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Ca2+ waves in cardiac myocytes can lead to arrhythmias owing to delayed

after-depolarisations. Based on Ca2+ regulation from the junctional sarcoplasmic

reticulum (JSR), a mathematical model was developed to investigate the interplay of

clustered and rogue RyRs on Ca2+ waves. The model successfully reproduces Ca2+

waves in cardiac myocytes, which are in agreement with experimental results. A new

wave propagation mode of “spark-diffusion-quark-spark” is put forward. It is found

that rogue RyRs greatly increase the initiation of Ca2+ sparks, further contribute to the

formation and propagation of Ca2+ waves when the free Ca2+ concentration in JSR

lumen ([Ca2+]lumen) is higher than a threshold value of 0.7mM. Computational results

show an exponential increase in the velocity of Ca2+ waves with [Ca2+]lumen. In addition,

more CRUs of rogue RyRs and Ca2+ release from rogue RyRs result in higher velocity

and amplitude of Ca2+ waves. Distance between CRUs significantly affects the velocity

of Ca2+ waves, but not the amplitude. This work could improve understanding the

mechanism of Ca2+ waves in cardiac myocytes.

Keywords: Ca2+ wave, Ca2+ quark, anomalous subdiffusion, rogue ryanodine receptors, clustered ryanodine

receptors

INTRODUCTION

Ca2+ sparks due to the opening of clustered RyRs are the elementary Ca2+ release events in
normal cardiac myocytes (Cheng et al., 1993; Cheng and Lederer, 2008), which could occur
in self-propagating succession along the length, and contribute to waves of elevated Ca2+

concentration under some pathological conditions (López-López et al., 1995). Ca2+ waves have
been observed in a diversity of cells (Ridgway et al., 1977; Fabiato, 1983; Cornellbell and Finkbeiner,
1991) and studied experimentally and theoretically (Fabiato and Fabiato, 1972; Fabiato, 1985; Backx
et al., 1989; Swietach et al., 2010). Generating Ca2+ waves in myocytes is associated with RyRs
gating and sarcoplasmic reticulum Ca2+ overload (Petrovic et al., 2015; Williams et al., 2017).
Quarky Ca2+ release (QCR or Ca2+ quark) with a small amplitude and a long duration arising
from rogue RyRs is another significant Ca2+ release mechanism (Wang et al., 2001; Cheng and
Wang, 2002; Brochet et al., 2011; Shang et al., 2014). Hence, Ca2+ waves are a natural consequence
of regenerative Ca2+ releases of both Ca2+ sparks and quarks. There is, however, lack of studies
to relate Ca2+ waves to the interplay of Ca2+ sparks and quarks from the junctional sarcoplasmic
reticulum (JSR). Based on the Fickian diffusion of cytoplasmic Ca2+, a computational model was
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developed to show the effects of rogue RyRs on Ca2+ waves under
heart failure (Lu et al., 2010). Given the spark-width paradox
from the Fickian diffusion models (Walker et al., 2014), the
anomalous diffusion model can solve the problem and look more
deeply into the mechanism of diffusion (Sato and Bers, 2011).

On the other hand, one of the challenges in developing models
for Ca2+ waves is the inconsistence between computational
and experimental free Ca2+ concentration in the cytoplasm
([Ca2+]cyto) (Izu et al., 2013). The computational results of
[Ca2+]cyto were ∼20µM (Chen et al., 2013) under physiological
conditions or even as high as ∼100µM (Izu et al., 2001; Chen
et al., 2014) under pathological conditions, which disagrees
with the measured [Ca2+]cyto of ∼1µM (Williams et al.,
1985; Takamatsu and Wier, 1990). Although a “wave front
sensitization” model showed [Ca2+]cyto of ∼1µM (Keller et al.,
2007), Sobie et al. indicated that elevated JSR Ca2+ level is a
critical factor to raise RyRs open probability (Sobie et al., 2017).
Hence, JSR Ca2+ regulation should be incorporated into the
computational models of Ca2+ waves to show the decrease of
Ca2+ flux through rogue and clustered RyRs as the JSR depletes
(Sobie et al., 2004; Picht et al., 2011; Izu et al., 2013).

The objective of the study is to quantify the interplay of
rogue and clustered RyRs on regulating Ca2+ waves in cardiac
myocytes. A two-dimensional (2D) model of Ca2+ waves in the
cytoplasm was proposed with considering the distribution of
clustered and rogue RyRs on the JSR membrane. The anomalous
subdiffusion of Ca2+ in the cytoplasm and JSR Ca2+ regulation
were also included. The stochastic opening Ca2+ release units
(CRUs) of rogue and clustered RyRs was regulated by free
Ca2+ concentrations in both cytoplasm and JSR lumen. With
these features, we showed the importance of rogue RyRs on the
initiation and propagation of Ca2+ waves.

MATERIALS AND METHODS

Geometrical Model
Considering the quasi-isotropic diffusion of Ca2+ in the
cytoplasm (Izu et al., 2001), we adopted a 2D model to mimic
Ca2+ waves. Figure 1A shows the geometrical model of a
cardiac myocyte, the x- and y-directions of which refer to
the longitudinal axis and z-line, respectively. Baddeley et al.
have experimentally observed the RyR distribution on the JSR
membrane (Baddeley et al., 2010). Most RyR channels form
regular arrays, defined as “clustered RyRs.” Others are rogue
RyRs uncoupled from the clustered RyRs. Clustered and rogue
RyRs are randomly distributed. Figure 1B shows schematic
representative of the CRU distribution on JSRs, which includes
CRUs of clustered RyRs (∼22 RyR channels in a CRU) and
CRUs of rogue RyRs (∼3 RyR channels in a CRU). CRUs of
clustered RyRs (∼2 CRUs in a JSR) are surrounded by randomly
distributed CRUs of rogue RyRs (∼8 CRUs in a JSR).

Governing Equations
Ca2+ release events are simulated synchronously by a hybrid
model, which consists of two parts: a model of Ca2+ waves in
the cytoplasm and a model of Ca2+ blinks in JSRs. The reaction-
diffusion system for Ca2+ waves in the cytoplasm based on

FIGURE 1 | Schematic illustration of the 2D model for Ca2+ waves.

(A) Schematic representative of the 2D geometrical model of a cardiac

myocyte. The yellow circles denote JSRs. The spacing intervals between

JSRs: lx = 2µm and ly = 0.8µm. (B) Schematic representative of two JSRs,

which include randomly distributed clustered and rogue RyRs (l = 0.1µm).

(C) A flow diagram for the Monte Carlo simulations.

the anomalous subdiffusion model, including the distribution of
clustered and rogue RyRs, is described as follows:

∂[Ca2+]cyto

∂t
= Dx

∂β [Ca2+]cyto

∂xβ
+ Dy

∂β [Ca2+]cyto

∂yβ
+ Jdye

+Jbuffer−cyto + Jpump + Jclustered + Jrogue, (1)

where [Ca2+]cyto is the free Ca
2+ concentration in the cytoplasm,

t is time, x and y are the spatial coordinates, Dx(=300 µm2s−1)
and Dy (=150 µm2s−1) denote the Ca2+ diffusion coefficients
for anisotropic diffusion. The anomalous subdiffusion order β
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is 2.25. Jdye is the flux due to the Ca2+ fluorescent indicator
dye, Fluo-4-AM, in the cytoplasm. Jbuffer−cyto is the flux due
to the endogenous stationary buffers. Jpumpis the pumping rate
of SR Ca2+-ATPase. SR pumps will be started when [Ca2+]cyto
exceeds the resting Ca2+ concentration level (0.1µM). The
detailed description is in the Appendix A in Supplementary
Material. On the other hand, the balance equation for Ca2+ blinks
in each JSR is written as:

∂[Ca2+]lumen

∂t
= Jrelease−lumen + Jbuffer−lumen + Jrefill, (2)

where [Ca2+]lumen is the free Ca2+ concentration in the lumen
of a JSR. Jrelease−lumen denotes the Ca2+ release flux caused by
opening of clustered RyRs (Jclustered) and rogue RyRs (Jrogue).
Jbuffer−lumen is the Ca2+ flux due to the buffer, calsequestrin, in
the JSR. Jrefill is the refilled Ca2+ flux to the JSR. The detailed
description is in the Appendix B in Supplementary Material.
Various parameters of the dye and buffers in the cytoplasm and
JSR lumen are listed in Table 1, similar to previous studies (Chen
et al., 2013; Kong et al., 2013).

Firing Probability of Rogue and Clustered
RyRs
The firing probability per unit time for CRUs of rogue or
clustered RyRs is determined by Ca2+ concentrations in the
cytoplasm and JSR (Györke and Gyorke, 1998; Qin et al., 2008,
2009), which can be expressed as:

Pfiring = Pcyto · 8lumen, (3)

where Pcyto and8lumen refer to the firing probability per unit time
of Ca2+ release events controlled by [Ca2+]cyto and [Ca2+]lumen,
respectively. The detailed description is in the Appendix C in
Supplementary Material.

Numerical Solutions
The 2D computational domain of a cardiac cytoplasm (20 ×

20 µm2) was meshed with squares of 0.1 × 0.1µm to simulate
Ca2+ release events from multiple JSRs. JSRs (i.e., yellow circles
with radius of 0.3µm in Figure 1A) are uniformly distributed
in the computational domain with lx (2µm) along x-axis and
ly (0.8µm) along y-axis. Moreover, CRUs are stochastically
distributed at nodes within each JSR, which includes 8 CRUs

TABLE 1 | Standard parameter values for the dye and buffers.

Dye or buffers [F]T or [Bn]T
(µM)

k+

F
or k+

n

(µM−1s−1)

k−

F
ork−

n

(s−1)

PARAMETERS IN CYTOPLASM

Fluo-4-AM 50 80 90

Calmodulin 24 100 38

Troponin 70 39 20

SR 47 115 100

SL 1,124 115 1,000

PARAMETERS IN JSR LUMEN

Calsequestrin 14,000 100 60,000

of rogue RyRs (Nrogue = 8) and 2 CRUs of clustered RyRs
(Nclustered = 2). As shown in Figure 1C, Equations (1–3) were
solved using a FORTRAN-developed program similar to a recent
study (Chen et al., 2018). The shifted Grünwald formula of
center difference (Tadjeran and Meerschaert, 2007) was used to
discretize the fractional differential term in Equation (1) as:

∂α[Ca2+]cyto(x, y, t)

∂xα
=

1

hα
lim

M→∞

M∑

k = 0

gk[Ca
2+]cyto(x− (k− 1)h, y, t)

(4)

∂α[Ca2+]cyto(x, y, t)

∂yα
=

1

hα
lim

M→∞

M∑

k = 0

gk[Ca
2+]cyto(x, y− (k− 1)h, t),

(5)

where gk =
Ŵ(k−α)
Ŵ(k+1)

, Ŵ denotes the Gamma function. α= β−1 =

1.25, k is an integer with α <k< α+1, and h is the mesh size. Free
Ca2+ concentrations in the cytoplasm and JSR were calculated
simultaneously. The variable time step algorithm was used. The
zero-flux boundary condition was set to the 2D computational
domain of a cardiac cytoplasm for the Monte Carlo
simulations.

RESULTS AND DISCUSSION

Interplay of Rogue and Clustered RyRs in
Neighbor JSRs
We have recently studied the effects of rogue RyRs on single Ca2+

sparks and quarks using the model in Equations (1–5), which was
validated against the experimental measurements in rat cardiac
myocytes (Chen et al., 2018). Here, we used the experimentally-
validated numerical model to investigate whether a Ca2+ spark
could trigger rogue and clustered RyRs in neighbor JSRs or not.
Snapshots of Ca2+ release events in a computational domain of
20 × 20 µm2 were taken at 10, 20, and 40ms when a CRU of
clustered RyRs was fired. Figures 2A,B show rogue RyRs at point
(11.9, 9.6) and clustered RyRs at point (12.0, 9.6), respectively,
activated by the Ca2+ spark at point (10.0, 9.6). Moreover, the
release of clustered RyRs could trigger other CRUs of clustered
RyRs in neighbor JSRs with the help of rogue RyRs, as shown
in Figure 2C. The results demonstrate that Ca2+ sparks from
the opening CRUs of clustered RyRs could activate CRUs of
clustered RyRs and rogue RyRs in neighbor JSRs to increase
[Ca2+]cyto.

Initiation of Ca2+ Waves
Ca2+ waves could be triggered in a domain where [Ca2+]cyto is
higher than the resting Ca2+ concentration level (Lu et al., 2010;
Izu et al., 2013). A Ca2+ spark with a large current or several
neighbor Ca2+ sparks could also trigger Ca2+ waves (Chen et al.,
2014). Here, several neighbor Ca2+ sparks are used to activate
Ca2+ waves in the simulation. The lowest propagation velocity of
Ca2+ waves was detected in the range of 40–110 µm/s (Cheng
et al., 1996). Since the disappearance of Ca2+ waves is related
to a progressive decline of the wave propagation velocity, the
longitudinal velocity is assumed to be higher than 40 µm/s.
Figure 3A shows the probability of inducing Ca2+ waves as a
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FIGURE 2 | Interplay of rogue and clustered RyRs in neighbor JSRs. Snapshots of Ca2+ release events in a computational region of 20 × 20 µm2 were taken at 10,

20, and 40ms from left to right when a CRU of clustered RyRs was fired. (A) Rogue RyRs in a neighbor JSR are activated. (B) Clustered RyRs in a neighbor JSR are

initiated by a Ca2+ spark directly. (C) Clustered RyRs are triggered with the help of rogue RyRs.

FIGURE 3 | Properties of Ca2+ waves. (A) The probability of inducing Ca2+ waves triggered by different numbers of Ca2+ sparks. (B) The number of triggered Ca2+

sparks in 100ms.

function of the number of Ca2+ sparks initiating from a corner
in a square of 20 × 20 µm2 for 100ms. The beginning level
of [Ca2+]lumen is 1.0mM. The initial Ca2+ sparks arise from
one CRU of clustered RyRs. Since Ca2+ quarks increase Ca2+

concentration in the cytoplasm, they enhance the probability of
inducing Ca2+ waves in myocytes. Accordingly, Figure 3B shows
the number of triggered Ca2+ sparks in 100ms. A single Ca2+

spark could not form Ca2+ waves while four neighbor Ca2+

sparks with the help of rogue RyRs guarantee the formation of
Ca2+ waves.

Propagation of Ca2+ Waves
Ca2+ waves in Figure 4 were generated in a computational
domain of 20 × 20 µm2 and recorded at 10, 50, 100, and 150ms
from left to right when the beginning level of [Ca2+]lumen is
1.0mM. Four Ca2+ sparks were initiated at points (18, 19.2), (18,
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FIGURE 4 | Ca2+ waves triggered by four sparks at the corner of a computational domain, i.e., (18, 19.2), (18, 18.4), (18, 17.6), (18, 16.8) in the region of

20 × 20µm2. The beginning level of [Ca2+]lumen is 1.0mM. (A,B) Snapshots of Ca2+ waves initially triggered by Ca2+ sparks with rogue RyRs (A) and without

considering rogue RyRs (B) at 10, 50, 100, 150ms from left to right. (C) Computational results for line-scan images of [Ca2+]cyto with and without rogue RyRs at the

line of y = 16.8.

18.4), (18, 17.6), and (18, 16.8) with considering rogue RyRs. A
comparison of Figures 4A,B indicates much faster Ca2+ waves
and higher amplitude when the effects of rogue RyRs are included
in the computational model. Moreover, we found the “spark-
diffusion-quark-spark” mode. Ca2+ released from clustered RyRs
diffuses to a neighbor JSR, rogue RyRs are firstly activated in a
stochastic manner to form Ca2+ quarks, and subsequently they
make activation of clustered RyRs to produce a Ca2+ spark. The
CRUs on the next z-line repeat the process to release Ca2+ in the
cytoplasm.

Figure 4C shows the computational results for line-scan
images of Ca2+ concentration with and without considering
rogue RyRs at the line of y = 16.8. The results reveal that rogue
RyRs accelerate the propagation of waves by triggering more
Ca2+ sparks. The longitudinal propagating velocity has mean ±

SD value of 95.9± 8.0 µm/s, which agrees with the experimental
records (typically 100 µm/s) (Takamatsu and Wier, 1990; Wier
and Blatter, 1991). Furthermore, Ca2+ concentration in the
simulation is in the range of 0.1–3.8µM. The computational
predictions are close to the experimental measurements (0.5–
1.2µM;Williams et al., 1985), and less than previous simulations
(Izu et al., 2001; Chen et al., 2013).

Importance of [Ca2+]lumen-Dependent
Regulation
In previous mathematical models of Ca2+ waves, [Ca2+]lumen-
dependent regulation was not considered, and Ca2+ fluxes from
CRUs were related to the current and duration of Ca2+ sparks
and quarks only. We determined the effects of [Ca2+]lumen-
dependent regulation on properties of Ca2+ waves when the
beginning level of [Ca2+]lumen was set to 0.3, 0.6, and 0.9mM.
Local variation in the waves is shown in Figure 5A. Ca2+ waves
are very sensitive to [Ca2+]lumen. There is an exponential increase
in the velocity of Ca2+ waves with the increase of [Ca2+]lumen, as
shown in Figure 5B. Moreover, a threshold value of [Ca2+]lumen

(i.e., >0.7mM) exists for generation of steady Ca2+ waves.
Figure 5C shows the amplitude of Ca2+ waves linearly increase
with [Ca2+]lumen because of the large driving force ([Ca

2+]lumen-
[Ca2+]cyto) of Ca

2+ sparks and quarks.

Effects of Parameters of Rogue RyRs
There are a large number of randomly-distributed rogue RyRs
near clustered RyRs. Sensitivity analysis on Ca2+ waves was
performed with respect to the changes in CRU number of rogue
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FIGURE 5 | Ca2+ waves under different [Ca2+]lumen. (A) Computational results for line-scan images of [Ca2+]cyto at the line of y = 16.8 when [Ca2+]lumen = 0.3,

0.6, and 0.9mM. (B) The longitudinal velocity of Ca2+ waves affected by [Ca2+]lumen. (C) The amplitude of Ca2+ waves affected by [Ca2+]lumen.

RyRs in a JSR (Nrogue). Figure 6A shows computational results
for line-scan images of [Ca2+]cyto at the line of y = 16.8 when
CRU number of rogue RyRs in a JSR are 2, 8, and 14. As shown in
Figure 6B, the amplitude and velocity increase with the increased
CRU number of rogue RyRs because of high Ca2+ quarks and
Ca2+ sparks.

The Ca2+ release per CRU of rogue RyRs ismainly determined

by the current through rogue RyRs (Irogue) and the duration

of current flow (Trogue). The current and duration of rogue
RyRs are 0.15 pA and 20ms in Figures 2–6. Table 2 presents
properties of Ca2+ waves for different values of (Irogue × Trogue).
There is a strong correlation between Ca2+ release through
rogue RyRs and wave properties. When the release time of rogue
RyRs decreases by half to 10ms with the current of 0.15 pA, the
longitudinal velocity and amplitude of waves decrease. When the
current increases from 0.15 to 0.3 pA with the duration of 20ms,
Ca2+ waves have higher values of amplitude and longitudinal
velocity. Hence, the release amount of rogue RyRs characterized
by (Irogue × Trogue) is a significant parameter to affect wave
properties.

Lu et al. pointed out that rogue RyRs were scattered over
the 2D plane randomly (Lu et al., 2010). However, fluorescent
imaging showed that QCR events were detected almost at the
same site as Ca2+ sparks (Brochet et al., 2011). The stochastic
gating of a cluster contains 10–100 RyRs in a JSR and the mean
number of RyRs is ∼21.6 (Soeller et al., 2007; Baddeley et al.,
2009). Figure 7 shows that the distance between CRUs in the
range of 0.05–0.2µm has slight effects on the amplitude of Ca2+

waves. However, the longitudinal velocities are 144.3 ± 13.1 and
63.6 ± 7.8 µm/s, respectively with respect to the distance of 0.05
and 0.2µm. Therefore, the distance between CRUs of rogue RyRs
and clustered RyRs should be taken into consideration in the
propagation of Ca2+ waves.

Effects on Activities From Subcellular to
Cellar Levels
When a myocyte is under paced, several spontaneous Ca2+

sparks or quarks can occur in the cytoplasm. It is, however,
difficult to induce Ca2+ waves that require abundant currents
to trigger cardiac action potentials (Izu et al., 2013). In some
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FIGURE 6 | Effects of CRU number of rogue RyRs in a JSR on wave propagation. (A) Computational results for line-scan images of [Ca2+]cyto at the line of y = 16.8

when CRU number of rogue RyRs has values of 2, 8, and 14. (B) The amplitude and longitudinal velocity of Ca2+ waves when Nrogue varies from 2 to 14.

TABLE 2 | Effects of Ca2+ release per CRU of rogue RyRs on properties of Ca2+

waves.

Irogue × Trogue 0.15 × 10 0.15 × 20 0.3 × 20

Longitudinal velocity (µm/s) 76.2 95.9 154.0

SEM 6.4 8.0 14.4

Amplitude (µM) 3.4 3.8 4.5

SEM 0.3 0.3 0.4

pathological conditions (e.g., arrhythmias), Ca2+ waves occur in
cardiac myocytes and affect the heart’s normal function (Lakatta
and Guarnieri, 1993). Ten Tusscher and Panfilov developed a
ventricular cell model including subspace calcium dynamics that
controls L-type calcium current and calcium-induced calcium
release (CICR) (ten Tusscher and Panfilov, 2006). The model was
used to study the effects of INa recovery dynamics in combination
with action potential duration (ADP) restitution on alternans and
spiral breakup. On the other hand, the present results suggest
that Ca2+ release from JSRs is prone to be initiated to cause
Ca2+ waves with the help of rogue RyRs when [Ca2+]lumen is
large enough. Moreover, when the CRU number of rogue RyRs
in a JSR or Ca2+ release per CRU of rogue RyRs is large enough,
or the distance between CRUs is small, the membrane potential

would be elevated significantly to trigger action potential in single
myocytes.

Potential Implications
This study shows some implications to heart diseases relevant to
Ca2+ waves in cardiac myocytes. According to our simulations,
JSR Ca2+ overload could increase RyR opening probability and
generate Ca2+ waves in heart (Williams et al., 2017). Mutation
in RyRs could trigger ventricular tachycardia and sudden cardiac
death (Lehnart et al., 2006). Moreover, the amplitude and velocity
of Ca2+ waves are significantly affected by the parameters of
rogue RyRs, which may contribute to the formation of fibrillation
(Macquaide et al., 2015) and arrhythmias (Ter Keurs and Boyden,
2007). A reduction of CRU number, the averaged current
and releasing time of rogue RyRs resulted in an inhibition of
Ca2+ waves or dyssynchronous Ca2+ transients in myocytes of
congestive heart failure (Louch et al., 2013). Therefore, inhibition
of Ca2+ quarks through rogue RyRs may be a promising
therapeutic target to prevent fibrillation in congestive heart
failure.

Critique of the Study
The present study showed Ca2+ waves relevant to the interplay
of rogue and clustered RyRs. It addressed the importance
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FIGURE 7 | The amplitude and longitudinal velocity of Ca2+ waves when l

varies from 0.05 to 0.2µm.

of rogue RyRs to increase the initiation of Ca2+ sparks, the
incidence and propagation of Ca2+ waves when [Ca2+]lumen

is large. The amplitude and velocity of Ca2+ waves are in
agreement with the experimental measurements. However, the
model should be improved such that more parameters are
added to investigate the mechanisms of Ca2+ waves. This study
used the fixed release time of rogue and clustered RyRs. It
should be a random variable depending on JSR regulation.
The detailed structure of clustered RyRs should be taken into
consideration because it can influence the frequency of Ca2+

sparks (Walker et al., 2014). Moreover, the present study comes
from the assumption of a 2D model in healthy myocytes. A 3D
model should be developed to investigate Ca2+ waves in future
studies.

CONCLUSION

We developed a mathematical model to investigate the interplay
of rogue and clustered RyRs on regulating Ca2+ waves in the
cytoplasm. The computational results on Ca2+ waves agree with
experimental measurements in cardiac myocytes. It shows that
four neighbor Ca2+ sparks at the corner of a cardiac myocyte
could induce Ca2+ waves. Ca2+ quarks increase the probabilities
of triggering Ca2+ sparks and speed up the propagation of Ca2+

waves at high [Ca2+]lumen. A new wave propagation mode of
“spark-diffusion-quark-spark” is put forward. Particularly, Ca2+

waves could occur only when [Ca2+]lumen is higher than a
threshold value of 0.7mM. More rogue RyRs in a JSR result
in more opening CRUs of rogue and clustered RyRs. Besides,
Ca2+ release from CRUs of rogue RyRs is a strong factor
of wave properties. The velocity of Ca2+ waves is affected
significantly by the distance between CRUs. This study helps
to understand basic mechanisms of Ca2+ waves in cardiac
myocytes.
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