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Due to advances in medical imaging, computational fluid dynamics algorithms and

high performance computing, computer simulation is developing into an important tool

for understanding the relationship between cardiovascular diseases and intraventricular

blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary.

We apply a computational framework for automated solutions of partial differential

equations using Finite Element Methods where any mathematical description directly

can be translated to code. This allows us to develop a cardiac model where specific

properties of the heart such as fluid-structure interaction of the aortic valve can be

added in a modular way without extensive efforts. In previous work, we simulated the

blood flow in the left ventricle of the heart. In this paper, we extend this model by

placing prototypes of both a native and a mechanical aortic valve in the outflow region

of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve

offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis

(narrowing of the valve opening) or regurgitation (leaking) and to optimize the design

of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction

and contact problem are formulated in a unified continuummodel using the conservation

laws for mass and momentum and a phase function. The discretization is based on an

Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion

stabilization, and it is implemented in the open source software Unicorn which shows

near optimal scaling up to thousands of cores. Computational results are presented to

demonstrate the capability of our framework.

Keywords: fluid-structure interaction, finite element method, Arbitrary Lagrangian-Eulerian method, parallel

algorithm, blood flow, patient specific heart model

1. INTRODUCTION

The World Health Organization (WHO, 2014) has identified cardiovascular disease as the major
cause for death in the world. Therefore, developing new ways to support early diagnosis of
cardiac dysfunction is of vital importance. In vivo and in vitro studies offer valuable information
on the relationship between the blood flow (hemodynamics) and cardiac disease, and advances
in computational fluid dynamics (CFD) and high performance computing (HPC) enable the
usage of computer simulation as an important tool to further enhance our understanding of this
relationship.
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The field of cardiac modeling is extensive, and highly
interdisciplinary. It is therefore important to be clear on what
the research is aiming for. Our goal is to develop a framework
for simulating the intraventricular blood flow, where specific
properties such as fluid-structure interaction (FSI) of the aortic
valve can be implemented in a modular way without extensive
efforts. In Spühler et al. (2015) we focus on the aspect of fluid
mechanics, and present a computational model of the blood
flow in the left ventricle (LV) of the heart. The movement of
the wall is based on ultrasound measurements and an Arbitrary
Lagrangian-Eulerian (ALE) space-time finite element method is
used to simulate the blood flow by solving the incompressible
Navier-Stokes equations. The opening and closing of the mitral
and aortic valves are modeled by time-dependent velocity and
pressure boundary conditions. In this paper, we present an
extension of this work by embedding different geometrical
models of aortic valves in the LV and the aorta. Prototypes of
a biological valve and bileaflet mechanical heart valve (BMHV)
are modeled. While surgical treatments of valvular diseases are
firmly established, many decisive factors for the performance of
the implant are not fully understood yet. Numerical simulations
provide an important insight to the interaction between the
blood flow and the leaflets which can be applied to optimize
the design of BMVHs or improve technologies as transcatheter
aortic valve replacement (Wu et al., 2016). The fluid-structure
interaction problem is described by a unified continuum model,
using the conservation laws for mass andmomentum and a phase
function, which is a novel approach for simulating valve motions.
The Navier-Stokes equations are solved by an ALE space-time
finite element method with streamline diffusion stabilization
implemented in Unicorn (Hoffman et al., 2012), which is part
of the open source software framework FEniCS-HPC (Jansson,
2013).

This paper is structured as follows. In section 2 we describe
the different components and functions of an anatomical aortic
valve. section 3 explains the mathematical equations and the
numerical method. In section 4, we specify the mechanical and
biological aortic valve model we use in our simulations. The
numerical results are presented in section 5 and we conclude
our paper in section 6 by summarizing our findings and discuss
possible steps of future work.

2. MODELING THE AORTIC VALVE

The left ventricle possesses a mitral and an aortic valve, each
of them consisting of two and three leaflets respectively. The
valves ensure unidirectional flow and prevent the blood to flow
back. The opening and closing of the valves are mainly controlled
by the pressure gradient between the ventricle and the adjacent
chamber. One edge of the biological leaflet is completely attached
to the inner wall of the heart. The free edge of the mitral valve
is connected to the papillary muscles by the chordae tendineae.
The aortic leaflets do not have such fibrous tissue connections
and they open and close passively due to the flow.

The nomenclature of the different components of the aortic
root can vary remarkably as revealed by Sievers et al. (2012). We

apply the definitions proposed in Sievers et al. (2012), as indicated
in Figure 1. The aortic root is situated between the left ventricle
and the ascending aorta, and is bordered by the annulus and the
sinotubular junction. The three bulges just above the annulus
are referred as sinus of Valsalva. The aortic valve contains three
leaflets which are attached to the aorta wall. The point of contact
where two leaflets meet at the root wall is called commissure and
the surface of contact at the free edge is known as coaptation.

3. MATHEMATICAL MODEL AND
NUMERICAL METHOD

In order to put our approach in context, we review different
models for simulating the FSI of the blood flow around the
aortic valve. Usually, the structure model is formulated in the
Lagrangian coordinate system whereas fluid flow is described in
the Eulerian coordinate system. At the common interface of the
two models, the following kinematic and dynamic constraints
have to be satisfied by the velocity u and the stress τ :

uf = us (kinematic constraint, continuity of the velocity), (1)

τ s · n = τ f · n (dynamic constraint, continuity of the normal stresses).

(2)

The subscript indicates whether the variable is defined in the solid
(s) or in the fluid (f ) part respectively, while n is a unit vector
normal to the interface. We denote vectors and matrices with
bold letters. FSI simulations can roughly be categorized asmoving
or fixed mesh methods and partitioned or monolithic approach as
presented in Borazjani et al. (2008).

3.1. Discretization of the Coupled Problem
For fixed mesh methods, the fluid and structure domains are
discretized in a non-boundary conforming matter. Since the
structure is spatially disconnected from the fixed background
mesh, it is crucial to efficiently trace and move the interface
between the solid and the fluid domain. The interface can be
discretized with a set of markers and tracked by a Lagrangian
method (front tracking) or represented by contours or level sets
of a scalar function (front capturing). Fixed mesh methods were
pioneered by Peskin and McQueen (Peskin, 1972; McQueen and
Peskin, 2000) introducing the concept of immersed boundary
methods, where body forces are imposed on the fluid domain to
account for the interaction between the fluid and the structure.
Large structural deformations are manageable, but the solution
at the interface can be diffuse. This disadvantage can be lessened
by e.g., increasing the mesh resolution in the vicinity of the
immersed boundary as done by Griffith (2012), or by treating the
boundary as a sharp interface as in e.g., Borazjani et al. (2008);
Udaykumar et al. (1999); Mittal and Iaccarino (2005); Gilmanov
and Sotiropoulos (2005), and Xia et al. (2009). Fictitious domain
methods is a another class of fixed mesh methods where Lagrange
multipliers account for the kinematics constraints between the
fluid and solid domain, see e.g., Glowinski et al. (1999); van
Loon et al. (2005); De Hart et al. (2003), and Astorino et al.
(2009).

Inmovingmeshmethods, the computationalmesh conforms to
the deformation of the solid domain, and is typically represented
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by an Arbitrary Lagrangian Eulerian formulation. The strength
of the moving grid methods can be found in its accuracy and
clearly defined coupling condition, as themesh is aligned with the
fluid-structure interface. A good smoothing algorithm or local
remeshing is needed to keep the quality of the computational
mesh.

Reviewing the literature of aortic valve simulations, we came
across the following work which apply an ALE approach: Bolger
et al. (2007) and Penrose and Staples (2002) simulate the flow
past a geometrically reduced mechanical valve prosthesis taking
advantage of its symmetrical form; in Dumont et al. (2007)
two commercially available bileaflet mechanical heart valves
are compared regarding hemodynamics and thrombogenic
performance; Guivier-Curien et al. (2009) employs particle
image velocity measurements to quantitatively and qualitatively
compare experiments and numerical simulations; the FSI model
of Choi and Kim (2009) provides detailed flow information and
leaflet behavior of a BMHV; Morsi et al. (2007) analyzes the fluid
dynamics of a trileaflet heart valve but only for the initial opening
phase.

3.2. Coupling Strategies
Depending on whether the structure and fluid problems are
solved simultaneously or separately, the FSI solver can be
classified asmonolithic or partitioned. The FSI approach is called
monolithic if the fluid and solid problems are solved as one single
system where no matching of the data is required at the interface.

In a partitioned approach, there are two different solvers
simulating the fluid and the solid part respectively. If the coupling
between the solvers is explicit in time then the coupling is
loose. The loose coupling has low computational cost, but the
simulation may become unstable. To overcome these instability
issues, the partitioned problem can be formulated implicit in
time, introducing an iteration loop at each time step until a
dynamic equilibrium between the fluid and solid is achieved.

Data exchange between the fluid and solid part in this implicit
algorithm is called a strong coupling.

3.3. Unified Continuum Model
We now specify our ansatz, which corresponds to a monolithic,
moving mesh method. An elaborate description can be found in
Jansson et al. (2011) at full length. Here, we only describe the
main features.

Where the size of the vessel is much larger than the
size of a red blood cell, the blood flow can be modeled as
an incompressible Newtonian fluid (Quarteroni et al., 2014).
The governing equations are the Navier-Stokes equations. The
dynamic viscosity is chosen as µ = 0.0027Pa · s and the blood
density ρ = 1, 060kg/m3 (Di Martino et al., 2001). In small
domains, as the region around the revolute joints of a mechanical
heart valve, non-Newtonian effectsmight have to be incorporated
in the model, but these flow features are not targeted in this work.

With the aim of establishing a framework that allows
for general formulation and implementation of different
models, while applying adaptive error control for realistic 3D
applications, a so-called unified continuum model for FSI was
developed. The model is described by the conservation laws of
mass and momentum for an incompressible continuum, where a
stress and phase variable define the properties of the continuum.

Let �t ⊂ R
3 be a time-dependent domain with t ∈ I : =

[0, t̂]. Our goal is to determine u(x, t) :�t → R
3, where �t

encompasses both the solid and the fluid domain and u defines
the fluid velocity in the fluid part and the deformation velocity in
the structure part:

ρ(u̇+ ((u−m) · ∇)u) = ∇ · τ (u, p) (x, t) ∈ �t × I, (3a)

∇ · u = 0 (x, t) ∈ �t × I. (3b)

Here τ is the stress tensor and m identifies the mesh
velocity in the ALE formulation. In the solid, we choose

FIGURE 1 | Glossary of the aortic root, author’s own drawing based on Sievers et al. (2012). Annulus, leaflets, leaflet attachment, sinotubular junction, interleaflet

triangle and sinus of Valsalva are the different components of the aortic root. The aortic valve consists of the three leaflets only.
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m to be the material velocity of the structure. In the
remaining part of the mesh, m is determined by the mesh
smoothing algorithm applied to uphold the quality of the
mesh.

The constitutive laws are defined via the stress term, where the
phase function θ is set to zero in the solid domain and to one in
the fluid domain:

τ = τD − pI, (4)

τD = θτf + (1− θ)τs, (5)

τf = 2µf ǫ(u), (6)

Dtτs = 2µsǫ(u)+ ∇uτs + τs∇uT , (7)

ǫ(u) =
1

2
(∇u+ ∇uT). (8)

The kinematic constraint uf = us is satisfied implicitly by the
continuity of the velocity field u for the unified continuum. The
dynamic constraint is weakly enforced by applying integration
by parts on the stress term and setting it to zero in the weak
formulation.

This approach allows us to use the same discretization
method, stabilization technique andmesh deformation algorithm
as for a pure fluid problem.

3.4. Time and Space Discretization
Let 0 := t0 < t1 < · · · < tN := t̂ be a sequence of discrete time
steps, with associated time intervals In : = (tn−1, tn] of length
kn := tn − tn−1.

We introduce the space-time slab Sn : = �tn × In, and let
Tn = {K} denote the spatial discretization of �tn . Un is the
discrete velocity, Pn is the discrete pressure, and hn specifies the
maximal diameter of the cells K ∈ Tn.

We choose the finite element function space of piecewise
linear functionsWn ⊂ H1(�tn ), where

H1(�tn ) := {v ∈ L2(�tn )|
∂v

∂xk
∈ L2(�tn ) , k = 1, 2, 3}, (9)

Wn
:= {v ∈ C(�tn )|v ∈ P1(K),∀K ∈ Tn}, (10)

Wn
0 := {v ∈ Wn|v = 0 on ∂�tn}, (11)

Wn
0 := [Wn

0 ]
3. (12)

We identify the discrete solution for velocity and pressure as
Û = (U, P), the discrete stress for both the fluid and the solid
as T , the discrete mesh velocity as M, and the test function as
v̂ = (v, q). In time, we choose U to be piecewise linear, and P, v
and q to be piecewise constant.

Based on these definitions and assuming homogeneous
Dirichlet boundary condition for the velocity, the spatially and
temporally discretized variational formulation of Equation (3)
reads as follows: for each space-time slab Sn, find (Un, Pn) : =

(U(tn), P(tn)) with Un ∈ Wn
0 and Pn ∈ Wn, such that:

(ρk−1
n (Un − Un−1)+ (ρ(Ūn −Mn) · ∇)Ūn, v)+ (T n

:∇v)
(13)

+ SDδ(Ū
n,Mn, Pn, v, q, ρ) = 0,

for ∀(v, q) ∈ Wn
0 × Wn, where Ūn = 1

2 (U
n + Un−1) and (., .)

denotes the L2(Sn)-inner product.
To stabilize the convection dominated problem (3), we use a

simplified Galerkin/least-square method, where we drop the time
derivative and the diffusion term, and we define SDδ as

SDδ(Ū
n, Pn, v, q, ρ) = (14)

(δ1ρ(((Ū
n −Mn) · ∇)Ūn + ∇Pn), ρ((Ūn −Mn) · ∇)v+ ∇q)

+ (δ2∇ · Ūn,∇ · v).

FIGURE 2 | To detect collision we calculate the distance dij between the leaflets Lj and Li for i, j = 1, 2, 3 (A). As soon as the minimal distance is below a certain

threshold, the valve opening is closed. A 2D-surface (blue) is included to model a proper closure (B) and the geometric model of the valve opening is closed by

marking the cells directly attached to the 2D-surface as solid (C).
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The stabilization parameters are chosen as δ2 = κ2ρh
n|Un−1|

and δ1 = κ1ρ
−1(k−2

n + |Un−1 −Mn−1|2h−2
n )−1/2, where κ1, κ2

are problem independent positive constants of order O(1). By

TABLE 1 | Model parameters used for generating the native aortic root geometry.

Model parameters Parameter Value [mm]

Inner base radius at the annulus RA 20

Inner radius at the sinotubular junction RS 22

Leaflet height hl 20

Height of commissure hc 6

Thickness of leaflet tl 1

applying the midpoint quadrature rule in time, we obtain a
Crank-Nicolson time-stepping scheme.We use Bi-CGStab with a
block Jacobi preconditioner where each sub-block is solved with
ILU(0).

3.5. Smoothing Algorithms
Due to the fluid-structure interaction of the aortic valve and
the pumping blood flow from the left ventricle, it is crucial for
an ALE-method to have a suitable method to adjust an existing
mesh. There are different ways to enhance and optimize the
quality of the mesh, which may involve e.g., swapping faces and
edges, or changing the number of vertices.

Meshing algorithms, which involve change of topology or
the number of mesh cells, are not suitable for time-dependent,

FIGURE 3 | A CAD model of an idealized native aortic root (A) and its parameters in top down view (B) and side view (C) are depicted. The creation of the surface of

one leaflet is illustrated in (D).
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parallel computing. Therefore, it is preferable to use a mesh
adaptivitymethod which omits the necessity or at least minimizes
the frequency of remeshing.

To keep a goodmesh quality, while limiting the computational
cost, our solver combines a linear and a nonlinear mesh
smoothing algorithm. The linear smoother accounts for the
rough overall re-distribution of the vertices, while the nonlinear
smoother optimizes locally the mesh based on the quality of the
cells.

3.5.1. Linear Smoother
The linear smoother solves a linear elastic equation in the
fluid domain for the mesh velocity, which corresponds to a
Poisson equation with Dirichlet boundary conditions given by
the structure velocity on the fluid-structure interface, where the
vertices are diffusively relocated over the domain. Although it is a
simple and fast method, there is no guarantee that improvement
is achieved since the equation does not take into consideration
the quality of the cells in the mesh.

3.5.2. Nonlinear Smoother
To locally enhance distorted cells, we describe the deformation
of the mesh using a nonlinear elasticity problem, and weight the
stiffness of the model by a quality measure Q(K) of each cell K in
the mesh Tn:

Q(K) :=
||F||2F

det(F)2/dd
, (15)

where d specifies the dimension of the spatial domain
and ||.||F the Frobenius norm. F denotes the deformation
gradient between K ∈ Tn and a scaled equilateral reference
cell.

By weighting the equation by Q(K) and advancing
the partial differential equation toward its equilibrium,
the mesh is improved toward its goal of optimal
shape. A more detailed description is elaborated in
Jansson et al. (2011).

To limit the computational cost, the nonlinear smoother is

stopped after a certain number of “pseudo” time steps k̃ before
a stationary solution is obtained. Depending on the quality of the
mesh Tn, the total number of pseudo time steps can be adapted
to achieve a desired quality.

3.6. Modeling of Contact
In order to simulate the closing of a heart valve, an algorithm
needs to be implemented to both detect collision and to
simulate contact. Our approach is derived from the idea to
describe the fluid-structure interaction as a unified continuum.
We model contact implicitly by switching fluid cells to solid
cells as soon as contact is detected. Collision is detected by
solving an Eikonal equation for the distance between two solid
surfaces.

In order to detect contact between two leaflets of a native
valve, we calculate the minimal distance dmin : = minij,i6=j{d

ij}

between the leaflets Lj and Li for i, j = 1, 2, 3, as illustrated
in Figure 2A. To model a proper closure of the leaflets, we
include a 2D-surface in our volumemesh, which covers the entire
valve opening, and as soon dmin is below a certain threshold,
all cells directly attached under the 2D-surface are marked as
solid, as shown in Figures 2B,C. Since the closing moment of
a healthy valve is very short, we argue that it is acceptable to
cover the whole opening at once. The contact is released at the
beginning of the subsequent contraction phase (systole) of the left
ventricle.

FIGURE 4 | Initial and boundary conditions for the native valve: starting configuration for the simulation (A) and the magnitude of the inflow plotted against time (B).
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3.7. Computational Tools
Nowadays high performance computing is an essential part of
computational science. The Heart-FSI solver is implemented in
the HPC branch (Jansson, 2013) of the open source FEM library
DOLFIN (Logg and Wells, 2010) and the adaptive flow solver
Unicorn (Hoffman et al., 2012). Both libraries have successfully
been used to efficiently solve large scale industrial problems as
described in e.g., Jansson et al. (2011) and Vilela de Abreu et al.
(2016).

The simulations were performed on Beskow, a Cray XC40
system, where each node has two CPUs (Intel E5-2698v3) with
16 cores. All volume meshes are created in ANSA (2014), a
computer-aided engineering tool for pre-processing.

4. VALVE MODELS

In the subsequent paragraphs, we describe how we model native
and bileaflet mechanical heart valves (BMHV) embedded in the
left ventricle and ascending aorta. For each case, we detail the
geometry and specify the material as well as the initial and
boundary conditions.

4.1. Native Valve
4.1.1. Geometry
The geometry of the aortic root has been studied, where
geometrical parameters are optimized to resemble the function of
a trileaflet valve (Swanson and Clark, 1974). Our model is based
on such an optimized geometry proposed by Thubrikar (1990).

We generate a computer-aided design (CAD) model of an
idealized native aortic root based on a small set of parameters
which can be personalized to a particular patient. The aortic
root generator is a set of Python scripts for Rhinoceros 5

(Rhinoceros, 2016) that outputs an aortic root in a fully open
valve configuration, as presented in Figure 3A. The model
parameters are illustrated in Figures 3B–D.

We assume that the aortic root has a threefold symmetry
around the z-axis and label the rotational angle by β as depicted
in Figure 3B. The plane PA at the annulus and the plane at the
sinotubular junction PS are assumed to be parallel. The inner
radius at the annulus RA, the inner radius at the sinotubular
junction RS and the length of the leaflet in the open position hl,
are used to define a truncated cone as shown in Figure 3C. To
find the leaflet attachment and the leaflet surface the cone is cut
by the plane Pc, which is defined by three points P1c , P

2
c , and P3c ,

see Figures 3C,D. These points are determined by the height of
the commissure hc and the opening angle β . We attach a cylinder
with radius RS to the aortic root to model the beginning of the
ascending aorta. Geometrical parameters for the sinus of Valsalva
are not considered as modifiable yet. The thickness is acquired by
copying, scaling and translating surfaces. The parameter values
used in the simulations are listed in Table 1.

4.1.2. Material
The leaflets are made of a very thin, flexible and inextensible
material. The fibers in an aortic leaflet are aligned in the
circumferential direction (Swanson and Clark, 1974), and the
mechanical properties vary in different parts of the aortic valve
(Kasyanov et al., 1985). In the framework of this work, it is
sufficient to assume the solid material to be homogeneous.
As material model we choose an incompressible, neo-Hookean
material. At this point of development, the material parameters
are set to µs = 3.3 · 103MPa and ρ = 1, 000kg/m3. Although
these parameters do not conform with realistic values yet, typical
characteristics of the flow and valve dynamics can be captured.

FIGURE 5 | The geometry of a bileaflet mechanical heart valve. (A) Shows a typical bileaflet mechanical heart valve which is used as an artificial implant, and (B) is a

simplified BMHV embedded in an idealized aorta used in our simulations.
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4.1.3. Initial and Boundary Conditions
Even though in the initial geometry the valve is in a fully open
position, the leaflets are pushed into a starting configuration
to facilitate the movement of the leaflets. In order to remove
excessive leaflet material resulting from the deformation, we
prescribe a constant, initial stress in radial direction such that the
material behaves like a contracting balloon which was stretched.
The starting position for our simulations with initial radial stress
4 Pa is shown in Figure 4A. The stress is reset for the FSI
simulation.

We only consider the two major phases, systole and diastole,
and one heart cycle lasts for 1.124 s. The inflow profile is flat and
the magnitude is adopted from the left ventricle flow simulations
presented in Spühler et al. (2015). At the end of systole, the
direction of the inflow is inverted to create a backflow which is
physiologically consistent and helps the valve to close. The time-
dependent inflow magnitude is plotted in Figure 4B. Diastole
starts when the valve is closed and the inflow is set to zero. A
homogeneous Dirichlet boundary condition for the pressure is
set at the outlet.

4.2. Bileaflet Mechanical Heart Valve
4.2.1. Geometry
Pathological conditions caused by valvular dysfunction in the
form of a narrowing of the valve opening (stenosis) or insufficient
closing of the leaflets, reduce the efficiency of the heart. To
restore the hemodynamics function, the native heart valve
may need to be repaired or even replaced by an artificial
implant. Since the first clinical implantation of an artificial
valve by Dr. Charles A. Hufnagel in 1952, many different
mechanical and bioprosthetic valves have been developed. Due
to their wear resistance, the bileaflet mechanical heart valves
(BMHV) are most widely favored as aortic valve replacement.

FIGURE 6 | All 2-D images are visualized using these 2-D cuts in Paraview

(Ahrens et al., 2005). The plane for the BMHV (A) is defined by its origin in

(0.278,−1.65, 1.05) and normal (0, 1, 0), and the plane for the native valve

(B) by its origin in (−0.179, 0.0, 1.05) and normal (0, 1, 0).

As can be seen in Figure 5A, a typical BMHV is made
of a circular housing and two semicircular discs, which are
mounted in the housing through a hinge mechanism. Both
leaflets are rotating passively in response to the fluid dynamics
resulting from the periodic contraction and expansion of the left
ventricle.

Since feasibility, but not clinical validation is the focus
of this paper, a detailed geometric model of a mechanical
valve is secondary at this stage of investigation. Therefore, the
BMHV models are reduced to the leaflets only, embedded in
an idealized aorta as depicted in Figure 5B. The geometry is
simplified in such a way that no contact between the leaflets
occurs.

To use numerical simulations in order to study the flow
through a mechanical prosthetic heart valve began in the early
1970s. Since then, many simulations of the flow dynamics around
a BMHV have been conducted with the aim to elucidate and
eliminate complications as thromboembolism. Simulating flow
dynamics in the vicinity of a heart valve is a challenging task.
The flow is pulsative and undergoes transition to turbulence.
Patient-specific framework and the computational models should
account for the multi-scale nature of the flow and deformability
of the wall.

4.2.2. Material
We apply the same material model as for the native valve and
set the material parameters to µs = 6.5 · 105MPa and ρ =

1, 000kg/m3.

4.2.3. Initial and Boundary Conditions
Contrary to the native valve, we simulate the fluid-structure
interaction of the leaflets and the hemodynamics of the left
ventricle (LV) conjointly. A detailed description of the boundary
conditions for the numerical simulation of the blood flow in the
LV can be found in Spühler et al. (2015). We define a rotational
axis by fixing two edge points of each leaflet. The hinges on which

FIGURE 7 | The geometric orifice area is plotted against time.

Frontiers in Physiology | www.frontiersin.org 8 April 2018 | Volume 9 | Article 363

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Spühler et al. 3D FSI of Aortic Valves

FIGURE 8 | The instantaneous vector field of the velocity using arrows and line integral convolution (LIC), the pressure field and the aortic valve position during RVOT

[t = 0.05 (A), 0.08 (B), 0.1 s (C)].

Frontiers in Physiology | www.frontiersin.org 9 April 2018 | Volume 9 | Article 363

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Spühler et al. 3D FSI of Aortic Valves

FIGURE 9 | The instantaneous vector field of the velocity using arrows and line integral convolution (LIC), the pressure field and the aortic valve position in the phases

of gradual closure [t = 0.25 (A), 0.3 (B)] and RVCT [t = 0.4 s (C)].
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the leaflets are placed limit the rotational angle so that the BMHV
is properly opened and closed. To mimic this mechanism, we set
a threshold for the opening and closing angles respectively. As
soon as a leaflet exceeds this angular barrier during systole or
diastole, its position is locked. The leaflets are released from the
fully open position if the mean pressure above the valve exceeds
the mean pressure under the valve, and is disengaged from the
closed position as soon as a new heart cycle starts. The maximal
angular opening is set to 45◦.

5. RESULTS

In this section we present the numerical results for the native and
bileaflet mechanical valves. The 2-D cuts for the native valve and
the BMHV are specified in Figure 6. Since we do not model the
coronary arteries, which originate from the sinus of Valsalva, and
the flowwithin the aortic root is almost quiescent during diastole,
the results are based on the first heart cycle. The results for the
native and mechanical valve are presented from meshes with
248′980 and 783′823′ vertices respectively. At the beginning of
the simulation and during diastole, the time step size kn is set such
that the Courant-Friedrichs-Lewy (CFL) number is 0.5. During
systole, we have to reduce kn such that the mesh smoothing
algorithms can maintain the mesh quality. No remeshing is
required but in the worst case the CFL number had to be reduced
to 0.01 to bypass a sensitive phase of large and fast deformation of
the leaflets. To advance the solver one time step, the momentum
and continuity equation, the Eikonal equation for contact
detection, and the linear and non-linear elasticity equations for
mesh smoothing have to be solved. When distributing ∼ 2, 000
vertices per core, each sub-problem is solved in less than 0.5 s
but its total time is about 5 s. The latter can slightly vary
depending on the quality of the mesh since the cost of the
non-linear elastic smoother is higher when the mesh quality
is low.

FIGURE 10 | A small vortex is formed at the tip of the backside of the leaflet at

t = 0.25 s as the flow starts to decelerate.

5.1. Simulation Results of the Native Valve
First, we examine the opening and closing movement of the
aortic valve, which can be divided into four phases (Bellhouse
and Talbot, 1969; Labrosse et al., 2010). A rapid valve opening
time (RVOT) is followed by a period when the valve stays widely
opened (quasi-steady phase). The valve first closes steadily and
then rapidly due to reversed flow (RVCT) in the very end of
systole. All these stages can be observed in our simulations by
measuring the geometric orifice area (GOA), which is calculated
by determining the area of the surface used for closing the valve.
The time-dependent GOA is depicted in Figure 7 and matches
well the dynamics captured in Labrosse et al. (2010). The rapid
opening phase takes about 0.05 s and the valve stays open for
about 0.15 s. Three-quarters of the valve closure is taking place
when the flow is still flowing forward (∼0.15 s) and a total closure
is obtained by a small amount of reversed flow (∼0.05 s).

To study the flow dynamics, in Figures 8, 9 the velocity and
pressure fields together with the valve position are visualized
at six time instances during the different phases: RVOT (t =

0.05, 0.08, 0.1 s), the phase of gradual closure (t = 0.25, 0.3 s) and
RVCT (t = 0.4 s).

During RVOT, the fluid is accelerated over the whole domain
flowing toward the outlet. As observed in De Hart et al. (2003),
even the blood residing in the sinus cavity is washed out as shown
in Figures 8A–C.

During the subsequent period, as the valve reaches and
stays in the fully opened position, the flow is dominated by a
strong, central jet. The flow starts to decelerate at about t =

0.2 s when the valve is still completely opened, and at about
t = 0.25 s the flow in the sinus cavity does not flow toward
the outflow anymore, see Figure 9A. A small vortex starts to
form at the tip of the backside of the leaflet, as depicted in
Figure 10. Computing Lagrangian coherent structures, (Shadden
et al., 2010) can distinguish two flow domains in this phase
of deceleration. They observe a boundary between the strong

FIGURE 11 | During the phase of deceleration a boundary between the

outflowing jet (A) and regions with recirculating flow (B,C) can be observed.

The figures show the velocity field at t = 0.3 s.
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FIGURE 12 | Two different vortices can be located during valve closure. Velocity field at t = 0.35 s (A) and t = 0.4 s (B).

FIGURE 13 | The von Mises Stress τv (Pa) is plotted at instantaneous time points during the acceleration phase, systole and deceleration phase: Leaflet position at

t = 0.05 s (A), t = 0.08 s (B), t = 0.1 s (C), t = 0.3 s (D), t = 0.4 s (E), t = 0.442s (F).
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outflowing jet and the regions with recirculating flow. These
features can also be observed in our simulations as visualized in
Figure 11.

During the closing phase, two different vortices can be
observed, as shown in Figures 9B,C, 12. One vortex is located
just above the leaflet and the other one within the sinus cavity.
Although they are rotating in counter directions, both of them
drive the valve to close. The vortex within the sinus cavity merges
to a streamline flow and only the vortex at the tip of the leaflet
is left. A fully reversed flow in the ascending aorta is modeled by
altering the inflow condition and a complete closure of the valve
is achieved.

High stress has been connected to leaflet damage and failure.
To analyze the stress distribution in the leaflets of our model,
the von Mises stress τv in logarithmic scale is computed for
the same time instances as the velocity and pressure fields in
Figures 8, 9,

τ 2v :=

3∑

i,j=1

|τ ij − δij
1

3
tr(τ )|2. (16)

We also visualize the stress distribution at the moment when
the valve has just been closed at t = 0.442. As can be observed
in Figure 13, regions with high stress can be localized to the
attachment lines, commissure and leaflet belly. However, due to
the low mesh resolution, this is only a qualitative analysis of the
stress distribution.

No elaborated studies to analyze mesh sensitivity have been
conducted yet. So far, we have only investigated to what extent the
point of contact is affected by mesh refinement. For this purpose,
the mesh is uniformly refined in the vicinity of the aortic root and
we observe that the point of contact does slightly differ as listed
in Table 2.

5.2. Simulation Results of the BMHV
To examine the valvular kinematics, we calculate the opening
and closing angle as well as the rotational velocity of the leaflets.
The rotational angle of the right and left leaflet is defined
as depicted in Figure 14A, and the results are presented in
Figure 14B. We observe that both leaflets are slightly open
at first and accelerate and decelerate linearly while opening.
The right leaflet precedes the left leaflet in the opening phase.
This kinematic variation is of course strongly influenced by
the geometry of the aorta. They then stay in their fully
opened position until they close very rapidly, mainly due to
backflow.

The geometry of a BMHV generates three jets, namely one
central jet flowing through the gap between the leaflets and
two side jets. During the end of the rapid opening phase,
vortex rings are shed from the tip of the leaflets due to the
difference in the velocity magnitude of the central jet and
the two side jets. The vortex rings travel downstream a short
distance before they vanish. Snapshots of the velocity field using
line integral convolution (LIC) are visualized in Figure 15A.
Figure 15B provides a closer view of the recirculation areas
We use the open source code Saaz to calculate λ2 for our

simulations (King et al., 2011). The threshold 2λ2 is manually
adjusted until we can differentiate coherent vortex structures
as shown in Figure 15C. The velocity vectors are added to
indicate the rotational direction. The vortex observed at t =

0.1 at the right leaflet merges after a very short time into
a recirculating flow with opposite direction (t = 0.11) and
separates from the leaflet (t = 0.115). Meanwhile, a clockwise
vortex is developed at the outer part of the left leaflet (t =

0.12), which eventually entails a neighboring, counter-clockwise
rotating flow (t = 0.124). The former is swept off downstream,
while the latter stays attached to the leaflet. When the valve
has reached the fully opened position, no further vortices are
developed.

6. CONCLUSION

The aim of our research is to develop an open source modular
framework for modeling and simulating the blood flow in the
heart. In the present work we place prototypes of a native
and mechanical aortic valve between the left ventricle and the
aorta.

We model both the fluid-structure interaction of the valve
and the contact problem in the framework of a unified
continuum. This approach to simulate the valvular dynamics
is unique and has the advantageous properties that the whole
problem can be described by a set of partial differential
equations for which the same numerical methods are applicable.
Furthermore, no instability issues due to the fluid-structure
coupling is encountered. All algorithms are implemented in
the FEniCS-HPC software framework optimized for parallel
computing.

We generated a CAD model of an idealized native aortic root
based on a small set of parameters, where we leave for future work
to adapt the geometry to patient-specific data, and to connect the
native aortic root to the left ventricle. The bileaflet mechanical
heart valve is reduced to the leaflets only, which are embedded
in a simplified geometric model of the aorta. In contrast to the
native valve, we simulate the fluid-structure interaction of the
leaflets and the hemodynamics of the left ventricle conjointly.
The next step is a more realistic geometric model of the
BMHV.

The weak point of our approach is the degradation of the
mesh quality under large mesh deformations. All the simulations
were conducted without remeshing, but we usually had to reduce
the time step such that the mesh smoothing algorithms could
comply with the deformation. The small time step size increased
the computational time. Remeshing the volume mesh is an
alternative, but not ideal for parallel computing. Thus, this
limitation has to be addressed.

TABLE 2 | Mesh sensitivity regarding the point of contact.

Mesh Mesh size Point of contact in time (s)

Mesh 1 37′631 vertices 0.440

Mesh 2 73′147 vertices 0.442

Mesh 3 248′980 vertices 0.434
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FIGURE 14 | The definition of the rotational angle α is illustrated in (A) and the simulation results of the rotational angle and velocity are plotted in (B).

FIGURE 15 | Snapshots of the velocity field and vortex structure of a BMHV at (from left to right) t = 0.1, 0.11, 0.115, 0.120, 0.124 s: Velocity field using LIC are

depicted in (A). The marked areas are enlarged and a close up view of circulations areas is shown in (B). Three-dimensional vortex structures are visualized in (C) by

using the λ2-criterion.

Although the material properties of both valves do not
conform with realistic values yet, typical characteristics of
the flow can be identified. Based on the simulation results,
we conclude that our approach for simulating the fluid
dynamics around aortic valves is feasible. More anatomically
accurate models are targeted as a next step in order to
not only examine the hemodynamics but also to test and

optimize the design of valve implants. Simulations on
larger meshes with higher resolution are to be performed
to examine and strengthen the accuracy and robustness
of our approach. Extension of the BMVH model, and
connecting the native aortic root to a LV geometry, as well
as simulations with much larger meshes, are aimed in our future
work.
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