented in rodents that
soleus muscle wet weight and muscle fiber diameters for type
I and II significantly decreased after 4 weeks of immobilization
(Okita et al., 2001). It should be noted that muscle atrophy
varies significantly under different conditions of immobilization.
For example, it depends upon the position in which the joint
is fixed/immobilized. Additionally, it was reported that muscles
immobilized in short positions favor atrophy (Onda et al., 2016).
Some studies also reported that the extensor muscles atrophy
more than flexormuscles during ankle-joint immobilization (Roy
et al., 1991; Adams et al., 2003; Ohira et al., 2006). The degree
of skeletal muscles atrophy also showed differential responses in
regards to the types of fiber (Jozsa et al., 1988). For example,
4 week hindlimb immobilization studies on male rats reported
that type I fibers of the soleus muscle undergo greater reductions
than type II fibers (Booth and Kelso, 1973; Thomason and Booth,
1990) and similar results have also been obtained during ankle-
joint immobilization (Thomason and Booth, 1990; Ohira et al.,
2006).

Taken together, varying results among different studies in
rodent models of HLU and limb immobilization are related to the
muscle type, muscle fiber type and conditions of immobilization.
It has been shown that the amount of muscle loss is greater in
the extensor muscles of the ankle (soleus and gastrocnemius) as
compared to the flexor muscles (tibialis anterior and extensor
digitorum longus) (Ohira et al., 2002; Adams et al., 2003; Zhong
et al., 2005). Additionally, muscle atrophy appears to be different
across muscle types. For example, slow-twitch (type I) fibers
are more vulnerable and therefore, show a greater loss in the
amount of protein than fast twitch (type II) fibers (Tsika et al.,
1987; Thomason and Booth, 1990; Zhang et al., 2015), and the
muscles immobilized in short positions showed more sensitivity
to disuse (Desaphy et al., 2010). These observations suggest that
the rate and extent of muscle loss appear to depend on the degree
of unloading, the extent of physical inactivity and the muscle
type.
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MECHANISMS OF MUSCLE ATROPHY

Alterations and underlying mechanisms of muscle protein
synthesis and degradation have been investigated extensively
in different disuse models (Bodine, 2013; Bonaldo and Sandri,
2013; Rudrappa et al., 2016). In addition, some new insights and
findings also have been reported recently (Mirzoev et al., 2016;
Baehr et al., 2017). In this section, we provide a comprehensive
summary of the molecular basis of disuse atrophy including
potential triggers to signaling pathways and their ultimate effects
on the myofibrillar apparatus.

Protein Synthesis and Disuse Atrophy
It has been well recognized that decreased protein synthesis
in muscle seems to be the major contributor in disuse muscle
atrophy (Bodine, 2013). The decline of the basal protein synthesis
rate in the early period of unloading has been investigated and
confirmed in human and animal models (Booth and Seider, 1979;
de Boer et al., 2007; Mirzoev et al., 2016; Baehr et al., 2017).
Thus, the underlying mechanisms of decreased protein synthesis
in disused skeletal muscle have been a main focus research area
the field for the past few decades. Although many problems
have not been solved yet, recent research has confirmed that
decreased activation of the Akt-mTOR pathway is involved in
the mechanisms of the attenuated protein synthesis under disuse
conditions. In the following section, we give the details about this
pathway both in normal and unloading conditions.

Under normal physiological condition, the IGF-1-Akt-mTOR
pathway acts as a key regulator in the translation initiation
step of protein synthesis in skeletal muscle (Erbay et al., 2003;
Han et al., 2008; Schiaffino and Mammucari, 2011). Firstly,
the IGF-1-Akt-mTOR pathway is initiated by binding of the
IGF-1 to its specific IGF-1 receptor (IGF-1R), which triggers a
signaling cascade mainly stimulating the intrinsic tyrosine kinase
activity through insulin receptor substrate-1 (IRS-1). Subsequent
activation of phosphatidylinositol 3 kinase (PI3K) may be
achieved by binding p85 regulatory subunit with phosphorylated
IRS-1 (Jheng et al., 2012). The membrane phospholipid-
phosphatidylinositol-4,5-bisphosphate (PIP2), is phosphorylated
into phosphatidylinositol-3,4,5-triphosphate (PIP3) by PI3K.
Then PIP3 recruits phosphoinositide-dependent protein kinase-
1 (PDK1) to phosphorylate and activate Akt. Phosphorylated Akt
further activates mTORC1 (Inoki et al., 2002; Goodman et al.,
2010; Miyazaki et al., 2011). Consequently, activated mTORC1
phosphorylates both 4E-BP1 and S6K1 which finally leads to
protein synthesis (Gordon et al., 2013). Besides the indirect
pathway by mTORC1, activated Akt can also phosphorylate
glycogen synthase kinase 3β (GSK-3β), which directly leads to the
increase of global protein synthesis through an increased activity
of eukaryotic initiation factor 2B (eIF2B) (Welsh et al., 1998). The
simplified version of the regulating mechanism underlying IGF-
1-Akt-mTOR pathway on muscle protein synthesis is shown in
Figure 1.

Under unloading conditions, insulin resistance plays an
important role in driving depression of protein synthesis.
This has been widely observed in humans subjected to bed
rest confinement (Shangraw et al., 1988; Stuart et al., 1988;

Hamburg et al., 2007), immobilization (Richter et al., 1989)
and HLU in animals (Allen et al., 1997). Research on disuse
models of rodents (e.g., HLU, immobilization and denervation)
showed that insulin resistance induced attenuation of Akt-
mTORC1 pathway may provide a mechanism for decreased
protein synthesis (Gordon et al., 2013). Reduced activation of
this pathway which characterized as decreased phosphorylation
of Akt, S6K1, and 4E-BP1 has been shown in the soleus and
medial gastrocnemius muscles (Bodine et al., 2001b; Hornberger
et al., 2001; Sugiura et al., 2005; Haddad et al., 2006; Kelleher
et al., 2013). Liu and colleagues also found that the binding of
4E-BP1 and eIF4E altered in rat gastrocnemius muscle during
the early period of HLU (Liu et al., 2012). In addition, decreased
phosphorylation of GSK3β has been observed in HLU rats
(Stevenson et al., 2003; Mirzoev et al., 2016). Recent studies
have also reported that an important mTOR signaling repressors
such as mRNA expressions of regulated in DNA damage and
development 1 and 2 (REDD1/2), significantly elevated following
unloading in rats (Kelleher et al., 2013, 2015). Moreover, it
has been reported that both Akt-null and mTOR knockout
mice exhibited significant skeletal muscle atrophy as well as
growth deficiency, which also proved the essential role of Akt-
mTOR pathway on muscle maintenance (Peng et al., 2003;
Risson et al., 2009). All the above discussion demonstrates the
essential role of Akt-mTOR pathway in animals, but its role
in controlling muscle protein synthesis in humans unloading
models remains unclear. For example, human immobilization
studies reported decrease in protein synthesis rate, but no
changes were observed in Akt-mTORC1 signaling pathway
(de Boer et al., 2007; Glover et al., 2008; Marimuthu et al.,
2011). This suggests that decreased protein synthesis rate could
also be regulated through other signaling pathways in human.
Among other possible pathways, the most noteworthy one is
focal adhesion kinase (FAK), a mechanosensitive non-receptor
protein tyrosine kinase, located in the costamere region of
skeletal muscle fibers and is sensitive to changes in mechanical
loading (Bloch and Gonzalez-Serratos, 2003; Anastasi et al.,
2008). Some crosstalk has been reported between FAK and
PI3K-Akt-mTOR pathway. On the one hand, phosphorylation
of tyrosine 397 of FAK results in the binding of FAK to
the SH2 domain of the 85 kDa subunit of PI3K, which can
lead to the increase in PI3K activity and subsequently activate
Akt-mTOR pathway (Chen et al., 1996). On the other hand,
activated FAK may upregulate mTOR through inhibiting TSC2
(a negative regulator of mTOR) by phosphorylation (Graham
et al., 2015). Under physical inactivity conditions, reduced
phosphorylation of FAK was discovered in humans and animals,
which suggests that attenuated activation of FAK-Akt-mTOR
is another key contributor to the decreased protein synthesis
during atrophy condition (de Boer et al., 2007; Glover et al., 2008;
Graham et al., 2015). Collectively, both the declined activation
of IGF1–Akt–mTOR pathway induced by impaired IGF-1
signaling/insulin resistance and the decreased activation of FAK-
Akt-mTOR pathway caused by reduced FAK phosphorylation
play essential roles in regulating skeletal muscle protein synthesis
during atrophy conditions. The possible mechanisms are also
summarized briefly in Figure 1.

Frontiers in Physiology | www.frontiersin.org 4 March 2018 | Volume 9 | Article 235

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gao et al. Muscle Atrophy Induced by Mechanical Unloading

FIGURE 1 | Diagrammatic representation of the protein synthesis signaling mechanisms responsible of skeletal muscle atrophy following mechanical unloading.

IGF-1, insulin-like growth factor-1; PI3K, phosphatidylinositol 3 kinase; Akt/PKB, protein kinase B; FAK, focal adhesion kinase; mTORC1, mechanistic target of

rapamycin in complex 1; REDD, regulated in DNA damage and development; GSK-3β, glycogen synthase kinase 3β; S6K1, 70 kDa ribosomal protein S6 kinase 1;

4E-BP1, eIF4E binding protein 1; ROS, reactive oxygen species. The black arrow and inhibition symbol show the association of molecules under loading condition,

red arrow shows the up/down-regulation of molecules under unloading condition. For more details see text.

In addition to the regulation of translation initiation, it
has also been reported that eukaryotic elongation factor 2
(eEF2) plays an important role in the regulation of protein
synthesis at the level of elongation of mRNA translation process
(Redpath et al., 1996). Recently it was observed that the level of
eEF2 phosphorylation (inactive form) in soleus muscle elevated
significantly after 14 days of HLU in rats (Lomonosova et al.,
2017). Besides, protein synthesis also depends on translational
capacity, the main component of which is the number of
ribosomes (McCarthy and Esser, 2010; Chaillou et al., 2014).
Decreases in the content of both total RNA and 28S rRNA (one
of the key markers of ribosome content) were observed after
1, 3, 6, and 7 days of HLU in rat soleus (Bajotto et al., 2011;
Mirzoev et al., 2016). Although great progress has been made
as described above, there is still a lot of work that needs to be
done. For example, studies with frequent biopsy sampling are
required to comprehensively understand the role of mTORC1
signaling in regulating the depression in postprandial and post-
absorptive muscle protein synthesis, especially in human models.
In addition, more research is needed to clarify the relative
downstream genes for regulation of ribosome assembly in the
Akt-mTOR pathway.

Protein Degradation and Disuse Atrophy
In contrast to the recognized deficits in muscle protein synthesis
during disuse conditions, the role of protein breakdown in
disuse-induced muscle atrophy is less clear. This is partly due to
the lack of direct measurements of muscle protein degradation in
studies. Instead, indirect studies of protein degradation pathways

have to be employed to measure molecular markers of muscle
proteolysis. The major protein degradation pathways in skeletal
muscle include the Ca2+-dependent proteases, lysosomal system,
caspases and ubiquitin proteasome pathways (Scicchitano et al.,
2015). It was proposed that Ca2+-dependent proteases (calpains)
act as a promoter of muscle protein degradation, and might be
responsible for the discharge of myofilaments from the surface of
myofibrils (Dayton et al., 1976). Subsequently, the myofilaments
were ubiquitinated and degraded to amino acids by proteasome
intracellular peptidase cathepsins (Figure 2; Huang and Zhu,
2016). Emerging evidence suggests that calpains (Huang and
Zhu, 2016), caspase-3 (Talbert et al., 2013), autophagy-lysosomal
system (Sandri, 2010) and ubiquitin proteasome pathway
(Bodine and Baehr, 2014), all are involved in disuse-induced
muscle atrophy. However, the ubiquitin proteasome system is
often considered as themost important proteolytic system during
disuse conditions that promotes muscle wasting (Scicchitano
et al., 2015; Baehr et al., 2017). The breakdown of protein via the
ubiquitin proteasome system requires three distinct enzymatic
components of the ubiquitin proteasome pathway: E1 (ubiquitin-
activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3
(ubiquitin ligase, key enzyme which regulates proteolysis as
it recognizes multiple target protein substrates). Two muscle
specific classes of E3s (MuRF1 and MAFbx/atrogin-1) have
been studied widely and play an essential role during skeletal
muscle atrophy (Mitch and Goldberg, 1996; Foletta et al.,
2011; Bodine and Baehr, 2014). In various animal models of
disuse muscle atrophy (HLU, immobilization, spaceflight and
denervation), mRNA levels of both genes (MuRF1/MAFbx) were
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FIGURE 2 | Diagrammatic representation of the protein degradation signaling mechanisms responsible of skeletal muscle atrophy following mechanical unloading.

IGF-1, insulin-like growth factor-1; PI3K, phosphatidylinositol 3 kinase; Akt/PKB, protein kinase B; FOXO, forkhead family of transcription factors; NF-κB, nuclear

factor kappa-B; MuRF1, muscle ring finger 1; MAFbx, muscle atrophy F-box 1; ROS, reactive oxygen species. The black arrow and inhibition symbol show the

association of molecules under loading condition, red arrow shows the up/down-regulation of molecules under unloading condition. For more details see text.

rapidly increasing and thought to play a crucial role in the
initiation of the atrophy process (Bodine et al., 2001a; Lecker
et al., 2004; Murton et al., 2008; Allen et al., 2009; Baehr
et al., 2017; Gambara et al., 2017). In addition, it has been
reported that the degree and the time course of the upregulation
of these two genes is not uniform among different muscles.
For example, a more significant increase in the expression of
MuRF1/MAFbx genes occurred in ankle plantar flexors (soleus
and medial gastrocnemius) than dorsi flexors (tibialis anterior),
and there was a longer duration of expression in ankle plantar
flexors than dorsi flexors in response to unloading (Bodine et al.,
2001a; Lecker et al., 2004). Moreover, studies using MAFbx and
MuRF1-deficient mouse models further supported a potential
contributing role of these two genes in the development ofmuscle
atrophy. For instance, mice deficient in either MAFbx or MuRF1
were found to be resistant to atrophy (Bodine et al., 2001a).
Another study also indicated remarkable protection of the soleus
muscle in the MuRF1-KO mice during 10 days of HLU (Labeit
et al., 2010). It should be noted that various reports have been
shown about MuRF1 andMAFbx during disuse-induced atrophy
in human models (Murton et al., 2008). For example, both the
MuRF1 and MAFbx mRNAs increased significantly after 2 days
(Abadi et al., 2009) and 5 days of immobilization (Dirks et al.,
2014) or after 3 days of unilateral lower limb suspension (ULLS)
(Gustafsson et al., 2010). However, in a 20-day bed rest study,
elevated MAFbx but not MuRF1 mRNA were observed in VL
(Ogawa et al., 2006), same results were observed during 14 days
of leg immobilization (Jones et al., 2004). On the other hand,
de Boer and colleagues reported that increased MuRF1, mRNA
expression, but not MAFbx were observed during 0–10 days of
immobilization (de Boer et al., 2007). In addition, it has been

reported that MuRF1 protein expression increased in soleus, but
not in VL after 60 days of bed rest (Salanova et al., 2008).

Under disuse conditions, it has been reported that expression
of E3 ubiquitin ligases MuRF1 and MAFbx are regulated by
various upstream factors or signaling pathways (Bodine and
Baehr, 2014). FOXO transcription factors (FOXO1 and FOXO3)
have been stated as the major transcription factors regulating
both theMuRF1 andMAFbx expressions (Sandri et al., 2004; Stitt
et al., 2004). It is noteworthy that the functional aspects of FOXO
are determined by their cellular location and predominantly
regulated by the IGF-1-PI3K-Akt pathways (Brunet et al., 1999;
Zhao et al., 2007). Under normal physiological conditions,
Akt phosphorylates FOXO on specific threonine and serine
residues, which results in the retention of FOXO in the cytosol
instead of translocating to the nucleus (Brunet et al., 1999).
Under muscle disuse conditions, dephosphorylated FOXO
translocates to the nucleus and up-regulates several different
types of atrogenes (E3 ligases) or autophagy related genes as
shown in Figure 2 (Stitt et al., 2004). Several studies reported
that mRNA and protein levels of FOXO1 and/or FOXO3
expression in the slow-twitch soleus muscle, mixed fiber type
gastrocnemius muscle and fast twitch plantaris muscle are
upregulated following different muscle atrophy condition (Giresi
et al., 2005; Sacheck et al., 2007; Allen et al., 2009; Levine et al.,
2011; Okamoto and Machida, 2017). Sandri and colleagues
found that constitutively active FOXO3 acts on the MAFbx
promoter to cause MAFbx transcription and dramatic atrophy of
myotubes and muscle fiber. It further suggested that stimulation
of the two main proteolytic pathways (MuRF1/MAFbx) via
overexpression of FOXO1 and FOXO3 leads to a reduction
in muscle mass and strength during disuse inactivity
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(Sandri et al., 2004). Direct or indirect inhibition of FOXO
transcriptional activity or suppressed expression of co-factors
(MuRF1/MAFbx) and interaction with other transcription
factors lead to the attenuation of disuse-induced muscle
atrophy (Senf et al., 2008; Reed et al., 2012; Brocca et al.,
2017). But these two transcription factors mRNA are not
always linked and that changes in the expression levels of both
genes (MuRF1/MAFbx) are dependent on the muscle and
the time after unloading (Atherton et al., 2016). Interestingly,
it was observed that constitutively active FOXO3 controls
the stimulation of autophagic/lysosomal proteolysis pathway,
thus leading to muscle wasting in fasting and denervation
models (Mammucari et al., 2007). Put-together, these findings
strongly support the notion that most of these transcription
factors and signaling pathways play important roles in the
progression of muscle disuse atrophy. Remarkably, increased
mRNA levels of both genes (MuRF1/MAFbx) were observed
in animals following disuse conditions as shown in Figure 2.
While, data were inconsistent in human models, a previous
review showed that activation of these two genes mainly
occurs in muscle wasting caused by inflammation (e.g., cancer,
chronic obstructive pulmonary disease, severe head trauma,
amyotrophic lateral sclerosis, critical illness, AIDS) with the data
in non-inflammatory muscle atrophy is inconsistent (Narici and
Maffulli, 2010). Only a few studies have measured the changes
in ubiquitinated protein content and proteasomal proteolysis
following disuse atrophy (Helliwell et al., 1998; Ogawa et al.,
2006; Slimani et al., 2012; Baehr et al., 2016). There is a need for
additional studies on human biopsies to explore the activity of
ubiquitin-proteosome pathway components.

Major Triggers of Disuse Atrophy
Besides the above-mentioned pathways regarding muscle protein
synthesis and degradation following disuse atrophy, there are
two important factors contributing to protein turnover. The
following discussion gives a review regarding the possible triggers
reported during muscle disuse.

ROS and Disuse Atrophy
Oxidative stress, characterized by the increased reactive oxygen
species (ROS) production and impairment of antioxidant defense
systems, has frequently been observed in disuse and other
pathological conditions. It is now widely considered as a
major trigger of the imbalance between protein synthesis and
degradation leading to muscle atrophy (Powers et al., 2005, 2007;
Moylan and Reid, 2007; Powers, 2014; Zuo and Pannell, 2015).
Production of ROS results in the inhibition of insulin action
and acts as a putative mediator in the development of insulin
resistance (Bashan et al., 2009; Di Meo et al., 2017). Furthermore,
growing evidence indicates that oxidative stress can promote
muscle protein breakdown through the following aspects. Firstly,
oxidative stress, promotes expression of proteins involved in
proteolytic pathways, such as autophagy, calpain and the
ubiquitin–proteasome system of proteolysis. Secondly, oxidative
stress results in the activation of two important proteases, calpain
and caspase-3. Thirdly, increased ROS production in muscle
fibers can also promote proteolysis by oxidative modification
of myofibrillar proteins, which enhances their susceptibility

to proteolytic processing. The details about the three aspects
have been discussed in a previous published review (Powers,
2014). ROS also might be the upstream activators of nuclear
factor kappa-B (NF-κB) and FOXO pathways in skeletal muscle
atrophy (Dodd et al., 2010). The roles played by ROS in
protein synthesis and degradation are depicted in Figures 1, 2,
respectively.

Calcium Overload and Disuse Atrophy
Calcium (Ca2+) is necessary to carry out many important body
functions such as cell metabolism, cardiac and skeletal muscle
contraction, tissue differentiation and neurotransmission (Zhou
et al., 2013). Ca2+ and endogenous inhibitor calpastatin are
the two major regulators on calpains activation during disuse
conditions (Figure 2; Huang and Zhu, 2016). Previous studies
reported highly elevated cytosolic free Ca2+ concentration in
soleus and gastrocnemius muscles during disuse conditions
(Ingalls et al., 2001; Xu et al., 2012; Hu et al., 2017). Two
ubiquitous calpains, calpain1 and calpain2 (also called u- and
m-) are activated by elevated intracellular Ca2+ in HLU rats
(Matsumoto et al., 2014; Zhang et al., 2017). In addition,
caspase-3-dependent apoptosis, another major signaling pathway
involved in disuse muscle atrophy (Talbert et al., 2013), is also
activated by intracellular Ca2+ overload through two distinct
pathways. On the one hand, the intracellular Ca2+ overload
leads to the activation of caspase-12 which then activates
caspase-3 (Primeau et al., 2002). On the other hand, increasing
Ca2+ levels induces activation of pro-apoptotic protein Bax,
which translocated and inserted into the outer membrane of
mitochondria via forming Bax/Bax-homo-oligomerization. Bcl-
2, another Bcl-2 family protein, could inhibit the formation
of Bax/Bax-homo-oligomerization. The decline of the ratio of
Bax/Bcl-2 leads to the release of pro-apoptotic factors from
the mitochondria, which subsequently activates caspase-9 and
caspase-3 (Zha et al., 1996; Antonsson et al., 1997; Chen et al.,
2002; Garrido et al., 2006). In one of our previous studies, the
increase of Bax/Bcl-2 and cytochrome C release were observed
in gastrocnemius in rats following 14-day HLU (Hu et al., 2017).
Collectively, both the overproduction of ROS and Ca2+ overload
play an essential role in regulation of protein synthesis and
degradation following disuse conditions as shown in Figure 2.
However, the relationship between ROS and Ca2+ remains
unclear and more research is needed to clarify this relationship.

In addition to the anabolic and catabolic pathways mentioned
above, recently emerging evidence indicates some other key
factors, such as P53, activating transcription factor 4 (ATF4),
growth arrest andDNAdamage-inducible 45a protein (Gadd45a)
and P21, are significantly elevated under disuse conditions (Ebert
et al., 2012; Fox et al., 2014; Bullard et al., 2016). Therefore, we
recommend that the reader consult the most recently published
reviews on the topic (Brooks and Myburgh, 2014; Adams et al.,
2017). Taken together, during disuse conditions, both the protein
synthesis and degradation play an essential role during muscle
atrophy, and in particular, suppressed protein synthesis has been
confirmed. However, more research has to be carried out to
clarify the details mechanisms of protein degradation and insulin
resistance in driving disuse-induced muscle atrophy.
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THERAPEUTIC COUNTERMEASURES

Various therapeutic interventions, pharmaceutical options and
rehabilitation programs have been used to prevent and limit the
loss of skeletal muscle. These therapeutic countermeasures can be
grouped into three categories: antioxidant and anti-inflammatory
compounds, nutritional supplements and physical training and
exercise.

Antioxidant and Anti-inflammatory
Compounds
It has been demonstrated that muscle damage, oxidative stress
and inflammation have a negative impact on protein turnover of
skeletal muscle, predominantly via decreases in protein synthesis
(Peterson et al., 2011; Powers et al., 2012). Oxidative stress
is thought to be one of the major factors leading to many
health-related disorders including skeletal muscle dysfunction
(Powers et al., 2012). In addition, increased mitochondria ROS
production, as well as endoplasmic reticulum stress and decrease
of antioxidant capacity, are three major factors that play key
roles in triggering sarcopenia with aging (Drew et al., 2003; Short
et al., 2005; Narici and Maffulli, 2010). Thus, antioxidants have
been shown to prevent oxidative stress associated damage and
have been proven to be effective countermeasures against muscle
atrophy to maintain skeletal muscle mass and strength, especially
in elders (Servais et al., 2007; Cornetti, 2009; Rieu et al., 2009;
Stojiljkovic et al., 2016).

In recent years, polyphenols, a well-recognized antioxidants,
have been studied extensively with regard to their roles
in the prevention of neurodegenerative diseases/skeletal
muscle atrophy. Resveratrol, is one of the naturally occurring
polyphenols, well known for its great health benefits, and
frequently found in berries, grapes, red wine and some other
fruits and vegetables (Brito et al., 2008; Das et al., 2008). It has
been suggested that resveratrol plays an important role in the
transcription of two important antioxidant enzymes, i.e., Mn
superoxide dismutase (SOD) and catalase (Dani et al., 2008;
Kode et al., 2008; Robb et al., 2008; Ryan et al., 2010). Six month
old adult rats were treated with resveratrol (12.5 mg/kg/day) for 5
weeks (including 2 weeks of muscle immobilization) with results
indicating that it reduced the functional decrements and the
oxidative stress level (Jackson et al., 2010). In another study, rats
were supplemented with resveratrol at a dose (400 mg/kg/day)
before unloading and 2 weeks of muscle immobilization.
During treatment with resveratrol, muscle disuse atrophy was
significantly reduced (Momken et al., 2011). These two studies
strongly suggest that metabolic and muscle deconditioning in
response to mechanical unloading can be prevented by the use of
high dosage of the antioxidant, resveratrol. Similarly, in another
study, mice were treated with tea catechins (comprising of up to
81% polyphenols) at a dosage of 46–50 mg/kg. The antioxidant
diet was consumed before and during immobilization of 14 and
10 days, respectively. This study showed that the antioxidant
(tea catechins) did not suppress muscle atrophy completely,
but it helped in the maintenance of tetanic force observed in
the soleus muscle in response to immobilization. This study
also suggested that tea catechins have positive effects on skeletal

muscle function rather than skeletal mass, and they help to
improve muscle strength (Ota et al., 2011).

In addition to the above findings, several studies have reported
the use of several other antioxidants [e.g., vitamin E or SS-
31 (D-Arg-2′6′dimethylTyr-Lys-Phe-NH2) for the prevention of
disuse muscle atrophy, (Servais et al., 2007; Powers, 2014)]. For
instance, administration of vitamin E was shown to significantly
reduce soleus muscle atrophy during 14-day HLU. The results
of this research also demonstrated that the protective role of
vitamin E does not depend on its antioxidant activity, but it
might be due to alteration in muscle protein degradation (Servais
et al., 2007). While, Koesterer and colleagues reported that
vitamin E supplementation has no effect on HLU induced soleus
and gastrocnemius muscle atrophy (Koesterer et al., 2002). In
addition, it has been reported that SS-31, one of the essential
mitochondrial-targeted antioxidant, could protect against HLU
induced soleus and plantaris muscles atrophy both in rats and
mice (Min et al., 2011; Talbert et al., 2013). Additionally, some
authors reported that another two widely used antioxidants,
either curcumin or N-acetylcysteine treatment could protect the
diaphragm against ventilator-induced muscle wasting (Agten
et al., 2011; Smuder et al., 2012), but did not prevent against
inactivity-induced limb muscle atrophy (Farid et al., 2005).

In addition to the widely used antioxidant to prevent
disuse atrophy, some anti-inflammatory compounds and
pharmaceutical options were also adopted in this field. Some
studies recommended the use of dietary fish oil to prevent
immobilization-induced atrophy. Fish oils are well known for
their anti-inflammatory properties as they contain different
fatty acids (long chain n-3 fatty acid; Fetterman and Zdanowicz,
2009). N-3 fatty acids facilitate insulin-sensitive protein
anabolism through the Akt-mTOR-S6K1 pathway, which
prevents anabolic resistance and leads to decreased muscle
atrophy induced by disuse (Gingras et al., 2007). Furthermore,
another study reported that ingestion of 5% fish oil reduces
disuse muscle atrophy via Akt pathway through E3 ubiquitin
ligases and S6K1 pathway (You et al., 2010). Chromium (Cr) is
also believed to preserve muscle mass by inhibiting the elevation
of ubiquitin proteasome system pathway and restoring the
impaired Akt signal through elevating the Akt phosphorylation
(Dong et al., 2009).

Studies carried out in our laboratory show that
tetramethylpyrazine is a dietary supplement that could
effectively alleviate muscle atrophy in HLU rats (Gao et al.,
2005; Zhang et al., 2007; Li et al., 2012). It was demonstrated
that attenuating disuse-induced Ca2+ overload and activation
of calpains system might be involved in the underlying
mechanism of tetramethylpyrazine to counteract disuse-induced
muscle atrophy (Wu et al., 2012; Hu et al., 2017; Zhang et al.,
2017). Furthermore, various Chinese herbal medicines have
also been used to reduce and prevent muscle loss caused by
different unloading models. For example, Sijunzi Decoction
(Hu et al., 2009), Angelica Sinensis (Qin et al., 2009; Du
and Gao, 2014), Ligusticum (Qin et al., 2009), and Radix
Astragali (Gao et al., 2005, 2008; Zhang et al., 2007) have
been tested under different muscle atrophy conditions by our
laboratory.
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The majority of these traditional Chinese medicines have
positive effects on blood circulation and/or are blood tonics have
been reported to attenuate disuse-induced muscle atrophy (Gao
et al., 2005; Zhang et al., 2007, 2017; Wu et al., 2012; Hu et al.,
2017). Due to numerous effective components in these herbs, the
major effective ingredients and the mechanisms involved against
muscle atrophy remain unclear. Thus, future research should be
carried out to identify specific and effective components of these
herbs, thus leading to wider applications of these herbs to counter
muscle atrophy.

Exercise and Physical Training
Exercise is one of the best countermeasure against disuse atrophy.
During physical inactivity conditions such as HDBR and HLU,
exercise has been shown to be the most efficient countermeasure
to address the deficits in muscle structure and function, as
well as for maintenance of balance between muscle protein
synthesis and protein breakdown (Herbert et al., 1988; Widrick
et al., 1996; Shinohara et al., 2003). Loss in muscle mass during
physical inactivity is more challenging in aged people compared
to younger persons and, therefore, to maintain muscle protein
synthesis rate, older individuals requiredmore resistance exercise
than younger individuals (Kumar et al., 2012). For instance, after
2 weeks of ULLS following 4 weeks of resistive exercise employed
in younger and older individuals suggested that recovery of
strength and muscle size was much more reduced in older adults
(Suetta et al., 2009; Hvid et al., 2010). These findings were further
supported by a study of older women in which resistance training
of 12 weeks was performed (at a frequency of 3 times per week).
These investigators observed an increase in quadriceps muscle
volume by up to 6% in young women and only 3% increase in
older women (Greig et al., 2011). Hvid and co-workers observed
marked decrements in knee extensor muscle function in young
and old individuals after 4-day lower limb disuse. Following 7-
day recovery, knee extensor (isometric or isokinetic) strength was
recovered in young individuals, while an impaired ability to fully
recover was observed in older individuals (Hvid et al., 2014).

Moreover, it has been documented that different types of
resistance exercises play a key role in the maintenance of muscle
mass in disuse models (e.g., bed rest, HLU) by improving
muscle protein synthesis via activation of the PI3K-Akt-mTOR
pathway (Ferrando et al., 1997; Fluckey et al., 2004; Hornberger
et al., 2004; Philp et al., 2011). It has been proposed that short
period of resistance exercise can activate IGF-1 gene expression
in healthy individuals (Chesley et al., 1992). For instance, full
restoration of quadriceps muscle mass following 2 weeks of
single leg immobilization in humans can be achieved via high-
resistance training (Oates et al., 2010). Additionally, combination
of endurance and resistance exercise is an effective modality
to counter the muscle loss associated with disuse or inactivity
in HLU mice (Adams et al., 2007). In fact, resistance exercise
partly rescued the loss in cytoskeletal and dystrophin-associated
glycoprotein in VL and soleus muscles at protein level for
the duration of extended bed rest (84 days) in human beings
(Chopard et al., 2005). It was also demonstrated that resistance
exercises associated with a ∼50% decrease in the stimulation of
the ubiquitin-proteasome system (MuRF1/MAFbx) and alleviate

muscle atrophy caused by 14 days of HLU (Dupont-Versteegden
et al., 2006).

Moreover, a number of other published literatures opine that
the increased mechanical load can activate cellular signaling
that initiates the protein synthesis independent of a traditionally
described functioning IGF-1 receptor (Bickel et al., 2005;
Hornberger et al., 2006; Spangenburg et al., 2008; Hamilton et al.,
2010; West et al., 2010; Witkowski et al., 2010; Gabriel et al.,
2016). Noticeably, these experiments pave the way for future
investigations regarding Akt-mediated signaling in response
to mechanical loading and other growth stimuli, as well as
provide new insights for the prevention of disuse-inducedmuscle
atrophy.

In general, applying exercise and physical training is one of
the most widely used, effective and with minimal side effects in
all countermeasures, but exercise and physical training cannot
always be applied to injured patients with fractures and is often
problematic for bed rest patients. In addition, the acceptance
of this countermeasure is also difficult for those who do not
want to exercise. Thus, exercises that possess minimum load
or minimum exercise time against disuse muscle atrophy needs
further investigation.

Nutrition and Protein Supplementation
Exercise alone cannot avert the disuse-induced muscle loss under
different unloading conditions, including bed rest confinement
during hospitalizations and sedentary lifestyle. Hence, several
other approaches, such as nutritional supplementation (essential
amino acid and protein), should be used in conjunction with
exercise to rescue or counteract better against catabolic processes
during chronic disuse. Specifically, muscle mass and strength
can be more effectively enhanced by combining the nutritional
regulation (dietary carbohydrates and amino acid) with an
adaptive exercise regimen than by application of either treatment
approach alone (Dreyer et al., 2008; Pasiakos et al., 2011). The
use of protein supplement along with heavy resistance training
can significantly improve muscle strength and mass in very old
individuals (Bechshøft et al., 2017). Generally speaking, it appears
that during immobilization and bed rest confinement, protein
synthesis can significantly be improved by using amino acid
supplementation, but it can only partially avert muscle atrophy
(Glover et al., 2008). Amino acids are very well known for
their important role in the regulation of protein synthesis and
metabolism by accelerating the initiation step of peptide chain
formation in skeletal muscle (Biolo et al., 1997; Bohé et al., 2001;
Rennie et al., 2004; Stipanuk, 2007). It has consistently been
shown that essential amino acid supplementation strengthens
the response of muscle protein synthesis and partially rescues
skeletal muscle loss experienced during bed rest (Stuart et al.,
1990; Paddon-Jones, 2006). Furthermore, ingestion of amino acid
supplements has been shown to enhance the fractional synthesis
rate of protein in the soleus muscle (Carroll et al., 2005).

Leucine has been widely studied among all nutritional
supplementations that were effective to prevent disuse muscle
atrophy. It was documented that leucine, as an anabolic factor
among all essential amino acids, has potential to affect muscle
protein metabolism in several ways and is considered as a strong

Frontiers in Physiology | www.frontiersin.org 9 March 2018 | Volume 9 | Article 235

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gao et al. Muscle Atrophy Induced by Mechanical Unloading

stimulator of protein synthesis (Katsanos et al., 2006). However, it
is still unclear how leucine is sensed by the processes that regulate
protein synthesis? Several in vivo and in vitro studies described
that leucine plays an important role in improvement of protein
synthesis via the IGF1-mTOR-Akt pathway (Kimball et al., 1999;
Anthony et al., 2000b; Drummond et al., 2017). Anthony and co-
workers reported that leucine is implicated in the stimulation of
the eIF4E complex (that is, mRNA binding step in translation
initiation; Anthony et al., 2000a). Branched-chain amino acids
supplementation was observed to have an anabolic effect on
human muscles during 14 days of bed rest, specifically, a slight
improvement of protein synthesis in the early recovery period
was observed (Stein et al., 1999, 2003). In addition, resistance
exercise and essential amino acid supplementation were also
shown to lead to preserve skeletal muscle mass and strength
during 28-day bed rest (Brooks et al., 2008). Physical inactivity
appears to inhibit mTORC1 signaling associated with reduced
amino acid transporter protein contents thus suggesting that a
blunted response in essential amino acid stimulation could be
the underlying basis of muscle loss in older individuals (Hvid
et al., 2010; Drummond et al., 2012). However, another study
reported that supplementation of protein (0.8–1.5 g/kg/day)
throughout 10 days of bed rest in older subjects promoted
muscle strength but had no impact on muscle mass loss (Dillon
et al., 2009). Discussions related to the efficiency of amino
acid countermeasures in preventing protein mass losses during
inactivity can be seen in the detailed review of Stein and associates
(Stein and Blanc, 2011). In their conclusion, it is mentioned that
various nutrition and protein supplements have different degrees
of prevention and treatment of muscular atrophy, but the effect
of these treatments is limited as a result of the blunted post
absorptive and postprandial muscle protein synthesis after disuse
atrophy. Therefore, searching for nutritional supplements with
less synthetic metabolism resistance is undoubtedly an important
research direction for the treatment of muscle atrophy.

FUTURE PROSPECTIVE

Over the past few decades, our current understanding of the
cellular and molecular mechanisms involved in disuse muscle
atrophy has significantly increased. However, this understanding
remains incomplete with numerous unanswered questions. So
far, the importance of protein turnover in driving disuse-induced
muscle atrophy has been widely recognized. When the rate
of protein synthesis becomes slower than the rate of protein
breakdown, muscle atrophy begins. From a growing number of
clinical and preclinical experiments, it is now clear that blunted

or suppressed muscle protein synthesis seems to be the major
drivers of disuse atrophy rather than increased muscle protein
breakdown. However, further investigations are still needed to
completely understand that how and why the activation of
MuRF1/MAFbx, FOXO and other genes affect both protein
synthesis and protein breakdown, which strongly suggests that
increased proteolysis occurred somewhere. Additionally, it has
been suggested frequently that during prolonged periods of
disuse, oxidative stress can influence biochemical pathways and

gene expression that regulates both muscle protein synthesis and
breakdown. There are many factors leading to oxidative stress,
such as low temperature, hypoxia, tissue damage, inflammation
and calcium overload, etc., but which one among these factors
contributing to oxidative stress in disuse-inducedmuscle atrophy
need to be further elucidated.

On the other hand, to date, many studies have demonstrated
beneficial effects of therapeutics countermeasure in disuse-
induced muscle loss in model organisms. But we still lack of
appropriate treatment strategies and have limited pharmaceutical
options. The major hindrance, of course, is lack of knowledge
regarding the cellular and molecular mechanisms involved in
disuse muscle atrophy, which is far more complicated than we
have been led to believe. There is much more to learn about
how to prevent muscle atrophy as it is evidently not limited
to muscle protein synthesis and breakdown only. Even as far
as protein turnover is concerned, more accurate and targeted
studies are needed to be done to unlock the secrets of abnormal
or unbalanced protein metabolism underlying disuse muscle
atrophy. More effective therapeutic agents or measures will
emerge and develop along with the deepening of the research on
the detailed mechanism in future.
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