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Realistic electrocardiogram (ECG) simulation with numerical models is important for

research linking cellular and molecular physiology to clinically observable signals, and

crucial for patient tailoring of numerical heart models. However, ECG simulation with

a realistic torso model is computationally much harder than simulation of cardiac

activity itself, so that many studies with sophisticated heart models have resorted to

crude approximations of the ECG. This paper shows how the classical concept of

electrocardiographic lead fields can be used for an ECG simulation method that matches

the realism of modern heart models. The accuracy and resource requirements were

compared to those of a full-torso solution for the potential and scaling was tested up to

14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were

computed on a 3.3 billion-node heart-torso mesh at 0.2mm resolution. The results show

that the lead-field method is more efficient than a full-torso solution when the number of

simulated samples is larger than the number of computed ECG leads. While the initial

computation of the lead fields remains a hard and poorly scalable problem, the ECG

computation itself scales almost perfectly and, even for several hundreds of ECG leads,

takes much less time than the underlying simulation of cardiac activity.

Keywords: numerical modeling, electrocardiogram, high-performance computing, reaction-diffusion model,

bidomain model, lead fields

1. INTRODUCTION

The electrocardiogram (ECG) is one of the most common tools in present-day medicine, yet its
relation with the molecular biology of the heart is still poorly understood. The ECG witnesses the
collective activity of about a million current-generating transmembrane proteins in each of the
heart’s muscle cells (Hille, 2001). Many of these proteins have been identified and their actions have
been captured in mathematical models that predict their collective behavior on the scale of a cell
(Noble and Rudy, 2001). By coupling millions of these membrane models one can create a model
of whole-heart electrophysiology. Such models generate crucial insights in the functional effects of
molecular-level changes, allowing for example to predict dangerous side effects of new drug designs
(Passini et al., 2017) or to understand how cardiac ion-channel mutations influence cardiac rhythm
disorders (Gima and Rudy, 2002). Moreover, from their results one can compute the corresponding
ECG and predict how lab results on subcellular components would translate to everyday practice
(Hoogendijk et al., 2010; Keller et al., 2012; Zemzemi et al., 2013).
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Such realistic models are large and, when run on a single
processor, would take days to simulate just one heartbeat.
Fortunately the problem can be expressed in such a way that
the work may be spread over many processors with little
communication between them. Therefore, these computations
are said to scale very well, meaning that they run almost twice
as fast every time the number of processors is doubled (Vázquez
et al., 2011). This makes them suitable for use on large-scale
parallel computers, allowing models to run in nearly real time
(Niederer et al., 2011b; Richards et al., 2013).

Simulation of a realistic ECG from the results of such a
numerical heart model is much harder, because the electrical
current generated by the heart meets a different conductivity at
each point in the torso. As a result, each point influences the
potential everywhere else, so to find the potential anywhere one
must solve it everywhere at the same time.

Numerically this means that a large system of linear equations
must be solved, one for each point in the torso model. These
problems are harder when they are larger and require frequent
communication between the processors in a parallel computer.
This means that they cannot be solved much faster by using
more processors. Therefore, ECG computation is becoming a
bottleneck, limiting both the speed and the spatial resolution of
our models.

To avoid this problem many researchers have used simplified
torso models, resulting in a less accurate ECG. A solution that
can avoid such a sacrifice is to simulate the ECG using an
electrocardiographic concept named a lead field. This allows the
problem to be split into a hard (poorly scaling) part and an
easy (well scaling) part. The hard part is solved only once for
each ECG lead, while the easy part is run repeatedly for each
time step in a simulation and for multiple simulations on the
same geometry. This approach has been used by several authors,
but generally with simplified heart models (Pezzuto et al., 2017)
or, again, with simplified torso models (Horacek, 1973; Miller
and Geselowitz, 1978; Mailloux and Gulrajani, 1982; Aoki et al.,
1987).

The purpose of this paper is to show that a lead-field
approach can greatly improve scalability in a high-performance
computing (HPC) context without sacrificing accuracy. This
is not obvious, because the method requires a large set of
transfer coefficients (the lead field) to be stored between the
two phases of the computation. The efficiency of the method
depends on the accuracy with which the lead field must be
computed and the degree to which it can be downsampled
without affecting the accuracy of the ECG too much. Finally, to
provide answers to these questions an accurate reference solution
is needed.

Using a reference solution computed on a full torso
model at 0.2mm resolution this study shows that the
lead field can indeed be downsampled enough to achieve
an efficient and scalable computation, providing roughly
two orders of magnitude speedup with negligible loss in
accuracy.

The results of this studymake it possible to buildmore realistic
heart models with higher spatial resolution, without spending
much more time to compute the ECG.

2. METHODS

2.1. Model Equations
The methods in this study are based on the bidomain model of
cardiac electrophysiology (Miller and Geselowitz, 1978; Tung,
1978), on which most of the current modeling work in this area
is based (Niederer et al., 2011a; Henriquez, 2014). The bidomain
model is a continuum approximation of the heart muscle, which
in reality consists of a network of interconnected muscle cells
embedded in an extracellular matrix and other structures such
as fibroblasts and capillaries. The bidomain model approximates
this as two co-located spaces: the intracellular domain, consisting
of the interior of the cells and the gap junctions that connect
them, and the extracellular domain, consisting of everything else.

The two domains are characterized by conductivity tensors
Gi and Ge, respectively. Their values at each point in the model
depend on the fiber direction and account for the partial volume
occupation of the two domains. In addition the parameters Cm

and β determine the capacitance of the cell membrane and
the amount of membrane per unit volume, respectively. The
state variables of the model are the potential fields φi in the
intracellular and φe in the extracellular domain, and a set of
variables Ey describing the state of the membrane model at each
location. Using the auxiliary variable Vm = φi − φe and agreeing
that all variables are functions of time and position we can express
the bidomain model compactly as

β−1∇ · (Gi∇φi) = Cm∂tVm + Iion(Vm, Ey) (1)

β−1∇ · (Ge∇φe) = −Cm∂tVm − Iion(Vm, Ey) (2)

∂tEy = F(Vm, Ey) (3)

where the term Cm∂tVm represents the capacitive
transmembrane current, the function Iion the density of
ionic current flowing between the two domains, and F is a
nonlinear vector-valued function describing how the membrane
state evolves. The pair of functions Iion and F constitutes the
membrane model. Suitable boundary conditions are

Gi∇φi · ∂�A = 0 (4)

on the boundary �A of the cardiac muscle and

Ge∇φe · ∂�T = 0 (5)

on the torso boundary �T (Tung, 1978; Krassowska and Neu,
1994).

The electrical activity of the heart can then be simulated
by integrating Equations (1), (2), and (3) under the boundary
conditions (4) and (5) (Vigmond et al., 2002). This is known as
a bidomain reaction-diffusion model. In this study a simplified
version, a “monodomain” reaction-diffusion model, was used.
This model can be derived by assuming that Gi and Ge are
proportional (Leon and Horácek, 1991). Although this is a gross
simplification the effect of this assumption is negligible for most
purposes if the model parameters are well chosen (Potse et al.,
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2006; Nielsen et al., 2007; Bishop and Plank, 2011; Coudière et al.,
2014). The monodomain model reads

{

Cm∂tVm = β−1∇ ·
(

Gm∇Vm)− Iion(Vm, Ey)
∂tEy = F(Vm, Ey)

(6)

The “monodomain conductivity tensor”Gm was computed as the
series conductivity of the two domains, Gm = GiGe/(Gi + Ge).
With this choice the resistance encountered by a current loop
through the cell membrane is the same as in a bidomain model,
so that also the conduction velocity of a propagating activation
wavefront is almost the same.

An ECG potentialV(t) at time t is the difference in φe between
two locations on the body surface or, more generally, a linear
combination

V(t) =
∑

i

ciφ
i
e (7)

where ci are the relative contributions of the two or more
electrodes and φi

e are the potentials at the corresponding
positions. The coefficients ci must fulfill charge conservation,
∑

ci = 0.
To compute φe we must return to the bidomain model.

Equations (1) and (2) can be combined and reorganized to yield

∇ · ((Gi + Ge)∇φe) = −∇ · (Gi∇Vm). (8)

This equation can be solved for φe in the whole torso at once
from a given distribution of Vm. However, for the ECG we
need to know φe at a few locations only. Therefore, it can
be more efficient to use a Green’s function of the operator
∇ · ((Gi + Ge)∇ .) for each of these locations. Since an ECG
lead is a linear combination of φe at two or more points it
can also be represented directly by a linear combination of
Green’s functions. In electrocardiology such linear combinations
of Green’s functions are named lead fields (McFee and Johnston,
1953; Geselowitz, 1989; Colli-Franzone et al., 2000). A lead field
is computed once for each ECG lead. It is then used to evaluate
the ECG at each time step of the reaction-diffusion model and,
as long as the conductivity parameters are not changed, can be
re-used for multiple simulations. In terms of a lead field Z(Ex) the
ECG potential V(t) at time t is

V(t) =

∫

∇Z(Ex) · Gi∇Vm dEx (9)

where the integration is over the myocardium. In contrast to
the solution of the full system (8) this calculation is simple
and a priori highly scalable. The lead field can be computed as
the potential field resulting from a unit current applied at the
electrode locations Exi (Geselowitz, 1989):

∇ · ((Gi + Ge)∇Z(Ex)) =
∑

i

ci δ(Ex− Exi) (10)

where the coefficients ci are as in Equation (7) and δ is Dirac’s
delta function. To avoid a scaling factor in (9) the total injected
current must be unitary,

∑

|ci| = 2.

2.2. Model Geometry
In order to run tests on a relevant geometry a model of the
heart and torso was used that had been created for a previous
study (Kania et al., 2017). The methods to build this geometry,
only tersely described before, were as follows. High-resolution
cardiac and thoracic computed tomography (CT) images were
obtained from a female patient in her thirties. Images were
segmented automatically using the MUSIC software (IHU Liryc,
Université de Bordeaux and Inria Sophia Antipolis, France),
under supervision of an expert operator. The boundaries of
the segmented volumes were expressed as triangulated surfaces
and meshing errors were manually corrected using Blender
(The Blender Foundation, Amsterdam, The Netherlands). The
resulting surface mesh defined the volumes of the ventricular
myocardium, left and right cavities with parts of the great vessels,
lungs, and the whole body. To define hexahedral meshes for
the computations the surfaces were overlaid with a 3D cartesian
mesh whose elements were assigned types according to the
surfaces in which they were contained. The bones were also
segmented and meshed but not included in the simulations. The
atrial myocardium was not segmented.

The heart mesh was processed to define subendocardial and
subepicardial layers and fiber directions using the rule proposed
by Beyar and Sideman (1984), as previously described (Potse
et al., 2006). The torso mesh was similarly processed to define a
layer of 1 cm thickness directly under the skin as skeletal muscle
and to define a sheet direction in this layer. Since the true fiber
directions of the skeletal muscle layer are too complex to account
for the model muscle simply had a low conductivity in the radial
direction and a high conductivity in all circumferential directions
(Table 1).

During the thoracic scan the patient was wearing a vest with
252 embedded electrodes (Tilt et al., 2013; Cochet et al., 2014).
The locations of these electrodes were extracted from the CT
data using software provided by the manufacturer of the vest.
In addition the locations of the 9 standard ECG electrodes were
determined by referring to the bone mesh, and two electrode
locations on the hips were chosen. The surface mesh with
electrode positions is illustrated in Figure 1.

2.3. Spatial Discretization
Spatial discretization was done using a finite-difference method.
Differential operators of the form ∇ · (G∇ .), where G is any of
the conductivity tensor fields employed, were computed using an

TABLE 1 | Tissues used in the simulations together with the volumes they occupy

in the torso model, the conductivity parameters σ (in mS/cm), and β (cm−1); the

subscript “i” stands for intracellular, “e” for extracellular, “L” for longitudinal, “T” for

transverse (within a tissue sheet), and “C” for across-sheet.

Material Volume (mL) σiL σiT σiC σeL σeT σeC β

Myocardium 110 3.0 0.3 0.3 3.00 1.20 1.20 800

Body 16,482 0 0 0 2.00 2.00 2.00 0

Blood 236 0 0 0 6.00 6.00 6.00 0

Lung 4,352 0 0 0 0.50 0.50 0.50 0

Muscle 5,605 0 0 0 3.55 3.55 0.44 0
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FIGURE 1 | Model geometry and electrode positions. (A) Torso model. The smaller electrodes with a gray cap belong to the vest; those with a red cap are the

standard ECG electrodes. (B) Surfaces representing the two cardiac cavities and the ventricular epicardium.

expression proposed by Saleheen and Ng (1997). This expression
assumes that G is constant on elements and that potentials are
defined on the nodes of the mesh. It produces a 19-point stencil
that takes anisotropy and inhomogeneities into account. The
simulation code read its geometry in terms of elements, and
created a node mesh, assigning node types such that all corners
of a myocardial element would have myocardial nodes. In order
to treat myocardial boundaries correctly, the β value of each
node was the average of those associated with the 8 elements
around it, which was zero for non-myocardium (Potse et al.,
2006).

2.4. Simulation of Cardiac Activity
To prepare input data for ECG simulation propagating activation
was simulated using the monodomain reaction-diffusion model
(6) using the membrane model of Ten Tusscher and Panfilov
(2006) for the functions F and Iion. A uniform time step of 10 µs
was used. At each time step the code

1. evaluated the diffusion current β−1∇ ·
(

Gm∇Vm),
2. communicated the diffusion current across domain

boundaries,
3. integrated the membrane status variables Ey,
4. evaluated Iion(Vm, Ey), and
5. integrated Vm.

After each 100 time steps results were written to file. Simulations
were run on a heart mesh at 0.2mm resolution. Tissue parameters
determiningGm and β are listed inTable 1. Gating variables were
integrated with the method of Rush and Larsen (1978) and all
other variables with a forward Euler method.

Activation was started with a single stimulus at one location, at
the beginning of the simulation. Seven simulations were run, each

timewith the stimulus at a different location. Simulations covered
500ms to include the full depolarization and repolarization of the
ventricles.

2.5. ECG Simulation
The ECG was computed with several methods:

FSF, the fine-mesh full solution solved the full system (8) for
given Vm on a heart-torso mesh with 0.2mm resolution.
This was an exceptionally large computation requiring
3.3 · 109 mesh nodes and 12 TB memory. It was
combined in a single run with the integration of the
monodomain reaction-diffusion model (6). Solutions for φe

were computed after each 100 time steps.

FSC, the coarse-mesh full solution solved an alternate form of
Equation (8) on a heart-torso mesh with 1mm resolution
(Potse and Kuijpers, 2010). In this case the equation read

∇ · ((Gi + Ge)∇φe) = −Iw (11)

where Iw is a projection of the term ∇ · (Gi∇Vm) from a
0.2mm resolution heart mesh onto a 1mm resolution torso
mesh. Each coarse-mesh node received contributions from
a cube-shaped area including all fine-mesh nodes within the
up to 8 coarse-mesh elements around it, with higher weights
attributed to nearby nodes, as in a trilinear interpolation: Let
1x, 1y, 1z be the number of fine-mesh edges between a
coarse-mesh node and a fine-mesh node along the x, y, and
z axis, respectively. Then the contribution of the fine-mesh
node to the coarse-mesh node was

w =

{

0, if 1x ≥ 5 ∨ 1y ≥ 5 ∨ 1z ≥ 5

(5− 1x)(5− 1y)(5− 1z)/56, otherwise.

Frontiers in Physiology | www.frontiersin.org 4 April 2018 | Volume 9 | Article 370

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Potse Scalable ECG Simulation

The coarse mesh was constructed such that a myocardial
fine-mesh node was always surrounded by 8 coarse-mesh
nodes. Therefore, w added up to unity for each fine-mesh
node and charge conservation was ensured.

For the FSC method the monodomain reaction-diffusion
model (6) was integrated in a separate run which saved Iw to
file. This method has been used routinely in several studies
(Nguyên et al., 2015; Meijborg et al., 2016; Duchateau et al.,
2017; Kania et al., 2017). The torso mesh in this case
consisted of 2.7 · 107 nodes.

LF, the lead-field method evaluated the integral expression (9)
in its discretized form. This took place during the reaction-
diffusion simulation and on the same mesh, i.e., at 0.2mm
resolution, after each 100 time steps. Each component
of ∇Vm was evaluated on model elements as an average
of the differentials along 4 edges of the element. The
conductivity tensor Gi was also evaluated on each element.
For testing purposes the lead vector field ∇Z was evaluated
at different resolutions. For this purpose the field was
first downsampled by an external program, using a simple
averaging of n × n × n elements, where n could be 2, 5, 10,
or 25.

LFS, the lead-field method with selective downsampling was
identical to the lead-field method except that the
downsampling program took the tissue types of the
elements into account. If any of the fine-mesh elements
inside a coarse-mesh element E had a myocardial type, only
fine-mesh elements with myocardial type were used in the
average for E. The idea behind this was that ∇Z undergoes
abrupt changes at the myocardial boundaries, and that it
is more accurate to mix in a contribution from another
myocardial area than, for example, one from the lung.

The notations LF(C, S) and LFS(C, S) will be used for the LF
and LFS methods, respectively, with lead fields computed at a
resolution of Cmillimeters and downsampled to a resolution of S
millimeters.

2.6. Computation of Lead Fields
To prepare the lead fields Z for the ECG computation the system
(10) was solved for each lead. This was done once with a torso
model at 1mm resolution and once with a torso model at 0.2mm
resolution. Like the FSF, the latter calculation was exceptionally
large and was only intended to provide reference values, to test
the hypothesis that 1mm resolution suffices for such calculations.

In either case 266 lead fields were computed: the 12 standard
ECG leads, and one lead for each of the 252 vest electrodes and
2 hip electrodes referenced against Wilson’s central terminal (the
average of the two arm electrodes and the left leg electrode).

The computed lead fields Z were stored in files. A dedicated
program computed ∇Z and downsampled it using the two
methods described in section 2.5, i.e., with and without
consideration of the tissue types of the elements. The field
computed at 0.2mm resolution was downsampled by the factors
2, 5, 10, and 25 to obtain resolutions of 0.4, 1, 2, and 5mm.

The field computed at 1mm resolution was downsampled by the
factors 2 and 5 to obtain resolutions of 2 and 5mm.

2.7. Testing Protocol
ECGs were simulated using each of the 4 methods described in
section 2.5 and, for the methods based on lead fields, at each of
the resolutions mentioned in section 2.6.

The ECG potentials V were compared to a reference ECG
Vref in terms of three measures: maximum, root-mean-square
(RMS), and relative difference (RelDif) (van Oosterom, 2001;
Tysler et al., 2007), defined as

RelDif =

√

∑

t

∑

n(Vtn − Vref
tn )2

∑

t

∑

n(V
ref
tn )2

(12)

where the index t ranges over all 500 samples and the index n
ranges over all 266 leads. For the 252 vest leads the dependence
of the error values on the position of the positive electrode was
investigated.

The effect of the ECG computation on the run time of a
reaction-diffusion model was investigated and the scalability of
the 4methods was investigated by running tests on 16, 32, . . . , 512
nodes of a Bull cluster. Each of these nodes was equipped with
two 14-core Intel Xeon E5-2690 processors with 2.6GHz clock
frequency and 64GB memory. Accuracy results are reported
as averages over the 7 activation sequences. Performance tests
were carried out 5 times to report average values and standard
deviations of run time.

2.8. Numerical Methods
Simulations were performed using the Propag-5 software (Krause
et al., 2012), to which new code was added to compute a lead
field-based ECG on the fly during a simulation of the heart, and
to facilitate the computation of the lead fields themselves. Like
its predecessor Propag-4 (Potse et al., 2006), the software uses a
structured mesh, but stores information only for elements and
nodes that are relevant for the computation: only myocardium
for a monodomain model, and only conducting material for a
bidomain model. As discussed by Krause et al. (2012) Propag-
5 uses a hybrid MPI/OpenMP parallellization scheme. Using
a naive temporary partitioning of the domain the code reads
the geometry in terms of elements and creates a node mesh
using rules that ensure consistency with the scheme discussed
in section 2.3. It then uses the ParMetis library to partition this
mesh in parallel and creates a definitive domain partitioning for
the computations. This fully parallel workflow allowed it to load
and partition a mesh with over 3 billion nodes.

Because in some of the computations the model size exceeded
the maximum value of a signed 32-bit integer, Propag was
compiled with a 64-bit integer type for global indices. The PetSC
(Balay et al., 2017) and Parmetis libraries which Propag uses were
compiled entirely with 64-bit integers because they do not have a
distinct type for global indices.

The linear systems (8), (10), and (11) were solved with a
biCGStab solver (van der Vorst, 1992) with a BoomerAMG
preconditioner from the Hypre package (Henson and
Meier Yang, 2002; Falgout et al., 2017). The solver terminated
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when the norm of the error term was 10−8 times smaller than
the norm of the right-hand side. Multigrid preconditioners such
as BoomerAMG are very powerful and well-suited for large
bidomain problems (Sundnes et al., 2002; Weber dos Santos
et al., 2004; Austin et al., 2006) so that the solver typically needs
only a handful of iterations, in contrast to the problematic
convergence observed on large models with an incomplete-LU
preconditioner (Potse et al., 2006).

3. RESULTS

An example of a computed lead field is shown in Figure 2. This
field was computed and stored at 1-mm resolution. The figure
shows how the field suddenly changes direction and magnitude
at lung boundaries. There is a slight left-right asymmetry because
the highly conductive cardiac cavities concentrate the field on the
left side of the thorax.

The computed depolarization sequences of the 7 simulated
heart beats that were used for ECG computation are shown in
Figure 3.

Potentials computed with a full-torso solution from beat 5
are shown in Figure 4. They are about 10 times larger in the
myocardium than near the body surface.

3.1. Lead-Field ECG Compared to Full
Solution
To establish that the lead-field and full solution methods produce
the same results, simulated ECGs were compared between the
LF(1, 1) and FSC methods. Averaged over the 7 simulations,
RelDif was 0.0016, RMS error 0.3 µV, and maximum error 4.6 µV,
while ECG amplitudes were in the order of 1mV.

Analogously, a single ECG was compared between the
LF(0.2, 0.2) and FSF methods. In this case the differences were
slightly smaller: RelDif was 0.0014, RMS error 0.2 µV, and
maximum error 2.6 µV.

3.2. Effect of Resolution
To determine the effect of lead-field resolution on ECG
accuracy, 7 different activation sequences were simulated
with a monodomain reaction-diffusion model and ECGs were
simulated on the fly using a lead field. This was done for the
lead fields computed at 0.2 and at 1.0mm and all downsamplings
thereof, both with the LF and with the LFS method. The resulting
ECGs were compared to a reference ECG.

The results are shown in Figure 5. In Figure 5A errors
are shown using the ECG computed with LF(0.2, 0.2) as the
reference. For the fields subsampled from those computed at
0.2mm resolution, differences are seen to increase roughly
linearly with the stepsize of the lead field. The LFS method
resulted in smaller differences. Results obtained with the field
computed at 1.0mm resolution and downsamplings differed
from the reference solution with little dependence on the
sampling level. Figure 5B shows that this dependency is
recovered when ECGs computed with LF(1, 1) are used as the
reference.

The relatively large influence of the spatial stepsize in the lead-
field computation suggests that differences in model geometry

FIGURE 2 | (A) Computed lead field for standard lead I (between the two arm

electrodes) shown using streamlines that represent the direction of ∇Z. Note

that they do not represent the current (Gi +Ge)∇Z. For a clear visualization the

lines were seeded at a selection of points in and near the heart; variations in

field strength perpendicular to the lines cannot be read from this figure. A

rotating display is provided in a Supplementary File. (B) Close-up of the lead

field on a grid in a frontal plane crossing the heart. The arrow length shows the

strength of the field, |∇Z|, at the tail of the arrow. Field strength is small in the

highly conductive blood inside the ventricles, and very large in the

low-conductivity lungs, while it has an intermediate value in the cardiac muscle

and in the abdomen. (C) Superior view of the heart showing the location of the

grid.

dominate the error. Indeed, the difference between full solutions
at 0.2 and 1.0mm, computed only for one simulation, had a
RelDif of 0.10, RMS error 12 µV, and maximum error 0.15mV,
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FIGURE 3 | Depolarization order in the 7 monodomain reaction-diffusion simulations from which ECGs were computed; anterior view. The scale is in milliseconds.

FIGURE 4 | (A) Full-torso solution for the potential field φe 40ms after the start of the simulation in beat 5 (see Figure 3), shown in a cross section of the torso and on

the surface of the cardiac cavities. A movie showing the potential field throughout the heart beat is provided in a Supplementary File. (B) ECG lead I, which is

measured between the two arm electrodes, from the same simulation. (C) φe at 6 positions in the cross-sectional plane of (A). The first position was inside the left

ventricular cavity and the second in the left-ventricular free wall. The other four are marked with green spheres. These potentials are referenced against Wilson’s

central terminal (the average potential of the three limb electrodes).

which are very similar to the differences between LF(1, 1) and
LF(0.2, 1) in Figure 5A.

To find out at which locations in the model the lead fields
computed with LFS(0.2, 1) and LF(1, 1) differed, the L2 norm of
the difference between the two vector fields was computed for
all elements. Large differences were found to occur at locations
where the fiber direction was highly variable. One such location,

at the inferior septal junction, is illustrated in Figure 6. It is
compared with a measure of variability in fiber direction in the
underlying anatomy files, computed as

1−
1

N

N
∑

i=1

∣

∣EP · Epi
∣

∣
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FIGURE 5 | ECG computation error expressed as RelDif, RMS difference, and maximum difference. In each panel dots indicate average values and the whiskers

indicate standard deviations of each statistic over the 7 activation sequences. (A) Error for the LF and LFS methods with fields downsampled from those computed at

0.2 and 1.0mm resolution, using the field at the full 0.2mm resolution as the reference. (B) Error for the LF and LFS methods with only fields downsampled from the

one computed at 1.0mm resolution, using the field at 1.0mm resolution as the reference.

FIGURE 6 | (Left) Norm of the difference between the lead vector fields computed with LFS(0.2, 1) and LF(1, 1). Brighter colors indicate higher values; the units are

arbitrary. The cross section is through the inferior septal junction, parallel to the standard long-axis plane. The cavity on the left side of the image is the bulbus region of

the right ventricle. (Right) Variability in fiber direction, also in arbitrary units, in the same cross section. The scales are in millimeters.

where EP is the fiber direction in the coarse-mesh element
and Epi are the fiber directions in the corresponding fine-mesh
elements. The absolute value, denoted as |.|, was taken because
the orientation of the direction vector is irrelevant.

In Figure 7 a few ECG leads are compared between different
computation methods. In Figure 7A full solutions at 0.2 and

1.0mm are compared. At the coarser resolution the ECG appears
more fractionated; this is particularly visible in lead III. As
discussed above, the RelDif between these ECGs was 0.10.
In Figure 7B the same full solution at 0.2mm is compared
with an ECG computed with LFS(0.2, 2). Despite the 10-fold
downsampling of the lead field the traces are visually identical;
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FIGURE 7 | Comparison of ECGs between different computation methods. (A) Full solutions at 0.2mm (orange) and 1.0mm (black). (B) Full solution at 0.2mm

(orange) and LFS(0.2, 2). The standard limb leads I, II, and III as well as three standard precordial leads V1, V4, and V6 are shown. Vertical grid lines are 40ms apart

and horizontal grid lines are 0.1mV apart.

the RelDif was 0.02. Thus, an ECG computed with a lead field
downsampled to 2mm resolution is more faithful than a full
solution at 1mm resolution, when compared to a solution at
0.2mm.

3.3. Performance
Table 2 shows how ECG computation with lead fields at different
resolutions affects the run time of a typical simulation. The data
in each row were obtained from 5 simulations of 500ms activity
with a reaction-diffusion model at 0.2mm resolution, run on
32 compute nodes (896 cores). The table separates initialization
time, ECG computation time, and simulation time (including
ECG computation but excluding initialization). For lead fields at
0.2 and 0.4mm resolution the initialization time is of the same
order of magnitude as the simulation time, due to the time it
takes to read the lead fields from file (141 and 53GB in these
cases). The time for ECG computation itself ranges between 4
and 5% of the simulation time, slightly reducing with the lead-
field resolution. At 1mm resolution the memory accesses related
to ∇Z (for 266 leads) are similar to those for Gi∇Vm so a further
reduction would not be expected. At 0.2mm resolution the ECG
computation is faster than at 0.4mm, likely because in this case
the lead field has the same resolution as the reaction-diffusion
model and the code then avoids an index conversion.

Figure 8A, shows how the computation times scale with the
number of cores used for a single lead-field resolution of 1.0mm.
The reaction-diffusion simulation and the ECG computation
scale well. Initialization time increases with the number of cores,
due to increasing communication for mesh distribution and data
input. Tests with higher and lower lead-field resolutions, not

TABLE 2 | Time required for LF-based ECG computation during a

reaction-diffusion simulation of 500ms.

res sim ECG init

0.2 172.6 ± 0.7 8.3 ± 0.0 216.2 ± 3.6

0.4 179.2 ± 0.4 9.8 ± 0.1 103.3 ± 1.9

1.0 173.5 ± 1.8 8.1 ± 0.1 28.2 ± 1.5

2.0 171.8 ± 1.4 6.9 ± 0.3 25.8 ± 1.0

5.0 171.3 ± 2.2 6.2 ± 0.2 14.5 ± 0.7

res, lead-field resolution in mm; sim, total simulation time; init, initialization time. Time is

given as average ± standard deviation over 5 simulations, in seconds.

presented in the figure, showed that the initialization time was
highly variable and had no clear relation with the resolution (and
thus the storage size) of the field. Rather, the number of collective
read operations seemed to be determining.

The black trace in Figure 8A shows the scaling of a full
solution (FSC method). It is over 2 orders of magnitude slower
than the lead-field ECG and stops scaling at 7,168 cores.

Figure 8B shows how the ECG computation time scales with
the number of nodes for all tested values of lead-field resolution.
Lead-field resolution is seen not to affect the scaling with the
number of cores. Generally the time decreases slightly with
decreasing resolution but, as in Table 2, the computation at
0.2mm was faster than the one at 0.4mm.

4. DISCUSSION

This study shows that a lead-field approach is an attractive
solution for ECG simulation on (large) parallel computers
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FIGURE 8 | (A) Scaling of propagation, lead-field ECG, and full solution. The blue, green, and red traces show average simulation time, ECG computation time, and

initialization time for reaction-diffusion simulations run on 16–512 nodes (448–14,336 cores) with 4 threads per process, with ECG computation based on a lead field

at 1.0mm resolution. The black trace shows the time for a full bidomain solution. Each data point represents an average over 5 simulations. (B) As (A), but showing

only ECG computation time, for all lead-field resolutions.

whenever the number of ECG leads is smaller than the number of
samples. It is about 100 times faster than a full solution, scalable
to more than 104 cores, and does not cause a significant loss in
accuracy. Lead fields can be stored at a resolution as low as 2mm,
meaning that they do not use excessive disk space even for a few
hundred leads.

4.1. Previous Work on Lead Fields
The concept of lead fields was initially proposed by McFee and
Johnston (1953) as a method to understand how ECG leads
“view” the heart. Their purpose was in the first place to design
leads that would be better in the sense that their fields would
be more uniform inside the heart muscle (McFee and Johnston,
1954). Later the idea has been adopted for the purpose of accurate
numerical simulation of the ECG (Geselowitz, 1989) and even
local electrograms inside the heart (Colli-Franzone et al., 2000;
Western et al., 2015).

The idea to use lead-field methods for ECG simulation has
been widely adopted. While the very earliest studies did not use
them, for example because they computed only a small number of
potential distributions (Gelernter and Swihart, 1964) or because
a full solution required less memory (Barr et al., 1966; Barnard
et al., 1967), numerous studies are based on some form of lead
fields or transfer coefficients between Vm in the heart and φe on
the body surface (Horacek, 1973; Miller and Geselowitz, 1978;
Mailloux and Gulrajani, 1982; Aoki et al., 1987; Lorange and
Gulrajani, 1993; Trudel et al., 2004).

Mailloux and Gulrajani (1982) and further work from the
same group (Lorange and Gulrajani, 1993; Trudel et al., 2004)
used transfer coefficients that are mathematically identical to lead
fields. Their transfer coefficients were computed with a boundary
element model (BEM) which accounted for heterogeneity of
the torso, but not for anisotropy. They found that they needed
<100 regions to define these coefficients, likely because their

model was isotropic. In the anisotropic model used here the lead
field changed considerably through the wall, requiring a much
higher though not prohibitive resolution. Jacquemet (2015, 2017)
evaluated the performance of the same (BEM-based)method on a
reaction-diffusionmodel of the human atria and found that 1,000
regions sufficed for a 1% accuracy.

Boulakia et al. (2010) reported that an ECG simulation based
on a transfer matrix was 60 times faster than solving a coupled
heart-torso problem. They were using a finite-element model
with about 1 million tetrahedra whose sizes gradually increased
from the heart to the torso surface, and a serial code. Despite the
obvious differences in methods the speedup was very similar to
what was found in the current study.

Electrocardiographic inverse modeling studies that used
volumetric transmembrane potentials or current dipoles as their
source models have also used transfer coefficients that are similar
to lead fields (Liu et al., 2006; Wang L. et al., 2013).

4.2. Other Methods to Compute the ECG
Many other studies have used full torso solutions to obtain
the ECG from a reaction-diffusion model using finite-difference
(Potse et al., 2009; Hoogendijk et al., 2010; Meijborg et al.,
2016; Chamorro-Servent et al., 2017) or finite-element models
(Lines et al., 2003; MacLachlan et al., 2005; Boulakia et al., 2010;
Keller et al., 2010; Zemzemi et al., 2015; Janssen et al., 2017).
In some cases this was done because intracardiac electrograms
in a torso-coupled heart were also simulated (Hoogendijk et al.,
2010; Meijborg et al., 2016). The ECG is then a free by-
product.

An interesting alternative is a mixed approach in which
anisotropic regions such as the heart and skeletal muscle are
handled with finite elements and isotropic regions with boundary
elements (Pullan and Bradley, 1996), resulting in fewer degrees of
freedom than a complete volume discretization.
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There is a considerable body of literature dedicated to the
problem of solving body-surface potentials from epicardial
(extracellular) potentials (Barr et al., 1977; Pilkington et al., 1987;
Stenroos and Haueisen, 2008), which has found an application
in cardiac inverse modeling (Greensite and Huiskamp, 1998;
Ramanathan et al., 2004; Shou et al., 2008). A formulation
in terms of transmembrane potentials on the (endocardial
and epicardial) surface of the cardiac muscle is possible if
equal anisotropy of the intracellular and extracellular domain is
assumed (Geselowitz, 1989; van Oosterom and Jacquemet, 2005)
and is also used to solve cardiac inverse problems (Oosterhoff
et al., 2016).

4.3. Strengths and Limitations
ECG simulation based on lead fields is very fast and as scalable as
a monodomain reaction-diffusion model. This makes it suitable
for inclusion in the same model run on a large-scale parallel
computer or a GPGPU, in contrast to full solutions, which would
limit the scalability of the entire computation. This advantage is
present whenever the number of ECG samples to be simulated
exceeds the number of leads.

Lead-field methods can also be used to compute local
electrograms in the heart but this may require a higher spatial
resolution at least near the electrode (Colli-Franzone et al., 2000).

For detailed spatial mapping of potentials, either in the heart
or on the torso surface, lead-field methods are less advantageous,
as the number of locations might exceed the number of samples
and may even be so large that the storage of the lead fields
becomes a performance bottleneck. In such cases full solutions
remain the method of choice and a relatively long solution
time will have to be accepted. Although new developments in
scalable preconditioners may improve the situation somewhat
(Munteanu et al., 2009; Ottino and Scacchi, 2015), it is unlikely
that full solvers will ever scale as well as an ECG computation
based on lead fields.

It would also be challenging to use a lead-field approach
in an electromechanical, deforming heart model. A lead field
that would be deformed with the mesh might be a reasonable
approximation but this has not been tested here.

The results of this study also suggest further improvements,
in the first place the use of non-uniform mesh density for
lead-field computation. Comparison of ECGs computed at 0.2
and 1.0mm resolution showed that the latter had artefactual
notches of about 0.05mV amplitude in the QRS complex, due
to misrepresentation of fiber orientation at locations where this
orientation changed rapidly. This applied to both full solutions
and lead-field ECGs. To avoid such artifacts one could try to
ensure a smooth fiber orientation throughout the model (Bayer
et al., 2012), but this can be challenging at the interventricular
junctions, or whenever measured fiber orientations rather than
rule-based orientations are used. The only alternative seems
to be computation of the lead field with a mesh at the same
resolution as the reaction-diffusion model inside the heart, and
for improved efficiency a lower resolution elsewhere in the torso
(Pullan and Bradley, 1996; Boulakia et al., 2010). While the
computations could still be hard on a mesh with a wide variation
in element size, the memory requirements would be much lower
than the 12 TB reported here for the reference torso model.

Another possible improvement that would be relevant for
very accurate computations with high-resolution lead fields is to
develop suitable compression methods for lead-field data. Very
likely the regularity of the field could be exploited by using fixed-
point numbers in combination with spatial differentiation and a
variable-length encoding.

In Figure 8A, a particularly unfavorable scaling of the
initialization phase was shown for the propagation model with
lead-field ECG. This was probably due to an issue with the
collective reading operation in the MPI library that was used,
but also to the fact that for this feasibility study little care had
been taken to organize this efficiently—after all the specifications
for this code depended on the outcome of the study. With these
results in hand it should be possible to avoid this problem by
using a more efficient storage format and organizing the read
operation in a different way. The figure also shows that the FSC
method takes an order ofmagnitudemore time than the reaction-
diffusion model. This difference is partly due to the small solver
tolerance that was chosen for this study.

4.4. Applications
The use of lead-field methods simplifies the workflow for large-
scale cardiac simulations, as it allows the ECG to be computed
on the fly with very little overhead during a reaction-diffusion
simulation on a mesh of the heart alone. Moreover, its high
scalability allows the resolution of the models to be increased
without causing a disproportional increase in the time needed for
ECG computation.

The results of this study are not only relevant for work
on large-scale computers but also for simulations on general-
purpose graphics processing units (GPGPU). Reaction-diffusion
simulations on GPGPUs have been reported by several groups
(e.g., Bartocci et al., 2011; Neic et al., 2012; Mena et al., 2015;
Kudryashova et al., 2017), recently even for a whole human
heart model run on a desktop computer (Vandersickel et al.,
2016). The strength of a GPGPU is that it provides thousands
of parallel processors for the price of a single CPU. However,
communication between these processors is a distinct weakness.
With a method based on lead fields it is nevertheless possible to
add rapid ECG computation to a model running on a GPGPU.
Pezzuto et al. (2017) have recently reported such a method,
though in combination with an eikonal model rather than a
reaction-diffusion model.

In the context of ECG inverse models and model
personalization a variety of methods has been reported
ranging from infinite-medium potentials (Giffard-Roisin et al.,
2017; Neic et al., 2017) to full-torso bidomain solutions (Wang
D. et al., 2013). A lead-field approach could offer a solution that
combines the speed of the former (if the computation of the
lead field itself is excluded) with the accuracy of the latter. Only
methods based on equivalent double layers (Geselowitz, 1992;
van Oosterom and Jacquemet, 2005) offer more efficiency as
they need to evaluate only the surface of the heart, but the price
for this efficiency is that these methods neglect anisotropy. A
lead-field approach combined with an eikonal-diffusion model
for cardiac propagation (Konukoglu et al., 2011; Jacquemet,
2012; Neic et al., 2017) could soon be a practical solution for
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ECG inverse problems with an accuracy very close to the state of
the art in forward modeling of the ECG.

5. CONCLUSION

Lead fields are a practical alternative for full-torso solutions when
the number of ECG leads that need to be simulated is smaller than
the total number of samples that will be calculated. The method
is fast and highly scalable. Lead fields can be stored at a resolution
as low as 2mm without unacceptable loss of accuracy.
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