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Drug targeting promises to substantially enhance future therapies, for example through

the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the

exposure of healthy tissue to unwanted damage. Promising work on the steering of

medication in the human body employs magnetic fields acting on nanoparticles made

of paramagnetic materials. We develop a computational tool to aid in the optimization of

the physical parameters of these particles and the magnetic configuration, estimating the

fraction of particles reaching a given target site in a large patient-specific vascular system

for different physiological states (heart rate, cardiac output, etc.). We demonstrate the

excellent computational performance of our model by its application to the simulation

of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an

MRI scan. The results suggest a strong dependence of the particle density at the target

site on the strength of the magnetic forcing and the velocity of the background fluid flow.

Keywords: magnetic drug targeting, particle suspension, blood flow, lattice-Boltzmann method, multiscale,

HemeLB

1. INTRODUCTION

The accurate targeting of drugs toward specific regions of the human body promises to enhance
future therapies and improve patient quality of life. The adverse effects of medications, such as
those caused by chemotherapeutic drugs, may be minimized, while lower dosage requirements may
decrease costs (Torchilin, 2000).

Drug targeting can be classified by the means as well as the level at which it is performed
(Schleich et al., 2014). Viable mechanisms to enhance selective absorption include, but are not
limited to, control of particle (drug carrier) size, addition of biochemical markers to drug carriers,
and release of drug payloads within magnetized particles guided by external magnetic fields.
Depending on the method employed, the term drug target may designate a certain type of tissue,
specific cell type, or a location in space, such as the site of a tumor (Lockman et al., 2002).

Advances in technology have facilitated the production of micro- and nano-structures with
great precision (Champion et al., 2007). In addition to the spherical particle carriers used in early
experiments, state-of-the-art drug delivery systems incorporate bundles of nanotubes to encase
biochemically active components. Such carrier structures can be designed to various specifications
(Berry and Curtis, 2003; Tartaj et al., 2003), while a viable compromise between competing
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requirements may need to be found. For example, larger
magnetic particles with micrometre radii are easier to manipulate
via external fields, as the forces acting on them are proportional
to their volume. On the other hand, the use of smaller particles
(with dimensions of order tens of nanometres) has been found
to enhance bioavailability and drug lifetime in vivo (Pankhurst
et al., 2003; Nacev et al., 2012). Furthermore, the emergence
of super-paramagnetic behavior, a finite-size effect that occurs
for particle sizes below ∼40 nm (Ulbrich et al., 2016), can
substantially increase magnetic susceptibility, and hence enhance
the response of particles to an external magnetic field. The use of
such nanoparticles has received much attention in recent years,
and the purpose of this paper is to report on the simulation of
these, so as to inform on their design and aid future efforts.

The optimization of carriers and functionalization for
drug targeting typically involves in vivo experiments and the
immolation of animals. In this context, computational models
can help to reduce the experimentation required. Within
personalized medicine, the simulation, ahead of treatment, of
magnetized particle suspensions in patient-specific geometries of
vasculature derived frommedical imaging data, would permit the
selection of magnetic fields to control drug targeting.

There is significant interest in using magnetic drug targeting
(MDT) for the treatment of diseases such as cancer (Tietze et al.,
2012), due to the need tomaximize damage to tumor cells (via the
injection of highly toxic chemotherapeutic drugs) while keeping
the exposure to healthy tissue in the remainder of a patient’s body
within tolerable levels. There have been several preclinical studies
(Lübbe et al., 1996a; Goodwin et al., 1999; Alexiou et al., 2000),
with a phase I clinical human trial carried out by Lübbe et al.
using a single permanent magnet to concentrate epidoxorubicin-
coated magnetic nanoparticles within shallow, inoperable tumors
(Lübbe et al., 1996b, 2001), but with a number of issues identified
(Shapiro et al., 2015). A major goal of MDT is to reach targets
(e.g. tumors) deeper within the body, but different locations can
require very different magnetic nanoparticle properties. In vitro
experiments with flow phantoms can be used to determine the
behavior of magnetic nanoparticles with different physiological
and physical parameters (Radon et al., 2017). Simulation work
by Nacev et al. suggests the use of a feedback control algorithm
that modifies the applied magnetic field based on accurate real-
time information on the distribution of particles (in principle
obtainable from imaging) to focus the particles (on average) at
a particular site (Nacev et al., 2012).

To be of most value in real world systems, MDT simulations
must include a range of physical phenomena. Furthermore,
so as to be able to resolve processes on relevant time and
length scales, the simulation tools used must be computationally
efficient. The ideal model would account for the mechanical
properties of vessel walls, the complex rheological behavior of
blood and its particulate nature, external magnetic fields and
gravity etc. However, careful evaluation and control of the errors
arising from different modeling assumptions and simplifications
should enable reduced (and computationally efficient) models
to be used with accuracy and reliability in clinical decision
support. Moreover, multiscale models can inform coarse grained
parametrization by quantifying effective parameter values.

There has been considerable development of models for MDT,
focussing on the various scales and features of interest. Significant
effort has been expended in modeling the MDT-relevant
properties of the nanoparticle cores themselves (Winkler, 2017),
e.g. through the use of the generalized finite element method
(Plaks et al., 2003). The behavior of such nanoparticles in
blood flow through simplified geometries has been explored
using computational fluid dynamics (CFD) techniques such as
the lattice-Boltzmann method (LBM) (in a simple channel)
(Kandelousi and Ellahi, 2015), or the finite volume method
(in a vessel bifurcation) (Larimi et al., 2014). Kenjereš and
Righolt (2012) apply the conservation equations of mass and
momentum (with an additional model describing a very dilute
particle phase) for the simulation of blood flows carrying
magnetic drug particles. Rukshin et al. modeled the motion of
super-paramagnetic nanoparticles in a Poiseuille flow under the
influence of an external magnet, taking into account the effects
of Brownian motion and interactions with red blood cells, to
determine particle arrival at the designated tumor site (found to
depend dominantly on particle size, Rukshin et al., 2017).

In this work we aim to tackle comparatively much larger
systems, with the exemplar case of a patient-specific vascular
system (the circle of Willis) in a three-dimensional vascular
system, concerning ourselves with determining the fraction of
injected particles that reach a defined target site under varying
physical parameters (of the nanoparticles) and physiological
states (of the patient). We do not consider absorption into tissue
at the target site, magnetically induced heating, biochemical
reactions, or any other aspects specific to local treatment. Our
strategy for the simulation of such a system relies on the
LBM, which boasts extreme efficiency on massively parallel
architectures, i.e. utilizing many compute units in an efficient
manner (in section 4.2.1 we demonstrate strong scaling to
approximately 100,000 cores). Through exploitation of its
outstanding parallel performance, we use the LBM to reach a new
level of understanding.

In this article we report on the integration of paramagnetic
particles into HemeLB, an open-source lattice-Boltzmann code
that is optimized for the large-scale simulation of sparse
geometries on high performance computing resources (Mazzeo
and Coveney, 2008). HemeLB is used for blood flow analysis
(Bernabeu et al., 2013; Nash et al., 2014), and has been applied to
gain insight into angiogenesis (Bernabeu et al., 2014) and vascular
flow under different boundary conditions (Itani et al., 2015).
Here, we assess the potential of HemeLB to evaluate magnetic
drug targeting strategies in the context of personalized medicine.
We develop, implement and validate a model for the simulation
of magnetic particles in the circle of Willis, the central blood
distribution system in the brain.

2. MATERIALS AND METHODS

2.1. Blood Flow by the Lattice-Boltzmann
Method
We simulate the flow of blood by the lattice-Boltzmann method
(LBM), and assume incompressible flow at low Mach numbers.
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Our current approach approximates blood as a Newtonian fluid
at a characteristic viscosity; for the systems presented herein, this
provides a good approximation, and minimizes computational
effort. Note that HemeLB allows for the simulation of non-
Newtonian behavior, which may be used in conjunction with the
particle model (Bernabeu et al., 2013).

The lattice-Boltzmann method describes fluid dynamics via a
mesoscale approach. This replaces the single-particle distribution
function f (x, c, t) (at a position x, continuous velocity c, and
time t) of the Boltzmann equation with a distribution function
fi(x, t), where velocity space is reduced to a discrete set {ci}. After
discretization in space and time, we have the lattice-Boltzmann
equation (LBE),

fi(x+ciδt , t+δt)−fi(x, t) = −�i(fi(x, t), f
0
i (x, t))+δtFi(x, t) (1)

which describes the evolution of fi by the streaming (left-
hand terms) and collision terms. The last term in Equation (1)
reproduces the effects of a hydrodynamic body force. Time is
incremented by δt during each propagation step, and the discrete
equilibrium distribution function f 0 approximates the Maxwell-
Boltzmann equilibrium distribution function to second order.
The full derivation of the second-order accurate integration
scheme for the forced LBE can be found in Nash et al. (2008).

Like the Bhatnagar-Gross-Krook (BGK) model of kinetic
theory, the lattice Bhatnagar-Gross-Krook (LBGK) model
describes particle collisions as a relaxation toward a local
equilibrium, i.e.

�i =
1

τ

[

fi − f 0i
]

(2)

Herein, relaxation toward equilibrium on a single time scale τ

is assumed. It can be shown that this approach approximates
the Navier-Stokes equations (NSE) to second order (Qian and
Orszag, 1993). For the purposes of this study, the LBGK collision
model is used exclusively due to its simplicity.

2.1.1. Parametrization and Scaling
The lattice-Boltzmann method, as presented here, is athermal.
The equation of state for a single fluid component, analogous
to that of an ideal gas, relates the pressure to the lattice density
ρ: p = ρc2s . The lattice speed of sound cs for D3Q19, the three-
dimensional 19 velocity lattice, which is used throughout, is equal
to 1/

√
3. The simulation parameters δx (spatial discretization, i.e.

the lattice spacing), δt (temporal discretization, i.e. the time-step
length), and δm (the lattice mass) scale length, time and mass,
respectively, such that the physical speed of sound is equal to
csδx/δt and energy is non-dimensionalized by

δm · δ2x · δ
−2
t (3)

Despite the athermal nature of the fluid model (by the LBM,
which can be extended to give a thermal lattice-Boltzmann
model), thermal energy kBT (where kB is the Boltzmann constant
and T is temperature) is considered in the calculation of a noise
term, to be discussed in section 2.2, emulating the Brownian
motion of particles (specifically, kBT appears in our calculation

of particle diffusion by the Stokes-Einstein equation). True to
the parametrization of blood flow we choose a temperature of
310.15K or 37 ◦C.

To ensure consistent viscous behavior for a given set of scaling
parameters, the dynamic viscosity

µ = 0.004 Pa s (4)

and density of blood plasma

ρb = 1000 kgm−3 (5)

are used to calculate relaxation parameters for the collision
process. Note that, strictly speaking, µ is a function of the
hematocrit (Pries et al., 1992). The lattice (kinematic) viscosity
ν is related to the relaxation time τ by

ν = c2s

(

τ −
δt

2

)

or, in our case, ν =
1

3

(

τ −
1

2

)

(6)

For numerical stability, the viscosity must be sufficiently large,
i.e. τ > 0.5 (the limit of inviscid flow). In addition to this, the
flow velocity must remain low relative to the speed of sound.
We impose the Mach number limit Ma = u/c2s < 1/30,
corresponding to a maximum velocity of umax ≈ 0.02 in lattice
units.

2.2. Magnetized Particles
Our strategy for the computationally-efficient simulation of
paramagnetic particles suspended in blood combines an
approach for the simulation of point-like particles (accounting
for particle-fluid interaction) with a dipolar model. This pairing
enables users of HemeLB, including clinicians and medical
scientists, to study the efficacy of magnetic nanoparticles as a
drug delivery system under the influence of an external magnetic
field. We are particularly interested in understanding how such
particles can be directed to problem sites, e.g. to the location of
an inaccessible (by invasive procedures) tumor.

2.2.1. Model for Suspended Particles
Our approach for the simulation of dilute suspensions, with
particle sizes that are orders of magnitude smaller than the
lattice spacing δx, was developed with computational efficiency in
mind; we aim to inform clinical decision-making, a time-critical
process. Themodel is parameterized by particle radius a, position
xp and velocity up. An efficient coupling mechanism is employed
by neglecting particle inertia.

We list the source of forces that can be, by our
implementation, applied to a paramagnetic particle (if, for
a particular configuration, a forcing mechanism has a negligible
impact on particle dynamics, it is deactivated to minimize
computational effort): (1) a constant gravitational field; (2)
hydrodynamic (Stokes’) drag, due to the viscosity of the fluid
(blood); (3) a (generally attractive) magnetic force due to
paramagnetism; (4) a lubrication force, introduced to satisfy the
wall-boundary condition on vessel walls and prevent the overlap
of interacting particles; and (5) a stochastic force FR (Brownian
noise). For a paramagnetic particle under the action of these
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forces, we obtain (by balance of forces) the following for its
motion:

mu̇p = −6πµa[up − v(xp)]+ F+ FR (7)

where F is the combined sum of forces 1, 3, and 4 (excepting drag
and FR), and v is the (interpolated) fluid velocity at the location
xp. By neglecting particle inertia, the left-hand side vanishes, and
the hydrodynamic drag must balance the external forces on the
particle. With the mobility β = 1/(6πµa), the motion of a
non-inertial particle in a dilute suspension can be expressed as

up = v(xp)+ β(F+ FR) (8)

which is dependent on the interpolated fluid velocity v(xp) and
the associated force terms. Note, in Equation (8), the effects
of Brownian noise are only introduced through FR – the fluid
velocity v is deterministic. Noise is computed (by applying
the fluctuation—dissipation theorem) to model the effects of
Brownian motion.

In general, where the particle size is large relative to the lattice
spacing δx, a correction to the radius of the particle is required
(Ladd, 1994; Nguyen and Ladd, 2002). Because we restrict our
attention to the simulation of particles that aremuch smaller than
the lattice spacing δx (the largest radius we consider is 0.5 µmwith
δx = 25 µm), we do not concern ourselves with the calculation of
this correction. We similarly neglect the Faxén contributions in
the particle equation of motion (Boivin et al., 1998; Horwitz and
Mani, 2016), Equation (8) (discussed in section 5).

2.2.2. Dipolar Model
Since the calculation of inter-particle interactions can be costly,
we exploit the dilute approximation and employ a simple
dipolar model (DM) (Yung et al., 1998; Du and Biswal, 2014)
to determine the (attractive) magnetic force between particles
(dipoles) i and j, which we assume to be identical. The force on
particle i due to particle j is

FM =
3µ0

4πr5

[

(mi · rij)mj + (mj · rij)mi + (mi ·mj)rij

−5r−2(mi · rij)(mj · rij)rij
]

whereµ0 is the permeability, rij is the connecting vector from j to
i, andmi = 4πa3χvH/3 (and similarly for j). Note that we neglect
variations in the magnetic field H over the size of a particle, and
that χv is the effective volumetric susceptibility. We calculate H
at the position of the interaction by Yung et al. (1998)

H =
1

4π

[

(m0 · r0)
3r0
r50

−
m0

r30

]

(9)

where m0 is the magnetic moment of a permanent magnet, and
r0 is the vector connecting the magnet and a particle. For the
results presented in section 4, m0 is imposed in the x-direction,
i.e. perpendicular to the sagittal plane (see Figure 2). Equation
(9) also gives the force exerted by the magnet on a particle.

We demonstrate the effects of this model by following the
trajectories of 5 paramagnetic particles in a three-dimensional

Poiseuille flow, as shown in Figure 1. A permanent magnet
(on the yz-plane passing through the center of the vessel) is
placed 0.0022mm from the centerline. A magnetic moment
of m0 = {0.0, 3000.0, 0.0}Am2 is imposed. The pressure at
the inlet (at z = 0) is 0.01mmHg or 1.33 Pa, resulting in a
pressure gradient of 103.9 Pam−1. Initially, the evenly-spaced
particles follow the pressure-induced flow, with the particle on
the centerline at maximum (flow) velocity. As they approach
the magnet, the particles experience a significant force that
disrupts their motion; the particle closest to the magnet (i.e. the
outermost) is significantly affected, with its streamwise velocity
reduced such that it remains near to the wall of the vessel for
a considerable time (relative to the other particles). Because the
force exerted by the magnet on the particles is larger than the
force experienced between particles (owing to paramagnetism),
we do not see the trajectories of the particles converge. Note
that to avoid divergence of the attractive forces, a lubrication
force between particles is applied, ensuring that particles do not
overlap.

2.2.3. Lubrication Forces
The wall-boundary interaction of particles is modeled by a
lubrication force (ten Cate et al., 2002)

FL = 6πµa2(up · r̂w)
[

1

h
−

1

he

]

(10)

with the particle-wall separation h = ‖rw‖− a (rw is the particle-
to-wall vector), a cut-off distance he (for numerical efficiency,
and dependent on the strength of interactions), and the velocity
of the particle up. In ten Cate et al. (2002), the force from
Equation (10) is compared to experimental data. In section 3.1,
our implementation of the boundary condition is validated by
comparison with the analytical predictions of Maude (1961).

The lubrication force between two identical particles is
similarly given by Nguyen and Ladd (2002)

FL =
6π

4
µa2(uij · r̂ij)

[

1

h
−

1

he

]

(11)

with the relative velocity between particles uij = ui − uj, the
separation between particles h = ‖rij‖ − 2a, and a cut-off
distance he, which is not necessarily equal in value to that used
for particle-wall lubrication.

2.3. Flow Geometry
Acting as the central blood distribution system in the
brain, the circle of Willis (coW) connects the inflow from
the basilar and internal carotid arteries to the cerebral
arteries via a circular system closed by communicating
arteries. Studies have found considerable variation in
the structure of this system (Kayembe et al., 1984;
Eftekhar et al., 2006). Its inherent redundancy allows it
to function despite the presence of deformed or missing
subsystems.

Figure 2 depicts a volume rendering of the structure of a
complete coW (with lateral dimensions of order cm), obtained
from a magnetic resonance imaging (MRI) scan. For details on
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FIGURE 1 | Trajectories of five paramagnetic nanoparticles (initially placed at the inlet of a three-dimensional Poiseuille flow) as they approach a permanent magnet

that is external to the flow (represented by a circle). Deviation from the pressure-induced flow occurs once the magnetic attraction experienced by the particles is

sufficiently large; the magnetic field is imposed in the y-direction (indicated by the arrow). The coloring of the trajectories represents the evolution of time. The force

exerted by the magnet on each particle far exceeds that experienced between particles; hence, the particles do not converge.

FIGURE 2 | Volume rendering of the circle of Willis, constructed from an MRI

scan of a human subject. The circle of Willis is the main blood distribution

system in the brain, and is located roughly in the center of the head. The

numbering of the inlet/outlet is to be cross-referenced with Table 1.

the generation of this particular geometry, see Coogan et al.
(2013). The geometry is used exclusively throughout, and is
prepared for use by HemeLB using Palabos’ (http://www.palabos.
org) fully-parallelized voxelizer (indispensable when voxelizing
large geometries with billions of lattice sites); our “common
vascular pipeline” allows HemeLB and Palabos to share the same
pre-processing workflow.

Table 1 lists the names of the modeled arteries with the
boundary conditions employed. Boundary conditions at the
inlet are approximated by a parabolic flow profile with a
maximum flow speed informed by a 1DNavier-Stokes simulation
(performed using PyNS, Manini et al., 2015) of the complete

TABLE 1 | The validation geometry is a magnetic resonance imaging (MRI) scan

of the circle of Willis, with lateral dimensions of order cm.

Index Artery Boundary condition

1 Basilar Neumann (inlet)

2 Internal carotid (left) Neumann (inlet)

3 Internal carotid (right) Neumann (inlet)

4 Anterior cerebral (left) Dirichlet (outlet)

5 Anterior cerebral (right) Dirichlet (outlet)

6 Middle cerebral (left) Dirichlet (outlet)

7 Middle cerebral (right) Dirichlet (outlet)

8 Posterior cerebral (left) Dirichlet (outlet)

9 Posterior cerebral (right) Dirichlet (outlet)

10 Anterior communicating Not applicable

11 Posterior communicating (left) Not applicable

12 Posterior communicating (right) Not applicable

The inlet boundaries 1, 2, and 3 (see text for details) are parameterized by 1D Navier-

Stokes solutions for the full arterial network (Itani et al., 2015; Manini et al., 2015). At the

outlet boundaries 4–9, a vanishing pressure gradient is enforced approximating constant

pressure. The communicating arteries (10, 11, and 12) close the circular structure; no

boundary conditions are applied to the limits of these arteries. The numbering of the

inlet/outlet is to be cross-referenced with Figure 2, which shows the full circle of Willis.

arterial network. The maximum velocity observed in the left
internal carotid artery is umax ≈ 0.63m s−1 (see Figure 3). This
value, in conjunction with the stability requirements introduced
in section 2.1.1 and the spatial discretization δx = 25 µm
(resulting in a simulation domain of 1.66× 108 lattice sites),
leads to a time-step of 7.8× 10−7 s. We use this lattice spacing
(δx = 25 µm) throughout, with the exception of section 4.2.1,
where we use δx = 15 µm to produce approximately 7.77× 108

lattice sites for our assessment of application scalability. Outlet
boundary conditions assume a vanishing pressure gradient.
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FIGURE 3 | Peak inlet velocity for a resting patient (blood pressure: 80mmHg,

volumetric flow rate: 4.8 lmin−1, heart rate: 68 bpm) in (1) the basilar artery

(- - -), (2) the left internal carotid artery (—), and (3) the right internal carotid

artery ( ). For each of the three inlets, the complete inlet-velocity profile is

obtained by assigning weighting factors (of the peak velocity) to lattice sites

that lie on the boundaries.

3. IMPLEMENTATION AND VALIDATION

HemeLB is a lattice-Boltzmann implementation optimized
for the simulation of sparse geometries by means of indirect
addressing of lattice sites. The code is written in C++ and
makes use of static polymorphism to allow the efficient
selection of different lattice discretizations, collision models
and boundary conditions. Parallelization is implemented
via MPI. The HemeLB application relies on several external
libraries for standardized tasks, such as XML processing,
domain decomposition and unit testing (Groen et al.,
2013). External tools are available for the creation of input
files (including the previously mentioned voxelizer) and
the post-processing and evaluation of extracted data. The
code is open-source, licensed under the GNU Lesser Public
License (LGPL), and is available at https://github.com/UCL/
hemelb.

HemeLB supports D3Q15, D3Q19, and D3Q27 lattice
discretizations, that is three dimensions comprising Q discrete
lattice velocities; in this work we limit ourselves to D3Q19.
Collision processes can be modeled either by the lattice
Bhatnager-Gross-Krook (LBGK) scheme (as is the case in
this work), relying on a single relaxation time, or by
invoking a multi relaxation time (MRT) model. Furthermore
a non-Newtonian approximation of a shear thinning fluid is
available. The code supports various wall boundary conditions,
including simple bounce-back, Guo-Zheng-Shi (Guo et al., 2002),
Bouzidi-Firdaouss-Lallemand (BFL) (Bouzidi et al., 2001) (used
exclusively, for its superior accuracy, in this work) and Junk and
Yang (2005) (see Nash et al., 2014 for discussion of these).

Figure 4 illustrates the algorithm which implements the
paramagnetic particle model. After the LBM lattice velocity
update, the particle update procedure begins. Firstly, particles are
communicated between ranks; a particle is only communicated if
(by the update of its position at the end of the previous step) it
has moved to another rank, or its 3DMoore neighborhood spans
multiple ranks (so that the interpolation of the fluid velocity
can occur correctly; we refer to these as ghost particles). Once
particles have been communicated, we zero the force on each and
accumulate the new value as the sum of any external forces. As
the fluid velocity is only calculated at lattice sites, interpolation
is used to find v at xp, as required by Equation (8). When
mass and volume loading are sufficient (Birzer et al., 2012), the
influence of the particles on the flow cannot be neglected. In
this case, we enable two-way coupling and the forces exerted
on the fluid by locally owned particles are then interpolated
onto local lattice sites. The memory of particle momentum is
carried by the fluid model, allowing the computational cost to be
dramatically reduced (Ahlrichs and Dünweg, 1999; Nash et al.,
2008).

3.1. Lubrication Boundary Condition
Wall-boundary conditions for the point-like particle model
are implemented by introducing an additional force, Equation
(10). We use a constant body force to drive monodisperse
particles (of radii a = 25 nm and a = 500 nm) into a wall
that is perpendicular to the instantaneous direction of motion.
We record the resulting lubrication force experienced by each
particle. Figure 5 shows the lubrication force imposed by the
boundary condition as a function of the separation h (the distance
of the particle to the wall). Themeasured lubrication force FL and
h are non-dimensionalized by the drag force F0 = 6πµaup and
the particle radius a, respectively. A theoretical expression for the
lubrication force,

FL = F0

(

9

8

a

h
+ 1

)

(12)

has been formulated by Maude (1961). For verification, we
compare this to the simulated FL. As can be seen in Figure 5,
the lubrication boundary condition approximates the theory
well. The observed deviations are a result of the finite size
of the simulation time-step, and the particle’s non-continuous
motion.

3.2. Inter-Particle Interactions in an
External Magnetic Field
The dipolar model (DM) is evaluated by comparison of the
simulated interaction force (obtained from Equation 9 as
implemented in HemeLB) between two identical paramagnetic
particles (oriented parallel and perpendicular to a constant
external field) with solutions of the Laplace equation. Figure 6
clearly illustrates the isotropy of the approximation of the DM,
which neglects contributions of the particle orientation. Note, the
force FM is normalized by the force encountered for touching
particles of separation h = 2a; we refer to this maximum force as
F0. As expected, the error increases as h/2a → 1. For separations
exceeding h = 3a the approximation becomes more accurate, to
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FIGURE 4 | Illustration of the algorithm steps implementing the magnetic particle model in HemeLB. Arrows represent the progression of a time-step. Dashed arrows

represent the progression of the time-step outside of the algorithm responsible for updating the paramagnetic particles, i.e. simulation is evolving according to the

standard LBM procedure. Steps in boldface involve communication between processes. The italicized step is only performed if two-way coupling is enabled.

within a few percent of the analytical solution. As h is increased
further, we observe excellent agreement between the simulated
result and theory. As our model requires the suspension to be
dilute, the latter case, where h > 3a, will be most likely.

4. RESULTS

In this section we present two simulations of paramagnetic
particles suspended in blood while circulating in the circle of
Willis: (1) a permanent magnet, assumed to be a pure dipole with
m0 = {3000, 0.0, 0.0}Am2, is held at a distance of 3 cm from
the geometric center of the circle of Willis (shown in Figure 2),
causing the particles to experience an attractive force that brings
them together and toward the external magnet (source of the
magnetization); (2) the magnet is removed and no attraction
exists between any dipoles (paramagnetic particles). In both of
these simulations, all other body forces listed in section 2.2.1 are
active. The captured flow will first be presented, with illustrations
revealing the behavior of particles through the coW, followed by
an analysis of the computational performance of HemeLB when
simulating such flows.

4.1. Simulations of Paramagnetic Particle
Suspensions
Figure 7 shows the transport of nanoparticles through the circle
of Willis; initially, particle positions are randomly distributed
(without overlap) within a sphere (colored orange in Figure 7,
and shown only for illustrative purposes; it is not present in
the simulation) at inlet 2 of Figure 2. Particles are colored
by the x component of the magnetic force they experience
as they travel. In Figure 7, the cyan sphere represents the
permanent magnet that is responsible for the magnet field
(with magnetic moment m0 = {3000.0, 0.0, 0.0}Am2). The
region of interest (RoI), colored pink, is a three-dimensional
volume that we are attempting to target (e.g. the site of
a tumor) using the nanoparticles. We simulate three cases,
varying particle radius a (= 65, 105, and 500 nm) to
study the efficacy of the magnet to direct the paramagnetic
particles toward a site. Note that although particles are
monodispersed (i.e. all of the same size) in all reported
simulations, our method fully supports polydispersity (to
be exploited in future studies). The visualizations shown
here are for a = 65 nm, but particles are not shown to
scale.
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FIGURE 5 | Non-dimensionalized lubrication force imposed by the lubrication

boundary condition as a function of the particle’s distance to the wall (the

separation between the particle’s surface and the wall). Measurements were

taken for particle radius a = 25 nm ( ) and 500 nm ( ). The simulation

results approximate Equation (12) ◦ well. Deviations arise due to the

discretization of movement within the LB time-step.

Figure 8 presents a comparison of the magnetic force
experienced by particles of radius a = 65 nm (top) and
a = 500 nm (bottom) at 0.3549 s (smallest and largest radii
considered). The maximum force in the case of a = 65 nm is
FM = −1.144× 10−6N, whereas the maximum force in the
case of a = 500 nm is FM = −5.928× 10−4N; two orders of
magnitude separate the maximum force observed in these cases.

Beyond the small region shown in Figure 7, the particles
continue to travel through the circle of Willis before exiting
through the left anterior cerebral artery (outlet 4), the left middle
cerebral artery (outlet 6), and the posterior cerebral artery (outlet
8). Figure 9 shows the progress of the nanoparticles as they
approach the outlets; particles are colored by their velocities.
These results demonstrate that we are able to simulate tens of
thousands of particles in complex (and sparse) geometries.

4.2. Computational Performance
The strengths of the LBM, in regards to clinical simulation, lie in
three key areas: pre-processing, parallel efficiency of simulation
(to be discussed in detail in the following), and predictability of
time-to-solution.

As a contributor to the time-to-solution, the time required
to prepare a geometry for simulation must be factored into the
cost of a simulation. Generally speaking, traditional CFD relies
on an unstructured-mesh generation procedure to produce a
discrete representation of a geometry; complex geometries tend
to require high levels of user intervention and considerable
CPU time to ensure mesh quality. In comparison, preparation
of a geometry for simulation by the LBM requires it to be

FIGURE 6 | Non-dimensionalized forces acting on pairs of particles oriented

parallel (according to theory and the simulation ) or orthogonal (according

to theory * and the simulation ) to a homogeneous magnetic field. Our

simple dipolar model assumes the field is undisturbed by the inter-particle

interaction. The validity of this simplification can be justified by considering the

disparity in time scales of hydrodynamic and magnetic interactions (the latter

can be assumed to occur instantaneously). As expected, the deviation caused

by neglect of the rotational contribution is most pronounced as h/2a → 1,

where a is the particle radius (of monodispersed particles), and h is the

separation between interacting particles.

voxelized: a relatively rapid and simple process that requires
little to no user interaction, and only a small fraction of the
time-to-solution (since only structured grids are produced). As
mentioned previously, we make use of Palabos’ voxelization
procedure. We use a lattice spacing δx = 25 µm to showcase
the capabilities of the drug targeting model, but in practice
significantly higher resolution may be required to meet stringent
clinical and regulatory standards (e.g. decreasing lattice spacing
from 25 to 12 µm results in approximately a 9-fold increase
in lattice sites); we benefit greatly from the relative simplicity
of voxelization in such instances. Furthermore, because the
computational intensity of LBM is predictable (i.e. the variance
in the wall-clock time to complete a time-step is minimal), the
time-to-solution can be estimated with a high degree of certainty.

Since the LBM is highly parallelizable (and because HemeLB
boasts good performance characteristics relative to other codes,
as reported in Groen et al., 2013), we have been able to
successfully simulate systems consisting of over 1.5× 109 lattice
sites on meaningful time-scales (sufficiently long for most
of the particles to have evacuated the geometry), i.e. three
cardiac cycles in the case of a resting patient with a heart
rate of 68 bpm (using 5,600 ranks of Blue Waters, a petascale
supercomputer). In the following section, we present a scalability
study of HemeLB using a case consisting of 7.77× 108 lattice
sites.
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FIGURE 7 | Particles (with radius a = 65 nm) traveling from the left internal carotid artery through the circle of Willis. Particles are colored by the magnetic force (in the

x-direction) that they experience. The cyan sphere represents a permanent (and fixed) magnet. All particles are initially confined to the interior of the orange sphere, in

which particle positions are randomly distributed. The pink volume (internal to the coW) represents some region of interest, e.g. a site requiring therapeutic attention,

to which we force particles by virtue of the magnetic field; we record the instantaneous particle count in this region. (A) Particle positions at 0.078 s. (B) Particle

positions at 0.273 s. (C) Particle positions at 0.351 s. (D) Particle positions at 0.39 s.

4.2.1. Scalability
We demonstrate that our memory-optimized version of HemeLB
is capable of efficiently simulating large problems on hundreds
of thousands of cores, highlighting its potential on petaflops
(and beyond) computers; the large-scale simulation of the human
arterial tree requires such performance (Grinberg et al., 2009).
Our efforts to reduce the memory footprint of the Initialize
phase (involves the reading of input files, the decomposition of
the domain over multiple ranks, and the creation of large data
structures that the Simulate phase operates on) have allowed for
the simulation of flow problems consisting of O(109) lattice sites
on Blue Waters. Further work is needed to initialize problems
with tens of billions of lattice sites.

Strong scalability of HemeLB (without any particles present,
since scalability would be strongly affected by the potential load
imbalance caused by the varying distribution of particles) was
investigated with the coW15 (15 µm resolution) circle of Willis
dataset with 7.77× 108 lattice sites, executed on the ARCHER
Cray XC30 system and built using system GCC 5.1.0 compilers.

ARCHER has dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge)
2.7 GHz processors joined by two QPI links, connected via
proprietary Cray Aries interconnect in a dragonfly topology.
Some compute nodes have 128 GB of shared memory; however,
most have only 64 GB. Executions were performed using fully-
populated compute nodes, i.e. each node is assigned 24MPI ranks
(one process per core).

The substantial memory requirements of HemeLB with the
coW15 test case meant that the smallest configuration required
125 compute nodes (3,000 MPI processes), and progressively
larger configurations were run with up to 4,000 compute
nodes (96,000 MPI processes). Ten thousand simulation time-
steps were executed with periodic writing of the simulation
data disabled to reduce variability. The simulation wall-
clock execution time and speed-up relative to the smallest
execution configuration are shown in Figure 10. Almost a 20-
fold speed-up is obtained using 4,000 compute nodes, with
80% parallel efficiency up to 2,000 compute nodes. Note, by
exploiting Streaming SIMD Extensions (SSE), which HemeLB
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FIGURE 8 | The x component of the magnetic force experienced by particles of radius a = 65 nm (A) and a = 500 nm (B) at 0.3549 s. To highlight the significant

difference in force between cases, the inset figure in the top visualization applies the color scale limits for a = 65 nm on the case where a = 500 nm. The maximum

force in the case of a = 65 nm is FM = −1.144× 10−6 N, whereas the maximum force in the case of a = 500 nm is FM = −5.928× 10−4 N.

fully supports, we observe a significant ∼15% reduction in
simulation time.

Performance auditing of HemeLB was done with the open-
source Scalasca tool-set (Geimer et al., 2010) for scalable
performance analysis of large-scale parallel application
executions. Scalasca 2.3.1 with the community-developed

Score-P 3.1 instrumentation and measurement infrastructure
was used on ARCHER. An instrumented version of HemeLB
was prepared with only the main application program
and SimulationMaster class selectively instrumented
by the GCC compiler, and combined with MPI library
interposition. Profiles generated from measured executions
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FIGURE 9 | Particles (with radius a = 65 nm) traveling from the left internal carotid artery through the circle of Willis; particles leave through outlets 4, 6, and 8 (see

Figure 2). Particles are colored by their velocity. The cyan sphere represents a permanent (and fixed) magnet. All particles are initially confined to the interior of the

orange sphere, in which particle positions are randomly distributed. The pink volume (internal to the coW) represents some region of interest, e.g. a site requiring

therapeutic attention, to which we force particles by virtue of the magnetic field; we record the instantaneous particle count in this region. (A) Particle positions at

0.468 s. (B) Particle positions at 0.546 s.

were post-processed to derive additional metrics and
interactively examined using the Scalasca analysis report
explorer.

While the Initialize phase of a simulation (when simulation
configuration and domain decomposition occurs) requires a

roughly constant time to load and distribute the dataset, our
primary focus is on the Simulate phase (when time-stepping is
performed) with its 10,000 time-steps. Also MPI rank 0, which
monitors the execution and does not process any part of the
simulation data, could be excluded.

Frontiers in Physiology | www.frontiersin.org 11 April 2018 | Volume 9 | Article 331

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Patronis et al. Patient-Specific Magnetic Drug Targeting

FIGURE 10 | (Top) plot shows strong scaling of wall-clock execution time (in seconds) of 10,000 time-steps of Simulate phase of HemeLB with coW15 (15 µm

resolution) dataset on ARCHER Cray XC30 (24 MPI ranks per compute node) up to 4,000 compute nodes ( ); plotted on log-log scale, with dash-dotted line

( ) representing perfect scaling. (Bottom) plot presents speed-up of HemeLB Simulate phase on ARCHER Cray XC30 (24 ranks per node) compared to base

configuration using 125 compute nodes ( ). Again, dash-dotted line ( ) represents perfect scaling and dashed line ( ) is 80% of perfect.

A breakdown of the Simulate phase CPU time for each
execution configuration is shown in Figure 11, along with
associated efficiencies. There is a negligible amount of MPI
collective communication, and the amount of non-blocking
point-to-point communication for data exchange decreases in
proportion to computation time. Therefore communication
efficiency remains above 0.89. Load balance, however, starts
at 0.86 and progressively deteriorates to 0.76, such that the
overall parallel efficiency degrades to 0.72 using 96,000 cores.
This computational load imbalance will be addressed in future
optimization work.

4.2.2. Load Balance
As stated in the previous section, the distribution of particles
affects the load balance. Here, we analyse the imbalance
during various stages of a full-scale simulation with δx =
25 µm on 350 nodes (5,600 cores) of Blue Waters, a petascale
supercomputer at the National Centre for Supercomputing
Applications (NCSA). Figure 12 presents the performance of
HemeLB under a simulation of 73,215 nanoparticles injected
through the left and right internal carotid arteries, and the basilar
artery (all three inlets to the circle ofWillis, as shown in Figure 2).
Load imbalance due to the accumulation of particles on few
ranks (as seen in frame a of the figure) results in an average of
33.4 time-steps per second. As the simulation progresses, and
particles become more uniformly distributed across ranks (as
seen in frames c and d), the code achieves approximately 37.5
time-steps per second. The same system containing no particles

runs at an average of 39 time-steps per second. For comparison,
from Figure 10 the code is capable of 23 time-steps per second
when δx = 15 µm (and no particles are present) on 250 nodes
(6,000 cores) of ARCHER; on 96,000 cores, we compute 232
time-steps per second. Note that because no particles are present
in the system, there is no overhead associated with file output.
Therefore, in the case presented, the performance degradation is,
even in the worst case of load imbalance (33.4 steps per second),
not particularly severe.

5. DISCUSSION

The application of our magnetic drug targeting model to a
patient-specific geometry has allowed us to explore the relevance
of various physical properties and design parameters to the
manipulation of paramagnetic iron oxide nanoparticles in
cerebral blood flow. The physiological environment (e.g. flow
and heart rate) determines which forces dominate, and hence
the optimum choice of particle properties and magnetic field
configuration will vary between patients and target site location.
Our computational model intends to facilitate the optimization
of these properties for a particular patient, or to predict the
percentage of injected particles that will reach a given target site
under a fixed configuration (thus potentially advising on themost
appropriate dosage or carrier type for that patient).

We demonstrate the use of our model with a test case:
modeling magnetically steered nanoparticles in a human circle
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FIGURE 11 | Breakdown of metrics and efficiencies for HemeLB Simulate

phase (operating on a voxelized representation of the circle of Willis model

previously described) on ARCHER Cray XC30 (24 ranks per node). Bars

represent, in seconds, the collective communication time, point-to-point

communication time, and computation time. Note that the time required for

collective operations is negligible; for this reason, the data is not presented.

Lines represent communication efficiency ( ), load balance efficiency

( ), and parallel efficiency ( ). The proportion of computation vs. MPI

communication time remains roughly the same (with primarily point-to-point

communication and negligible collective communication), with communication

efficiency remaining above 0.89. Load balance efficiency starts at 0.86 and

progressively deteriorates to 0.76, such that the overall parallel efficiency

degrades to 0.72 using 96,000 cores.

of Willis, with the target site (referred to as the region of interest,
RoI) located on a bend in the left internal carotid artery (inlet
2 in Figure 2); an (invasive) magnet placed 0.9 cm from the
geometric center of the RoI is used to steer the particles. We
study the effects of particle radius on targeting efficiency at the
RoI. Figure 7 shows the trajectory of 17,077 particles in the
LICA under the influence of a point dipolar magnet of moment
m0 = {3000.0, 0.0, 0.0}Am2. Figure 13 shows the percentage
of particles (of radius a = 65, 105, 250, and 500 nm) passing
through the target region. In physical terms, we find the behavior
of the particles to be largely governed by hydrodynamic and
dipolar interactions with little contribution from diffusive effects,
most likely due to the high flow rates in the given arterial section
(∼0.8m s−1 peak velocity), which requires a strong magnetic
field gradient to overcome drag.

To provide additional insight into the optimization of the
particles, we investigate the effect of coating thickness. In the
context of drug delivery, for example, the (organic or inorganic)
coating surrounding the magnetic core is loaded with the drug.
Our implementation of the model can accept a coating thickness
ac (previously assumed to be zero). The application of a coating
only affects the drag experienced by the particle, and is assumed
to have a negligible effect on the magnetic forcing (i.e. provides
no magnetic shielding). With the core radius (a =)65 nm, which
is used in all calculations pertaining to themagnetic forcing, three
coating thicknesses are considered: ac = 16.25, 32.5, and 65 nm.
For the configurations considered, our simulations suggest that

particle motion is unaffected by the additional drag due to the
coating. On inspection of Equation (8), it is clear that if the
local fluid velocity v(xp) at the particle’s location xp is much
greater than the velocity modification resulting from any external
forcing, i.e.

v(xp)≫ β(F+ FR) (13)

then any realistic coating will have little influence (since only the
mobility β = 1/[6πµ(a+ac)] is modified). Because the magnetic
field can only (strongly) influence particles within the proximity
of the magnet (it falls off as 1/r3), the current configuration is
such that no discernible difference is seen.

By modifying the velocity profiles of the inlet boundary
conditions, we are able to study the impact of three physiological
parameters (mean blood pressure, volumetric flow rate, and heart
rate at the opening) on particle behavior, demonstrating that our
model can handle patient specificity (down to a patient’s current
physiological state). As a function of these parameters, the values
for which we take from the experimental work of Sugawara et al.
(2003), the peak inlet velocity is obtained from 1D Navier-Stokes
simulations using our multiscale framework (Itani et al., 2015),
and introduced to the 3D solver (HemeLB) as scaled parabolic
profiles. All simulations presented to this point use the heart rate
of a resting patient (80mmHg, 4.8 lmin−1, 68 bpm; see Figure 3)
to derive inlet boundary conditions. Here, we consider three
other cases with greater heart rates (see Figure 14): 112mmHg,
10.7 lmin−1, 113 bpm (—); 116mmHg, 11.9 lmin−1, 120 bpm
(—); 122mmHg, 13.2 lmin−1, 134 bpm (—). For a fixed particle
radius a = 65 nm, Figure 13 shows how particle concentration in
the RoI is affected. Relative to the case of resting heart rate (—),
we see fewer particles in the RoI for higher-flow-rate cases. This
is an unsurprising result; as discussed, the relative contribution
of magnetic forcing to particle motion is reduced when the fluid
velocity is increased. The reduced arrival time of the particles at
the RoI is simply due to the greater fluid velocity.

The central parameter controlling hydrodynamic interactions,
mediated by frictional coupling, is the particle radius. For particle
radius a in the range of 65 to 500 nm thermal diffusivity was
observed to be negligible. However, diffusive terms introduced
by the interaction of the particles with blood cells may well play
a significant role. Our current model does not include blood
cells in the suspension, but can take into consideration the bulk
shear thinning effect resulting from the presence of blood cells; a
comparison of Newtonian and non-Newtonian blood models has
shown little observable difference in mass flow (Bernabeu et al.,
2013).

The effect of gravity (and other homogeneous accelerations)
was modeled via a body force term. Our evaluations have found
contributions of gravity (buoyancy of the particle, caused by
the blood, is also considered) to the dynamics of the particles
to be negligible in the test cases presented here. However, with
increasing particle size or when considering larger capillary
numbers gravity may become significant.

The magnetic properties of the paramagnetic particles are
largely determined by the size and crystallinity of their magnetite
(or maghemite) core. For simplicity, in the above simulations
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FIGURE 12 | Performance of magnetic drug targeting simulation (all body forces listed in section 2.2.1, including those derived from dipolar interactions, are in effect)

in the circle of Willis measured in time-steps per second of wall-clock time (neglecting output steps for clarity). Simulation frames (top) illustrate the particle distribution

at four time points in the simulation, indicated on the plot by the tags a, b, c, and d.

we have chosen to model particles of pure magnetite. In reality,
the magnetite content is expected to be lower, thus reducing
the effective magnetic susceptibility χv of a particle. Volumetric
magnetic susceptibility, as reported in the literature, varies widely
(i.e. 1.0 to 5.7 m−3) with the preparation, means of creation,
and grain size of the nanoparticles (Hunt et al., 2013); for
greatest effect we have chosen the maximum reported value. The
size of the particle itself can also affect the susceptibility, as a
finite size effect in small particles (e.g. for particle radius a .

25 nm Ulbrich et al., 2016) induces super-paramagnetic behavior
which manifests as a vastly increased magnetic susceptibility
(relative to that of paramagnets). With a > 65 nm in the
simulations presented here, we neglect to consider the super-
paramagnetic regime. Note that our model is able to capture
super-paramagnetic behavior, but values for χv would need to
be determined experimentally. It is expected that the magnetic
susceptibility will be known for any super-paramagnetic iron
oxide nanoparticles (SPIONs) used in a clinical context. We have
additionally approximated the magnetic permeability inside the
brain as that of a classical vacuum, i.e.µ0 = 4π ×10−7Hm−1. In
general, the presence of iron rich tissues may cause the magnetic

permeability of the surrounding brain matter to deviate from this
value.

The initial distribution of the particles, and the invasive
proximity of the magnet (both indicated in Figure 7), are clearly
unrealistic, and were chosen for illustrative and performance
testing purposes. Furthermore, the (single) permanent magnet
here is modeled as a pure point dipole, effectively overestimating
the field gradient. In future work, particles will be introduced
via a timed release at inlets in a manner more closely modeling
the concentration profile of an intravenous delivery. In addition,
future implementations will model particle function in the target
region (such as the absorption of particles into target tissue, or
magnetically induced heating of nanoparticles and subsequent
drug release). Furthermore, an external electromagnetic field
solver will be used to recreate a complex and realistic field (such
as may be induced in a clinical context). As stated previously,
the input flow velocities for each inlet were obtained using a
multiscale approach (to represent the rest of the human arterial
tree, Itani et al., 2015), whereas we may wish to consider that in
an unhealthy patient the blood pressure and flow rates may be
much higher.
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FIGURE 13 | The percentage of particles found in the region of interest (see

Figure 7) during simulation. We present results for 2 studies; particle radius a

is varied in the first, and set to 65 nm ( ), 105 nm ( ), 250 nm ( ),

and 500 nm ( ). For the second study, particle radius a = 65 nm is

constant, and the inlet velocity is varied: 10.7 lmin−1 at 113bpm ( ),

11.9 lmin−1 at 120bpm ( ), and 13.2 lmin−1 at 134bpm ( ).The

position of the permanent magnet does not change between cases (held at

0.9 cm from the geometric center of the RoI). A negligible difference is seen

when increasing a from 65 to 105 nm.

Segmentation of the clinical images necessary to construct
the three-dimensional vascular geometry is in practice difficult
to automate consistently, often needing human intervention to
identify artifacts to be filtered out. As a result of this, and other
uncertainties in the input data, a number of replica simulations
may be required to capture the full statistics of the system, and
allow uncertainty quantification of the results. Computational
efficiency is therefore very important to the practicality of
this model. Currently, the most significant influence on
computational performance comes via the distribution of
particles across computational subdomains, with large numbers
of particles on any single computational subdomain causing
load imbalance. While the dilute requirement of our model
largely mitigates the problem in high performance computing
environments (where core counts of high scaling codes can
be increased with relative ease), the transition to smaller
workstations using accelerators may require the implementation
of sophisticated load balancing techniques. Nevertheless, in the
most extreme case of imbalance observed in our simulations,
using 5,600 cores (350 nodes) on Blue Waters, the performance
was degraded by around ∼15% relative to the case where no
particles are present—a manageable reduction in performance
that can be alleviated through further development of the load
balancing techniques employed. To simulate 20,377 particles
over three cardiac cycles and with lattice spacing δx = 25 µm
using 5,820 cores (220 nodes) on ARCHER requires 20 wall-
clock hours. Therefore, based on the scalability study presented

FIGURE 14 | Peak inlet velocity for (1) the basilar artery (- - -), (2) the left

internal carotid artery ( ), and (3) the right internal carotid artery ( ).

For each of the three inlets, the complete inlet-velocity profile is obtained by

assigning weighting factors (of the peak velocity) to lattice sites that lie on the

boundaries. The top plot (red) is for 10.7 lmin−1 at 113bpm (red line in

Figure 13), the middle plot (green) is for 11.9 lmin−1 at 120bpm (green line in

Figure 13), and the bottom plot (blue) is for 13.2 lmin−1 at 134bpm (blue line

in Figure 13).

in section 4.2.1, and the encouraging results of the load-
balance testing involving 73,215 particles, we postulate that our
method can simulate tens of thousands of particles over multiple
cardiac cycles in geometries consisting of O(109) lattice sites in
approximately a day. Such performance allows us to address flow
problems that previously could not be approached, and will lead
to new a level of understanding.

In order to achieve the necessary computational performance,
a number of approximations were implemented. As our particle
sizes are significantly smaller than the scale of the lattice
discretization (1/25th in the case of the largest particle radius),
and with sufficiently low particle density (1–5 particles per
lattice volume), we permit ourselves the use of a one-way
coupling strategy (no feedback from particles to fluid). Another
consequence of the dilute approximation is the use of the
much cheaper pairwise expression for the dipolar force (see
Equation 9); in practice this would break down for non-dilute
fluids. We also assume that particles align instantaneously with
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the local magnetic field, as the time scale for rotation is extremely
rapid (Ulbrich et al., 2016) (relative to the characteristic time-
scale of hydrodynamic processes).

6. CONCLUSION

We present an efficient computational model for simulating
magnetic drug targeting in patient specific brain geometries,
via the steering of paramagnetic nanoparticles with an external
magnetic field. The model couples the dynamics of spherical
particles to a lattice-Boltzmann hydrodynamics simulation,
taking into account body forces (e.g. gravity), diffusivity, and
dipolar interactions. A study of the model’s computational
performance found favorable results, with a performance drop
of ∼15% (relative to a simulation of the hydrodynamics alone,
i.e. in the absence of any particles) in the most extreme case
of load imbalance (all particles clustered in one region). We
demonstrated the use of the model to predict the particle density
(as a function of time) near a target site for a specific patient
circle of Willis vascular system and heart rate, using a single
point dipolar magnet. Through a multiscale coupling with a 1D
representation of the wider vascular system, we obtained inlet
velocity profiles for a patient in a range of physiological states
(varying heart rate, cardiac output and mean blood pressure).
Initial results allow confidence in the viability of the model to
answer a wide range of questions relating to the design and
manipulation of iron oxide nanoparticles in a clinical context.
Comparison to phantom flow results and medical imaging
research will allow further tuning of system parameters to further
increase the accuracy of the model. A next step toward using
the simulation technique in a more realistic manner will involve
coupling of the flow solver to a comprehensive electromagnetic
simulation. This will allow for the investigation of particle
behavior when exposed to more complex magnetic fields created
by a combination of multiple electromagnets.
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