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Aging is associated with a decline in cardiac function due to a decreased myocardial

reserve. This adverse cardiac remodeling comprises of a variety of changes, including a

reduction in mitochondrial function and a decline in the expression of the peroxisome

proliferator-activated receptor γ coactivator 1α (PGC-1α), a central regulator of

mitochondrial biogenesis and metabolic adaptation in the myocardium. To study the

etiological involvement of PGC-1α in cardiac aging, we used mouse models mimicking

the modest down- and upregulation of this coactivator in the old and the exercised

heart, respectively. Youngmice with reduced cardiac expression of PGC-1α recapitulated

part of the age-related impairment in mitochondrial gene expression, but otherwise

did not aggravate the aging process. Inversely however, moderate overexpression

of PGC-1α counteracts numerous key age-related remodeling changes, e.g., by

improving blood pressure, age-associated apoptosis, and collagen accumulation, as

well as in the expression of many, but not all cardiac genes involved in mitochondrial

biogenesis, dynamics, metabolism, calcium handling and contractility. Thus, while the

reduction of PGC-1α in the heart is insufficient to cause an aging phenotype, moderate

overexpression reduces pathological remodeling of older hearts and could thereby

contribute to the beneficial effects of exercise on cardiac function in aging.

Keywords: PGC-1α, aging, myocardium, remodeling, transcriptional regulation, heart

INTRODUCTION

Aging causes a decline in cardiac function as a result of decreased myocardial reserve and adverse
remodeling (Dai et al., 2016). Key molecular phenotypes of cardiac aging include alterations
in stress response pathways (Lakatta, 1993), mitochondrial function (Judge et al., 2005; Dai
et al., 2012a; Tocchi et al., 2015), cardiac energy metabolism (Lee et al., 2002; Lopaschuk
et al., 2010), calcium signaling (Koban et al., 1998; Hobai and O’Rourke, 2001; Bers, 2006),
contractility (Zile and Brutsaert, 2002; Strait and Lakatta, 2012), cardiomyocyte death (Kwak,
2013b) and extracellular matrix (ECM) remodeling (Nadal-Ginard et al., 2003; Kwak, 2013a;
Horn and Trafford, 2016). These changes are mediated by a complex interconnected network
of transcriptional and posttranslational processes that initially may be beneficial, aimed at the
maintenance of cardiac function, but in the long term often are detrimental to the heart (Volkova
et al., 2005), resulting in age-related cardiac remodeling with impaired cardiac reserve and thus
increasing the risk for heart failure and other cardiovascular events.
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Intriguingly, various heart pathologies have been associated
with mitochondrial dysfunction and altered cardiac metabolism
(Dillon et al., 2012). Thus, not surprisingly, mitochondrial gene
expression is prominently altered in the aging myocardium
(Anderson and Prolla, 2009). As a consequence, aged hearts
often reveal a mitochondrial impairment (Ventura-Clapier
et al., 2008; Barton et al., 2016) while adequate mitochondrial
function and integrity is vital for cellular homeostasis and
cardiac performance (Chaudhary et al., 2011). Unfortunately, the
underlying molecular mechanisms of these and other age-related
changes are largely unknown. Notably however, the aged heart
shows reduced levels of the peroxisome proliferator-activated
receptor y coactivator 1α (PGC-1α) as well as downstream
transcription factor binding partners including the estrogen-
related receptor α (ERRα), the peroxisome proliferator-activated
receptor α (PPARα) and the mitochondrial transcription factor A
(TFAM) (Finck and Kelly, 2006; Scarpulla, 2008; Vina et al., 2009;
Dillon et al., 2012; Vega and Kelly, 2017).

The transcriptional network that is controlled by PGC-1α
and its transcription factor partners is intrinsically linked to the
control of mitochondrial biogenesis and metabolic adaptation in
various tissues, including skeletal, and cardiac muscle (Dillon
et al., 2012; Kupr and Handschin, 2015; Schnyder et al.,
2017; Vega and Kelly, 2017). Loss-of-function animal models
for heart PGC-1α exhibit an inability to meet the energy
demands precipitated by increased cardiac work load, primarily
due to reduced mitochondrial fatty acid oxidation and ATP
synthesis efficiency (Arany et al., 2005; Leone et al., 2005; Lai
et al., 2008; Lehman et al., 2008; Martin et al., 2014). An
analogous reduction in PGC-1α expression has been reported in
different cardiac pathologies, linked to a switch from oxidative
metabolism to glycolysis (Finck and Kelly, 2006; Vega and Kelly,
2017). Conversely, high-level cardiac-specific overexpression also
leads to impaired heart function, in this case accompanied
by uncontrolled mitochondrial biogenesis, loss of sarcomere
structure and a dilated cardiomyopathy (Lehman et al., 2000).
Thus, deregulation of PGC-1α in either direction evokes adverse
effects in the heart, demonstrating the critical role of this
transcriptional coactivator in the maintenance of cardiac health
(Anderson and Prolla, 2009). Importantly, a moderate increase in
PGC-1α expression, e.g., as observed in some endurance exercise
studies (O’Neill et al., 2007; Kim et al., 2008; Riehle et al., 2014;
Vettor et al., 2014; Tam et al., 2015), or even the prevention
of PGC-1α deterioration, could elicit beneficial effects in the
heart. For example, low level overexpression of PGC-1α in the
myocardium promotes an excitation-contraction (E-C) coupling
phenotype that is prototypic for physiological hypertrophy of the
heart, in addition to altering the expression of genes involved
in the regulation of the circadian clock, heat shock, excitability,
calcium signaling and contraction (Mutikainen et al., 2016).

Abbreviations: BP, blood pressure; E-C coupling, excitation-contraction coupling;

ECM, extracellular matrix; FA, fatty acid; FAO, fatty acid oxidation; MTg, muscle-

specific PGC-1α transgenic; MKO, muscle-specific PGC-1α knockout; OXPHOS,

oxidative phosphorylation; PGC-1α, peroxisome proliferator-activated receptor γ

coactivator 1α; SR, sarcoplasmic reticulum; VEGF, vascular endothelial growth

factor; WT, Wild type.

In this study, we used both gain- and loss-of-function models
for moderate overexpression and reduction of PGC-1α in the
heart, respectively, to study the involvement of this coactivator
in controlling cardiac aging. While a modest downregulation of
PGC-1α in young animals was linked to a mitochondrial gene
expression signature similar to that observed in an old heart, this
reduction was insufficient to elicit a premature aging phenotype
in regards to other aspects of age-related cardiac remodeling.
Inversely however, a moderate elevation of PGC-1α blunted or
prevented a broad range of age-associated changes in the heart of
old mice.

MATERIALS AND METHODS

Experimental Animals
Male, 3 month old and 24 month old PGC-1α muscle-specific
knockout (MKO) and transgenic (MTg) mice of the same
C57BL/6 background as well as their respective littermate
controls (WT) were obtained from in-house breeding of
previously described lines. The reduction of PGC-1α gene
expression in the MKO animals resulted from human skeletal
actin (HSA) promoter-driven cre expression in floxed PGC-1α
mice (Perez-Schindler et al., 2013). The overexpression of PGC-
1α in the MTg mice resulted from the muscle creatine kinase
(MCK) promoter to drive the expression of a PGC-1α transgene
(Lin et al., 2002). Both animal models depict their primary
change in skeletal muscle, but due to the low expression of the
HSA and MCK promoters in cardiomyocytes, a more modest
reduction and elevation, respectively, of PGC-1α in the heart
is achieved. The MKO mice were homozygous for the floxed
PGC-1α and heterozygous for the HSA-cre allele. The MTg
animals were heterozygous for the MCK-PGC-1α transgene.
All mice were kept in a conventional facility under a 12/12 h
light/dark cycle and had free access to food and water. This study
was carried out in accordance with the principles of the Basel
Declaration and with Federal and Cantonal Laws regulating the
care and use of experimental animals in Switzerland, as well as
institutional guidelines of the Biozentrum and the University
of Basel. The protocol with all methods described here was
approved by the “Kantonales Veterinäramt” of the Kanton Basel-
Stadt, under consideration of the well-being of the animals and
the 3R principle.

Blood Pressure Measurements
Arterial blood pressure (BP) was measured with a non-invasive
tail cuff system (BP-2000 blood pressure analysis system, Visitech
Systems). Blood pressure was measured over 5 consecutive days
with 5 pre-measurements and 15 measurements per day. Mice
were rotated in terms of their position and measurements were
performed at the same time each day.

Tissue Collection
Animals were sacrificed by carbon dioxide inhalation and mouse
length was measured from the tail base to the nose with
mice lying straight on the dissection plate. Immediately after
death, hearts were dissected, washed in Dulbecco’s phosphate
buffered saline (PBS, Sigma-Aldrich) and cut transversely in half.
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The upper half was flash frozen in liquid nitrogen for RNA
and protein extraction. The lower part was frozen in cooled
isopentane and embedded in 7% Tragacanth for preparation of
cryosections. Transverse heart area and collagen quantification
were assessed by consecutive cutting of the sections starting at
the tip until the left ventricle was reached. Transverse heart area
was determined on 5–6 sections per heart in at least 4 mice per
group by using a threshold in which the entire tissue could be
visualized after conversion of the color into primary images and
using the functions “Analyze” and “Measure” to determine area
and perimeter in Fiji.

RNA Isolation and Gene Expression
Analysis
Total cardiac mRNA was extracted from frozen, crushed samples
with the help of Lysing matrix tubes (MP Biomedicals), 1ml Tri
reagent (Sigma-Aldrich) and FastPrep FP120. The procedure was
carried out according to the manufacturer’s instructions. RNA
concentration and purity was measured with a NanoDrop ND-
1000 Spectrophotometer (Thermo Scientific). The RNA purity
was determined with the ratio of 260/280 nm and 260/230 nm.
A purification step was carried out on samples with purities
beneath 1.7.

RNA quality was assessed using a 2100 Bioanalyzer (G2938B,
Agilent Technologies). The lowest RIN detected was 8.2. 400
ng of total RNA was treated with DNase I (Invitrogen) and
then reverse transcribed into cDNA using SuperScript II Reverse
Transcriptase (Invitrogen) and random hexanucleotide mix
(Roche).

The relative expression levels of each gene of interest were
quantified with the 11CT method using FastStart Essential
DNA Green Master (Roche) and the LightCycler 480 system
(Roche). The average of the values obtained for the housekeeping
genes TATA-binding protein (TBP), hypoxanthine guanine
phosphoribosyl transferase (HPRT) and 18S rRNA was used for
normalization Primer sequences are listed in Table 1.

Protein Isolation and Western Blotting
Cardiac proteins were extracted from 30mg of crushed samples
using 300 µl ice-cold tissue lysis buffer [50mM Tris-HCl
(pH 7.5), 1mM EDTA, 0.5mM EGTA, 1% NP-40 substitute,
150mM NaCl, 0.2% Na-deoxycholate, 1mM dithiothreitol
(DTT), complete mini protease inhibitor (Roche), PhosStop easy
Pack phosphatase inhibitor (Roche), 10mMnicotinamide], Pellet
Pestel Motor (Kontes) andMISONIX ultrasonic liquid processor.
Then, the samples were shaken for 30min at 1,300 rpm at
4◦C and centrifuged at 13,000 g for 10min at 4◦C. The protein
concentration of the supernatant was determined by the albumin
standard method (Thermo Scientific), samples were diluted in
lysis buffer to a final concentration of 3 µg/µl containing 1x
Laemmli Sample Buffer (Bio-Rad) and 20% β-mercaptoethanol
(Bio-Rad) and subsequently boiled for 5min.

Thirty microgram of proteins were loaded and separated on
Mini-PROTEAN TGX Stain-free Precast gels (4–20%, Bio-Rad).
The transfer was carried out for 1 h at 100V onto nitrocellulose
membranes. Membranes were blocked for 1 h in either 5% bovine
albumin serum (BSA) or in 5% BSA with Tris buffered saline and

TABLE 1 | Primer pairs for real-time RT-qPCR analysis.

Gene target Name Forward primer sequence (5′ - 3′)

Reverse primer sequence (5′ - 3′)

18S 18S ribisomal RNA AGTCCCTGCCCTTTGTACACA

CGATCCGAGGGCCTCACTA

ACTC1 Actin, Alpha, Cardiac

Muscle 1

CTGGATTCTGGCGATGGTGTA

CGGACAATTTCACGTTCAGCA

ATP5b ATP Synthase, H+

Transporting,

Mitochondrial F1

Complex, Beta

Polypeptide

ACGTCCAGTTCGATGAGGGAT

TTTCTGGCCTCTAACCAAGCC

CKMT2 Creatine Kinase,

Mitochondrial 2

CCACACCAGGGTGATCTCAAT

TCGAGGGGCAAGTCAAAATGT

COL I Collagen Type I Alpha 1

Chain

CTTCACCTACAGCACCCTTGT T

TGACTGTCTTGCCCCAAGTTC

COL III Collagen Type III Alpha 1

Chain

CACCCTTCTTCATCCCACTCT T

TGCATCCCAATTCATCTACGTT

CPT1β Carnitine

Palmitoyltransferase 1B

ATCATGTATCGCCGCAAACT

CCATCTGGTAGGAGCACATGG

CS Citrate synthase CCCAGGATACGGTCATGCA

GCAAACTCTGCGTGACAGGAA

DLP1 Dynamin like protein-1 GCGCTGATCCCGCGTCAT

CCGCACCCACTGTGTTGA

ERRα Estrogen Related

Receptor Alpha

CGGTGTGGCATCCTGTGA

CTCCCCTGGATGGTCCTCTT

FIS1 Fission, Mitochondrial 1 GCCCCTGCTACTGGACCAT

CCCTGAAAGCCTCACACTAAGG

PYGM Glycogen phosphorylase CTTAGCCGGAGTGGAAAATGT

GTAATCCTCCGGAGTAGCCAA

HPRT Hypoxanthine

Phosphoribosyltransferase 1

ATGCCGAGGATTTGGAAAAAGTG

TGACATCTCGAGCAAGTCTTTCA

LCAD Long Chain Acyl-CoA

Dehydrogenase

CCAGCTAATGCCTTACTTGGAGA

GCAATTAAGAGCCTTTCCTGTGG

MCAD Medium Chain Acyl-CoA

Dehydrogenase

AACACTTACTATGCCTCGATTGCA

CCATAGCCTCCGAAAATCTGAA

MFN1 Mitofusin 1 CTGCTTCCTGAGTGTCGAGG

GCATGGGCCAGCTGATTAAC

MFN2 Mitofusin 2 GGTCAGGGGTATCAGCGAAG

TTGTCCCAGAGCATGGCATT

mTOR Mammalian Target Of

Rapamycin

TGATGTGCCGAGACCTTGAG

GCTTGGATGTGATGACTTGCA

NCX1 Sodium-calcium

exchanger 1

GGTGAACTGCCTCCAGAGAG

GTGCCAGACACCGTATCCTT

OPA1 OPA1, Mitochondrial

Dynamin Like GTPase

CTTGCCAGTTTAGCTCCCGA

CAATTTGGGACCTGCAGTGAA

OPA2 Optic Atrophy 2 (Obscure) CCCAGCTCAGAAGACCTTGC

CCAGGTGAACCTGCAGTGAA

PGC-1α Ex3-5 Peroxisome

proliferator-activated

receptor gamma

coactivator 1-alpha

AGCCGTGACCACTGACAACGAG

GCTGCATGGTTCTGAGTGCTAAG

PGC-1β Peroxisome

proliferator-activated

receptor gamma

coactivator 1-beta

CCATGCTGTTGATGTTCCAC

GACGACTGACAGCACTTGGA

PLN Phospholamban ATGACGACGATTCAAATCTCTTGG

TGGGTTTGCAAAGTTAGGCATAA

(Continued)
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TABLE 1 | Continued

Gene target Name Forward primer sequence (5′ - 3′)

Reverse primer sequence (5′ - 3′)

PPARα Peroxisome Proliferator

Activated Receptor Alpha

GCGTACGGCAATGGCTTTAT

ACAGAACGGCTTCCTCAGGTT

SERCA2 ATPase

Sarcoplasmic/Endoplasmic

Reticulum Ca2+

Transporting 2

TCAGCAGGAACTTTGTCACC

GGGCAAAGTGTATCGACAGG

SOD2 Superoxide Dismutase 2,

Mitochondrial

TGAACAATCTCAACGCCACCGAG

TGAACTTCAGTGCAGGCTGAAGAG

TBP TATA-Box Binding Protein TGCTGTTGGTGATTGTTGGT

CTGGCTTGTGTGGGAAAGAT

TERF1 Telomeric repeat binding

factor 1

CATGGACTACACAGACTTAC

ATCTGGCCTATCCTTAGACG

TERF2 Telomeric repeat binding

factor 2

AGCTGATTCCAAGGGTGTGA

GGTTATGCAGTGTCTGTCGC

TFAM Transcription factor A,

mitochondrial

GGTCGCATCCCCTCGTCTA

GGATAGCTACCCATGCTGGAAA

TNNI3 Toponin I3, cardiac type TCTGCCAACTACCGAGCCTAT

CTCTTCTGCCTCTCGTTCCAT

VEGF Vascular endothelial

grwoth factor

CTGTGCAGGCTGCTGTAACG

GTTCCCGAAACCCTGAGGAG

α-MHC Myosin heavy chain alpha

isoform

CTACGCGGCCTGGATGAT

GCCACTTGTAGGGGTTGAC

β-MHC Myosin heavy chain beta

isoform

TTGAGAATCCAAGGCTCAGC

CTTCTCAGACTTCCGCAGGA

Tween 20 (TBST) for 60min and incubated overnight at 4◦Cwith
primary antibodies (see Table 2 for details): Myosin (skeletal,
slow) (200 kDa; Sigma-Aldrich) (diluted 1:5,000) and Caspase 3
(17,19,35 kDa; Cell Signaling) (diluted 1: 1,000), both in 3% BSA.
For protein detection, membranes were incubated for 1 h with
the secondary antibody: Anti-Mouse (Dako) diluted 1:10,000
in 3% BSA, respectively 3% milk. Antibody detection was
carried out using an appropriate chemiluminescence horseradish
peroxidase (HRP) substrate detection kit (Thermo Scientific).
The imaging and quantification of Western blots was done with
the Fusion software (Fusion). Total protein was used as a loading
control. Imaging of total protein was carried out on gel and
membrane using a stain-free enabled imaging system (Fusion).
Representative Western blots of two animals per group are
shown, quantification was performed on n= 6 per group.

Picrosirius Red Staining
Eight micro meters-thick heart cryo-sections were thawed and
stained for 1 h in Picrosirius Red (0.5 g Sirius Red under the name
Direct Red 80, Sigma-Aldrich, in 500ml 1.3% saturated aqueous
solution of picric acid, Sigma-Aldrich). Sections were washed
in acidified water (5ml glacial acetic acid in 1 l distilled water),
dehydrated by 3 incubations with 100% ethanol, cleared in xylene
and mounted with Histomount (Invitrogen). Quantification of
the collagen amount from the Picrosirius Red staining was
carried out with the software Ilastik 1.1 and Fiji. Briefly, 12 images
representing the true staining (collagen = red; background =

yellow) as well as artifacts such as dirt, wrinkles, blood, image

noise, blood vessels, unevenness of staining were cropped to train
the program illastik to recognize these problem zones and create
a masked image allowing an equal quantification of collagen of
all used images (5–6 whole sections per group, sections obtained
from different animals). The area covered by collagen in these
masked images was measured using the software Fiji.

Hydroxyproline Assay
Ten microgram of frozen heart tissue was diluted in 100 µl
nuclease free water and homogenized using the MISONIX
ultrasonic liquid processor and transferred to a pressure-safe
pyrex glass tube. The same amount of 37% HCl was added
to the samples, which were then heated at 120◦C for 3 h. For
each assay, 10 µl of sample was transferred to a 96-well plate
and evaporated at 60◦C to dryness. Chloramine T (55mM
chloramine T), 10% 2-propanol in acetate citrate buffer (0.8M
sodium acetate trihydrate, 240mM citric acid, 1.2% glacial acetic
acid, 850mMNaOH in 1 l ddH2O) and Ehrlich’s reagent [10mM
p-dimethylaminobenzaldehyde in 2-propanol/perchloric acid
(2:1 v/v)] were added and the absorbance at 560 nm was
measured with Infinite M1000 (Tecan). The amount of
hydroxyproline was calculated with the help of a hydroxyproline
standard (Sigma-Aldrich).

Statistical Analysis
All statistical calculations were done with GraphPad PRISM
version 6.07. Statistical significance was calculated using 2-Way
ANOVA and all values were displayed as means ± standard
errors of the means (SEM). ∗/#: p< 0.05; ∗∗/##: p< 0.01; ∗∗∗/###:
p < 0.001; ∗∗∗∗/####: p < 0.0001 indicates age/genotype related
significant differences. In the case of p values close, but slightly
above to the significance cut-off of p < 0.05, actual p-values are
indicated.

RESULTS

Moderate Overexpression of PGC-1α

Prevents Age-Related Increases in
Diastolic Blood Pressure
First, general cardiovascular traits were analyzed in ourmodels of
moderate PGC-1α deficiency and overexpression in comparison
to WT mice. All three mouse lines exhibited an age-linked
increase in heart weight (Figure 1A) associated with an elevated
cardiac area (Figure 1B). Intriguingly, the cardiac area was
already significantly larger in the young PGC-1αMTgmice while
the old MKO animals showed a reduced cardiac area compared
with the respective age-matched WT mice (Figure 1B). Despite
the parallel trend for heart weight and area, the age-related
decrease in gene expression of the growth- and hypertrophy-
regulating kinase mammalian target of rapamycin (mTOR)
in the WT group was diametrically opposite in the MTg
mice (Figure 1C). Furthermore, a strong increase in vascular
endothelial growth factor (VEGF) gene expression was observed
in both young and old MTg mice (Figure 1D), which might
be indicative of improved tissue vascularization in this model.
Even though some studies reported depressed heart rates with
increased age (Chaudhary et al., 2011; Moghtadaei et al., 2016),
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TABLE 2 | Antibody conditions.

Blocking solution Conditions for primary antibody Conditions for secondary antibody

Myosin (skeletal, slow) (200 kDa;

Sigma-Aldrich)

5% BSA Ab diluted 1:5,000 in 3% BSA and 0.2%

Na-azide

Anti-Mouse (Dako) diluted 1:10,000 in 3 %

BSA

Caspase 3 (17–19, 35 kDa; Cell Signaling) 5% milk Ab diluted 1:1,000 in 3% BSA and 0.2%

Na-azide

Anti-Rabit (Dako) diluted 1:10,000 in 3 % milk

we observed an increase in the WT as well as MKO animals
(Figure 1E). The MTg mice exhibited an increased heart rate
already at young age (Figure 1D). Overall, blood pressures were
lower in MKO and MTg mice than in WT mice (Figures 1F,G).
Systolic blood pressures did not change with age, whereas as
published, diastolic pressures were significantly higher in the
old than in the young mice of (Figure 1F). Notably, there is an
age-dependent increase of diastolic blood pressure in the WT
and MKO lines, which is prevented by the moderate PGC-1α
overexpression in theMTgmice (see Gill et al., 2018, replicated in
Figure 1G).

Moderate Overexpression of PGC-1α

Counteracts Age-Associated ECM
Remodeling
In older hearts, programmed cell death and necrosis induce not
only loss of contractile tissue, but also a reactive compensatory
hypertrophy of remaining cardiomyocytes, accumulation of
collagen and fibrosis (Jugdutt, 2003). In all three mouse lines,
mRNA expression of collagen I and III was reduced with age
(Figure 2A). Strikingly however, picrosirius red staining revealed
that an accumulation of collagen protein in aged WT mice
was completely abrogated in the MTg animals (Figures 2B–D).
This discrepancy between transcript and protein levels could
stem from an adaptive, repressive process to reduce collagen
expression, which however is dominated by the altered balance
between ECM synthesis and degradation due to aging-induced
modulation of matrix metalloprotease (MMP) and tissue
inhibitors of metalloproteinases (TIMP) activities (Kwak, 2013a).
Apoptosis may be an additional potential initiator of ECM
remodeling. In line with the effect on collagen accumulation,
moderate overexpression of PGC-1α in the MTg model
prevented the age-linked increase in cleaved caspase 3, a known
marker of apoptosis (Figures 2E–G). Finally, moderate elevation
of PGC-1α also counteracted the age-associated diminished
gene expression of the telomeric repeat-binding factor 1 and 2
(TERF1 and TERF2) (Figures 2H,I), two proteins that protect
mammalian telomers (Palm and de Lange, 2008; Bernardes de
Jesus and Blasco, 2012; Moslehi et al., 2012). The young MKO
mice already exhibit levels of TERF1 corresponding to old WT
animals (Figure 2H).

Moderate PGC-1α Overexpression
Counteracts the Age-Associated
Downregulation of Mitochondrial Gene
Expression
Similar to other heart pathologies, cardiac aging leads to
the decreased expression of genes involved in mitochondrial
biogenesis and function (Dai et al., 2012b). In line, the level of

several mitochondrial transcripts was reduced in old compared
to young WT mice (Figure 3), notably also the levels of PGC-
1α and the estrogen-related receptor α (ERRα), one of the
major transcription factor binding partners of PGC-1α in the
regulation of metabolic gene expression (Huss et al., 2002).
This reduction was also observed for some of these genes in
the MKO mice (Figure 3) while importantly, the transcript
levels of several mitochondrial genes were already reduced
in young MKO animals comparable to old WT expression
(Figure 3). Moreover, mitochondrial gene expression was further
reduced in MKO animals compared to old WT mice. Strikingly,
moderate overexpression of PGC-1α not only almost completely
blunted the age-associated reduction in gene expression, but
was also sufficient to raise the transcript levels of most genes
in young and old MTg hearts above those of young WT mice
(Figure 3). These patterns were not only observed in genes
encoding proteins important for mitochondrial biogenesis, Krebs
cycle and oxidative phosphorylation (OXPHOS) (Figures 3A–I),
but also in mitochondrial fission and fusion gene expression
(Figures 3J–O). WT mice showed an age-dependent decrease
in the fatty acid β-oxidation (FAO) transcripts (Figures 3P–R)
indicating a possible decreased reliance of cardiomyocytes on
lipid metabolism in line with the reduction in OXPHOS gene
expression. Interestingly, the FAO gene expression did not follow
the WT pattern in the MKO mice. More consistently, we
observed a pattern of increased transcript levels of the FAO genes,
and an abrogation of the age effect in the MTg mice compared to
the age-matched WT animals (Figures 3P–R).

Moderate PGC-1α Overexpression Induces
a Gene Expression Profile Favoring
Calcium Handling and Contractile Function
In addition to mitochondrial gene expression, age-related cardiac
changes also include a decline in transcription of genes encoding
proteins for calcium handling and contractility (Koban et al.,
1998; Hobai and O’Rourke, 2001; Zile and Brutsaert, 2002; Bers,
2006; Strait and Lakatta, 2012). The age-related decrease in
sarcoplasmic/endoplasmic reticulum Ca2+ transporting ATPase
2 (SERCA2) gene expression was observed in WT and
MKO mice, but was completely prevented by the moderate
overexpression of PGC-1α in the MTg mice (Figure 4A).
Interestingly, the MTg animals also exhibited elevated transcript
levels of phospholamban (PLB) and sodium/calcium exchanger
protein 1 (NCX1), two additional genes involved in the regulation
of sarcoplasmic reticulum (SR) calcium handling (Figures 4B,C),
which could indicate overall improved calcium clearance. A
blunting of the age effect in the MTg mice was also observed
for α-myosin heavy chain (α-MHC) expression (Figure 4D).
Curiously, an increase in β-MHC transcript levels was found in
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FIGURE 1 | Moderate PGC-1α modulation reduces blood pressure. (A) Heart weight to mouse length ratios were assessed after sacrifice at 3 and 24 months of age

for the young (filled bars) and old (open bars) mice, respectively (n = 6/group). (B) Transverse heart area was measured on microscopy sections using Fiji software

(n = 4/group). Relative area refers to normalization to the area measured in WT Y animals. (C,D) Gene expression of mTOR and VEGF (n = 6/group). (E–G) Heart rate,

systolic and diastolic blood pressure were measured with BP-2000 Blood Pressure Analysis System (Visitech Systems) (n = 10–12/group). Data are means ± SEM.

Significant differences (p < 0.05) associated with age and phenotype are indicated by asterisks (*) and by hashtags (#, compared to WT), respectively (*/#: p < 0.05;

**/##: p < 0.01; ***/###: p < 0.001; ****/####: p < 0.0001 indicates age/genotype related significant differences). DBP, diastolic blood pressure; mTOR, mammalian

target of rapamycin; O, old; SBP, systolic blood pressure; Y, young; WT, wildtype; MKO, muscle knockout; MTg, muscle transgenic.

both old MKO and MTg, but not WT animals (Figure 4E). In
contrast however, aging increased slowmyosin protein levels only
in WT and MKO mice, while the overexpression of PGC-1α in
the MTg animals prevented this switch (Figures 4F,G). Finally
cardiac α-actinin (ACTC1) expression was elevated in young and
old MTg mice (Figure 4H), while cardiac troponin I3 (TNNI3)
transcripts were significantly increased only in old MTg animals
compared to the WT and MKO counterparts (Figure 4I).

DISCUSSION

Aging affects the function of every organ in our body. In the
heart, age-related remodeling is closely linked to an increased
risk for cardiac disease and heart failure. Similar to other
pathological contexts, a shift in metabolism from oxidative
substrate usage toward glycolysis, accompanied by a reduction
in mitochondrial number and function, has been described in
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FIGURE 2 | PGC-1α overexpression reduces age-dependent collagen accumulation and the age-induced expression of telomere-modulating genes. (A) Gene

expression of collagen type I and III (n = 6/group). (B) Relative collagen content measured with Picrosirius Red staining (n = 5–6/group). (C) Relative content of

hydroxyproline measured with hydroxyproline assay (n = 6/group). (D) Picrosirius Red staining done on 8µm thick cryosections, red indicates collagen. (E) Western

blot of caspase 3 and cl. caspase 3, normalized to total protein loading control. Western blot quantification (n = 6/group) of (F) caspase 3 and (G) cleaved caspase 3

(n = 6/group). (H,I) Expression of TERF1 and TERF2 mRNA (n = 6/group). Data are means ± SEM of values from each group. Significant age/genotype-associated

differences (p < 0.05) are indicated by asterisks (*) and by hashtags (#, compared to WT) respectively (*/#: p < 0.05; **/##: p < 0.01; ***p < 0.001; ****p < 0.0001

indicates age/genotype related significant differences). CASP, caspase; COL, collagen; O, old; TERF, telomeric repeat-binding factor; Y, young.

older hearts. This metabolic switch is often observed together
with a decrease in the expression of PGC-1α (Dorn et al., 2015).
Indeed, we have also observed an age-linked decline in PGC-1α

expression (Figure 3A). While the mechanistic underpinnings
of this regulation are unclear, it is conceivable that analogous
to skeletal muscle, cardiac PGC-1α gene expression is based on
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FIGURE 3 | PGC-1α overexpression protects against the age-related reduction of genes involved in mitochondrial biogenesis, dynamics, oxidative phosphorylation

and fatty acid oxidation. (A–F) Gene expression profile of genes involved in mitochondrial biogenesis and function (n = 6/group). (G–I) Gene expression levels of

mitochondrial superoxide dismutase (SOD2), OXPHOS and TCA cycle genes (n = 6/group). (J–M) Mitochondrial fusion gene expression profile (n = 6/group). (N,O)

Mitochondrial fission gene expression profile (n = 6/group). (P–R) Fatty acid β-oxidation (FAO) gene expression profile. Data are means ± SEM of values from each

group. Significant age/genotype-associated differences (p < 0.05) are indicated by asterisks (*) and by hashtags (#, compared to WT) respectively (*/#: p < 0.05;

**/##: p < 0.01; ***/###: p < 0.001; ****/####: p < 0.0001 indicates age/genotype related significant differences). ATP5B ATP synthase, H+ transporting,

mitochondrial F1 complex, beta polypeptide; CKMT2, creatine kinase, mitochondrial 2; CPT1β, carnitine palmitoyltransferase 1β; CS, citrate synthase; DLP1,

dynamin-like protein 1; FIS1, fission, mitochondrial 1; LCAD, long chain acyl-CoA dehydrogenase; MCAD, medium chain acyl-CoA dehydrogenase; MFN, mitofusin;

O, old; Opa, mitochondrial dynamin like GTPase; SOD2, mitochondrial superoxide dismutase; TCA, tricaboxylic acid; Y, young.

the aging-associated reduction in contractile function, but maybe
also due to changes in the neuroendocrine milieu, or metabolic
properties. Inversely, exercise, which exerts beneficial effects on
cardiac function, elevates PGC-1α gene expression in cardiac and
skeletal muscle (Vega et al., 2017). We have now used transgenic
models of moderate reduction and overexpression, respectively,
to study the involvement of PGC-1α in the cardiac aging process.
Notably, relatively small changes in PGC-1α gene expression
resulted in striking changes in the transcriptional program in the
young and old heart (summarized in Table 3). Determination of
mitochondrial function would be of interest in future studies,
since several aspects of mitochondrial respiration are altered

in old skeletal muscle of gain- and loss-of-function models for
PGC-1α (Gill et al., 2018). Strikingly, moderate overexpression of
PGC-1α in the heart in the range of 1.5- to 2-fold quantitatively
mimicking the increase in PGC-1α gene expression after exercise
(O’Neill et al., 2007; Kim et al., 2008; Riehle et al., 2014; Vettor
et al., 2014; Tam et al., 2015) blunted or prevented various
aspects of age-associated transcriptional cardiac remodeling. As
a key regulatory factor in the control of mitochondrial biogenesis
and oxidative metabolism, PGC-1α overexpression resulted in
a marked elevation of a number of mitochondrial and other
metabolic genes. Themodulation of several mitochondrial fission
and fusion genes could indicate that PGC-1α is linked to higher
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FIGURE 4 | Increased PGC-1α blunts the age-associated regulation of calcium homeostasis and contractile genes. Gene expression levels of (A) SERCA2, (B) PLN,

(C) NCX1, (D) α-MHC, (E) β-MHC, (H) ACTC1, and (I) TNNI3 (n = 6/group). (F,G) Western blot and quantification (n = 6/group) of myosin (skeletal, slow), which

represents β-MHC in the heart, normalized to total protein loading control. Data are means ± SEM of values from each group. Significant age/genotype-associated

differences (p < 0.05) are indicated by asterisks (*) and by hashtags (#, compared to WT) respectively (*/#: p < 0.05; **/##: p < 0.01; ***/###: p < 0.001; ****/####:

p < 0.0001 indicates age/genotype related significant differences). ACTC1, actin, alpha, cardiac muscle 1; PLB, phospholamban; MHC, myosin heavy chain; NCX1,

sodium/calcium exchanger protein 1; O, old; SERCA2, sarcoplasmic/endoplasmic reticulum Ca2+ transporting ATPase 2; TNNI3, troponin I3, cardiac type; Y, young.

mitochondrial dynamics and ultimately healthier mitochondria
in cardiac myocytes (Chan, 2006; Chaudhary et al., 2011).
Moreover, PGC-1α could reduce the levels of reactive oxygen
species (ROS) (St-Pierre et al., 2006), which increase in the
aged heart, cause oxidative damage to proteins, lipids and
DNA, leading to the dysregulation of redox-sensitive signaling
pathways (Judge et al., 2005). Such a PGC-1α-dependent effect
has for example been described in diabetic nephropathy (Guo
et al., 2015). A moderate elevation of PGC-1α in line with
that observed in the trained heart thus seems sufficient to
mitigate the aging-associated deterioration in mitochondrial
function and cellular metabolism. Of note, superphysiological
overexpression of cardiac PGC-1α has been linked to exacerbated
mitochondrial biogenesis replacing myofibrillar structure, and
ultimately leading to cardiomyopathy (Lehman et al., 2000;
Russell et al., 2004).

Reduced mitochondrial function in aging has been associated
with enhanced apoptosis, ECM remodeling and fibrosis

(Chaudhary et al., 2011; Martin-Fernandez and Gredilla,
2016). The mitigation of age-associated cleavage of caspase
3, accumulation of collagens and expression of TERF2 in the
MTg animals implies a broad effect of cardiac PGC-1α to
reduce different aspects of this adverse remodeling. A similar
outcome has been reported in a mouse model for pressure
overload-induced cardiac hypertrophy, in which PGC-1α
reduced apoptosis and fibrosis in severely stressed hearts (Pereira
et al., 2014). Inversely, adequate mitochondrial function is
essential to provide the primary source of energy that fuels
the contractile apparatus according to the cellular demand
(Chan, 2006). Moreover, tightly controlled calcium handling,
and appropriate expression of contractile proteins are crucial for
normal heart function. In the MTg mice, PGC-1α prevented the
drop in SERCA2 expression, which is downregulated with age
and other pathological cardiac conditions (Lompre et al., 1991).
The concomitant increase in PLB and NCX1 transcript levels
suggest a broader PGC-1α-dependent remodeling of cardiac
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TABLE 3 | Overview of age-related changes in WT, MKO, and MTg groups and of the MKO and MTg compared to WT animals.

Examined parameters WT MKO MTg

Aging Aging Y O Aging Y O

General physiology Heart weight ↑ ↑ nsd nsd ↑ nsd nsd

Diastolic BP ↑ ↑ − −− → −− −−−

ECM Collagen (protein) ↑ ↑ nsd nsd → nsd –

Cl. caspase 3 ↑ ↑ nsd nsd → nsd nsd

Mitochondrial function Mit. genes ↓ → −− −− → ++ +++

Mit. dynamics ↓ ↓ nsd nsd → + +

Contractile function SERCA2 ↓ ↓ nsd nsd → nsd ++

α-MHC ↓ ↓ nsd nsd ↓ ++ ++++

β-MHC (protein) ↑ ↑ nsd nsd → nsd nsd

Glucose metabolism Glut1 → ↑ nsd ++++ → nsd ++

PFK ↑ → nsd −−−− → ++++ ++++

FA metabolism CPT1β ↓ → nsd nsd → nsd ++

LCAD ↓ → nsd nsd → + ++

MCAD (↓) → nsd nsd → nsd ++

Aging effects within the groups: :,

:

: Aging effect seen as up-/downregulation of gene/ protein expression;:: No aging effect. Moderate PGC-1α downregulation mainly follows the

aging pattern seen in the WT animals whereas moderate PGC-1α upregulation counteracts many of these observed aging effects. (

:

) indicates a trend (p = 0.05).

Gene expressions compared to age-matched WT: nsd, no significant difference; −/+: p < 0.05; −−/++: p < 0.01; −−−/+++: p < 0.001; −−−−/++++: p < 0.0001 down−

(−) and upregulation (+), respectively.

BP, blood pressure; cl., cleaved; CPT1β, carnitine palmitoyltransferase 1β; FA, fatty acid; Glut, glucose transporter; LCAD, long chain acyl-CoA dehydrogenase; Mit., mitochondrial;

MHC, myosin heavy chain; O, old; PFK, phosphofructokinase; SERCA2, sarcoplasmic/endoplasmic reticulum Ca2+-transporting ATPase 2; Y, young.

calcium handling, analogous to the regulation of SR calcium
homeostasis in skeletal muscle (Summermatter et al., 2012).
This hypothesis is in line with previous findings describing
that increased PGC-1α levels improve contractile and diastolic
performance of cardiomyocytes by increasing calcium reuptake
into the SR due to elevated SERCA2 activity, thereby preventing
cellular calcium overload in the heart (Chen et al., 2010). In
another study using the MTg animals as a model for modest
cardiac elevation of PGC-1α, a strengthening of E-C coupling
inducing favorable changes in excitability, calcium signaling
and contraction has been reported (Mutikainen et al., 2016).
Thus, together with the prevention of the aging-linked shift
in contractile protein expression, e.g., the elevation of β-MHC
protein, PGC-1α overexpression regulates different programs
that are involved in contractile function of the heart.

Finally, several of our findings support that the age-associated
cardiac remodeling differs between the MTg and the other two
lines. In contrast to the oldWT andMKOmice, which both show
the same features typical of pathological cardiac hypertrophy,
possibly associated with their higher diastolic blood pressures,
the results obtained for the old PGC-1α-overexpressing mice
suggest a more physiological form of hypertrophy (Ellison et al.,
2012). First of all, physiological hypertrophy is characterized by
improvements in oxidative phosphorylation, calcium handling as
well as reduced fibrosis and apoptosis (Mann and Rosenzweig,
2012). Several of these traits were indeed found in our MTg
line. Second, increased mTOR expression has been linked
to physiological eccentric hypertrophy (Gielen et al., 2010;
Ikeda et al., 2015) and was also observed in our MTg mice.
Furthermore, the increase in VEGF expression in the MTg mice
could be indicative of a higher tissue vascularization, another

feature of physiological cardiac hypertrophy. Consistent with our
findings, restoration of cardiac levels of PGC-1α resulted in an
increase in VEGF and a preservation of capillary density in mice
with a transverse aortic constriction (Pereira et al., 2014). Finally,
the changes in calcium handling proteins observed in the MTg
animals suggest improved E-C coupling, in line with observations
done in exercise-induced physiological hypertrophy of the heart
(Mutikainen et al., 2016).

Collectively, the results obtained in the MTgmice suggest that
modest overexpression of PGC-1α in the heart is sufficient to
prevent many adverse changes evoked by aging in the heart while
others remain unaffected, or even show an unexpected phenotype
(e.g., heart rate). Of note, some of the potentially beneficial effects
are already observed in young MTg animals, and are preserved
into old age. Inversely however, the mild reduction in PGC-
1α transcript levels in the MKO mice elicited a more restricted
response, even though this reduction of ∼40–50% quantitatively
recapitulates the decrease in PGC-1α gene expression in different
contexts and models of cardiac pathologies (Garnier et al., 2009;
Schilling et al., 2011). The requirement for adequate PGC-1α
gene expression was most notable in the regulation of several
mitochondrial genes. Most of the other parameters that were
studied here were unaffected by the reduction in PGC-1α in the
MKO model, with the exception of TERF1. This surprisingly
mild phenotype could be caused by limitations of the animal
model, which harbors a life-long reduction in PGC-1α that
could trigger adaptive responses, or in which the reduction
might simply be insufficient to induce a more severe aging
phenotype in the heart. Unfortunately, cardiac-specific knockout
mice for PGC-1α have not been reported yet, and therefore,
the phenotype of mice with a complete ablation of PGC-1α in
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the heart is unknown. Second, the cardiac phenotype of the
MKO and the MTg animals might be confounded by the more
marked knockout and overexpression in skeletal muscle, e.g.,
by modulation of the secretion of myokines or differences in
locomotion and endurance. Furthermore, it is conceivable that
the numerous compensatory, redundant, adaptive, maladaptive
and reparative mechanisms, which are engaged to provide
cardio-protection in a pathological context (Strait and Lakatta,
2012), circumvent an absolute requirement for PGC-1α to ensure
proper regulation of different biological programs. In line with
this hypothesis, whole body ablation of PGC-1α results only in
a mild phenotype, which is dramatically exacerbated in a PGC-
1α/PGC-1β double-knockout context (Lai et al., 2008). Then,
aging is a progressive phenomenon, in which most aging-linked
changes are initiated and escalated at the age of 1–24 months
in C57Bl6/J mice (Flurkey et al., 2007). Based on the time of
sacrifice, we obviously can only draw direct conclusions from
our data on hearts of mice at the age of 24 months. It is
entirely possible that these effects might differ in quantitative and
qualitative outcome at earlier or later time points. Finally, it is
obviously conceivable that cardiac PGC-1α is largely dispensable
for the aging phenotype.

CONCLUSION

PGC-1α is a pleiotropic transcriptional coregulator that controls
complex networks and biological programs in various tissues
(Kupr and Handschin, 2015). Using genetic mouse models
to mimic the reduction in cardiac PGC-1α expression in
pathological contexts and the increase in PGC-1α transcript
levels in exercise, respectively, we have now delineated the
contribution of this coactivator to the aging response of the

heart. The MKO mice exhibited a precocious aging phenotype
in regard to mitochondrial gene expression, but as a single
hit, a reduction in cardiac PGC-1α is insufficient to trigger or
exacerbate the adverse remodeling of older hearts. Strikingly
however, the MTg animals were largely protected against the
pathological plasticity induced by aging, indicating that elevation
of PGC-1α, e.g., as observed after endurance training, could
be a potential intervention to mitigate the decline in heart
function and reduce aging-associated cardiac pathologies. Thus,
since our analyses were largely focused on the transcriptional
program, future studies should aim at a more functional
assessment of contractile function, potentially combined
with interventional approaches to boost cardiac PGC-1α
levels.
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