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A common approach to address biological questions in systems biology is to simulate

regulatory mechanisms using dynamic models. Among others, Boolean networks can

be used to model the dynamics of regulatory processes in biology. Boolean network

models allow simulating the qualitative behavior of the modeled processes. A central

objective in the simulation of Boolean networks is the computation of their long-term

behavior—so-called attractors. These attractors are of special interest as they can often

be linked to biologically relevant behaviors. Changing internal and external conditions

can influence the long-term behavior of the Boolean network model. Perturbation of

a Boolean network by stripping a component of the system or simulating a surplus

of another element can lead to different attractors. Apparently, the number of possible

perturbations and combinations of perturbations increases exponentially with the size of

the network. Manually screening a set of possible components for combinations that

have a desired effect on the long-term behavior can be very time consuming if not

impossible. We developed amethod to automatically screen for perturbations that lead to

a user-specified change in the network’s functioning. This method is implemented in the

visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive

attractor search.

Keywords: systems biology, regulatory networks, Boolean networks, dynamic model, simulation, perturbation

studies, SAT solving

1. INTRODUCTION

Internal and external conditions cause a biological system to change its behavior over time.
Mathematical models have become invaluable tools to gain insights into the complex dynamics of
biological systems. Boolean networks are one kind of dynamic models based on two-valued logic.
Boolean networks can be modeled manually by extraction of Boolean functions from literature
resources or inferred automatically from time-series data (Lähdesmäki et al., 2003; Maucher et al.,
2011, 2012; Hopfensitz et al., 2012). Simulation of Boolean networks allows for studying various
dynamic network properties of the investigated systems. The long-term behavior of the modeled
system often corresponds to biologically relevant phenotypes (Naldi et al., 2015). Furthermore,
the dynamics of Boolean networks can aid in identifying components that are crucial for these
phenotypes. For instance, the effects of depriving or over-representing one element in the system
can bemeasured in the form of changes in the long-term behavior. However, the number of possible
perturbations increases rapidly with a larger model size. We developed a method to automatically
screen for perturbations that cause a desired effect on the long-term behavior of the system.
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There are various tools and frameworks to model, simulate
or visualize different types of Boolean networks. The R-package
BoolNet comprises a number of simulation algorithms, for
instance, attractor search, network perturbation or robustness
analysis for synchronous, asynchronous, and probabilistic
Boolean networks (Müssel et al., 2010). Additionally, it allows
for visualization of dependencies in the network and attractors.
However, BoolNet requires programming skills and a basic
understanding of the programming language R.

GUI-based software like GinSim (Gonzalez et al., 2006)
incorporates different simulation methods for logical models
without temporal predicates, including the simulation of
manually specified perturbations.

MaBoSS (Stoll et al., 2017) is a tool to simulate Boolean
networks stochastically. MaBoSS focuses on a vast number
of simulation methods including perturbation studies without
the ability to model. We chose to include our methods to
automatically screen for perturbations into the existing Java-
based framework ViSiBooL (Schwab et al., 2017a). ViSiBooL
extends the Boolean network paradigm by temporal predicates
and is a light-weight stand-alone modeling and simulation
framework. It specifically aims at a straight-forward and easy-
to-use modeling and simulation functionality also used by life
scientists without any programming skills.

The framework allows to model Boolean networks from
scratch and to load existing network models from different
sources. Boolean networks can be modeled via graph
representations and text-based. The supported SBML-qual
standard (Chaouiya et al., 2013) and a simple text network
specification format allow for tight interoperability with other
common software tools.

In the following we will first briefly define Boolean networks,
show how SAT solving (Schöning and Torán, 2013) can be used
for attractor search, and then outline our automated screening
procedure which can also use temporal predicates in Boolean
networks. Finally, we will give some simulation results on amodel
of the senescence-associated secretory phenotype (SASP).

2. METHODS

2.1. Boolean Networks
Boolean networks are a class of simple logical models that can
be used for the modeling of dynamic biological processes such
as gene regulation (Kauffman, 1969, 1994). Each component
of the modeled system is described by a Boolean variable. It
can either be active (true/1) or not (false/0). Dependencies
between the different components in the network are described
by Boolean functions. The state of a Boolean network with
n components at time t is described by a Boolean vector
x(t) = (x1(t), . . . , xn(t)). The value of each component xi at
a time t is determined by its corresponding transition function
fi :B

n → B. The successor state x(t + 1) is calculated as
follows : x(t + 1) = (f1(x(t), . . . , fn(x(t)). Here, an exemplary
Boolean network with three components x1, x2, x3 and their
transition functions is defined : f1(x(t)) = ¬x1(t), f2(x(t) =

x1(t) ∨ x2(t)), f3(x(t) = x1(t) ∧ ¬x2(t)). There are three major
types of Boolean networks -synchronous, asynchronous and

probabilistic. In synchronous Boolean networks all variables are
updated at the same time. In asynchronous Boolean networks
only one randomly chosen variable is updated at each time step
x(t + 1) = (x1, . . . , fi(x(t)), . . . , xn), where i ∈ [1, n] (Harvey and
Bossomaier, 1997).

Probabilistic Boolean networks allow for specifying more
than one transition function per variable in the network. Each
of these functions has a probability of being chosen, where
the probabilities of all functions for one variable sum up to 1
(Shmulevich et al., 2002).

The methods presented in the following focus on the
simulation of synchronous Boolean networks.

The dynamics of the Boolean networks are studied via
examining the transitions from one state to another. The number
of states in Boolean networks is finite (2n in a network with n
components). Consequently, the network eventually converges to
a recurring number of states after a number of state transitions.
These cycles of states are called attractors and represent the long-
term behavior of the Boolean network. As already previously
mentioned, attractors are of special interest as they often
represent biologically relevant behaviors (Naldi et al., 2015). This
could be shown in a number of publications successfully using
Boolean networks to model the qualitative behavior of a variety
of tissues in different organisms (Albert and Othmer, 2003;
Fauré et al., 2006; Herrmann et al., 2012; Dahlhaus et al., 2016;
Linke et al., 2017; Meyer et al., 2017). All states leading to the
same attractor are associated to its so-called basin of attraction
(Saadatpour and Albert, 2013). All basins of attraction together
comprise the complete number of states.

2.2. Attractor Search and SAT
There are different types of algorithms for attractor search
in Boolean networks. Basic algorithms for exhaustive attractor
search examine each state. However, these algorithms are
demanding in terms of runtime (O(2n)) and memory (O(2n))
(Hopfensitz et al., 2013). A number of other algorithms to search
for attractors have been proposed. Some of them search efficiently
for attractors of length one (Akutsu et al., 2011; Veliz-Cuba
et al., 2014). An algorithm that searches for attractors of different
length very efficiently is based on SAT-solving (Dubrova and
Teslenko, 2011; Naldi et al., 2015). Especially for networks with
modest connectivity, this algorithm is more efficient than the
exhaustive algorithms that examine every possible state.
Solving a satisfiability (SAT) problem, is basically finding an
assignment that satisfies a Boolean formula, i.e., the Boolean
formula returns true (Schöning and Torán, 2013). The SAT-
solving approach can now be adapted to perturbation studies and
the temporal extension in Boolean networks. In the following a
basic SAT-based attractor search algorithm is briefly described.

Formally, a state transition can be defined as follows:
T(x(t), x(t + 1)) =

∧n
i=1 xi(t + 1) ↔ fi(x1(t), . . . , xn(t)), where

n is the number of components in the network. In the algorithm
a path—a consecutive sequence of states—is represented by such
a Boolean formula. A path of length two in the previously given
example network is defined as follows : T(x(t), x(t+1)) = (x1(t+
1) ↔ ¬x1(t))∧(x2(t+1) ↔ (x1(t)∨x2(t)))∧(x3(t+1) ↔ x1(t)∧
¬x2(t)). A satisfying assignment for this formula corresponds to
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a valid, existing path. A SAT-solver can now be used to find all
satisfying assignments—each corresponds to one path through
the state graph of the Boolean network. Attractors are deduced
from these valid paths. Starting with an initial length all valid
paths in the Boolean network are determined. First, to compute
the the valid solutions for a path the transition formula has to
be unfolded. The resulting conjunction of clauses is then solved
using a SAT solver.

Next, to detect attractors it is checked whether a state occurs
more than once in the path. Obviously, all states between two
equal states belong to the attractor. If an attractor is in the path,
it is stored and its states are added to the formula as constraints.
All other paths including the same attractor are no valid solution
anymore. Consequently, the whole basin of attraction of the
found attractor is excluded from the search space. If the found
path is attractor free, the analyzed sequence of states has to be
prolonged to reach the attractor. This procedure is repeated until
there is no other valid solution found by the SAT-solver. This
means all valid paths to attractors were examined and all existing
attractors are found.

In our implementation we used the SAT-solverMINISAT (Eén
and Sörensson, 2004) which is based on the idea of conflict-
driven backtracking (Marques-Silva and Sakallah, 1999).

2.3. Temporal Predicates in Attractor
Search
In synchronous Boolean networks all components are updated
at the same time and their value is determined according to the
previous state of the network. These assumptions can restrict
the modeling or may require hypothetical delay nodes. Biological
processes happen on different time scales. In some processes the
accumulation of a product over several time steps is required
to activate the production of another component. Different
components might have different latency periods. The temporal
predicates allow the modeling of such latency periods (Schwab
et al., 2017a).

In this temporal extension the next state x(t + 1) may not
only depend on the previous time step x(t), but also any other
predecessor state x(t − 1),1 = {1, 2, . . . , t − 1}.
For this extension a history of previous values of the relevant
components are stored in addition to the current values of the
network at time t.

This temporal extension to the synchronous Boolean network
model includes two temporal operators. One that allows a direct
specification of operations like an accumulation of a gene product
over a number of time steps. This operator ALL only evaluates
true if a specified term is valid for a given number of time
steps. The second operator ANY evaluates true if a term is
valid at least once in a specified period of time. The previously
described SAT based attractor search is now expanded to include
these operators. To find a solution for the unfolded formula of
a path each network component at each time step is mapped
to another variable. Exemplarily, a path from t to t + 1 in
a network with three components x1, x2, x3 is mapped to six
variables v1, . . . , v6, where x1(t) = v1, x2(t) = v2, . . . , x1(t+1) =
v4, . . .. Consequently, the formula for the SAT-solver consists of

l · n variables, where n is the number of components and l the
length of the path. In these temporal Boolean networks the value
of a network component does not only depend on the values
of the previous state. To enable exhaustive attractor search the
mapping had to be changed to reference back to values before the
previous time step.
The temporal extension allows the network to stay in a state for
more than one time step before moving to another. This prevents
searching for multiple occurrences of a state in the path to detect
attractors. Not only the states in the path are compared but also
their history. True equality of states to detect attractors is only
given if their history is also equal.

2.4. Screening for Meaningful
Perturbations
Boolean networks can be used for the simulation of various
perturbations. Components can be stripped from the system
(called knock-down here) or the system can have a surplus of
some component (called over-expression here). These behaviors
of component xi can be formally described by

xi(t + 1) =











0 xi is knocked down,

1 xi is overexpressed,

fi(x(t)) else.

Such interventions of the system may have major effects on
its dynamic behavior. The new framework implements various
features to investigate the effects of such perturbations.

2.4.1. Single Path Perturbation
Local attractor search from a user-specified initial condition can
be modified by knock-down or over-expression of components
of interest. The resulting attractor is instantly computed and
visualized, which allows for fast comparison of original and
perturbation behavior.

2.4.2. Global Network Perturbation
Global effects of perturbations are determined via an extension
of the exhaustive search algorithm described in the previous
section. Our SAT-solving algorithm was extended to support
also fixed components. This implies that in certain cases the
Boolean formulae can be simplified. In our procedure this is
being performed on a symbolic level prior to conversion into a
conjunctive normal form (CNF) for SAT solving.

2.4.3. Automated Screening for Meaningful

Perturbations
The two previous methods both rely on user-specified
perturbations. However, there are cases in which a user
aims at investigating which perturbation shows a wanted effect.
For this reason another method was developed.

Here, the user can specify a set of perturbation candidates
(Figure 1C). Among these candidates, the method searches for
all perturbations and combinations of perturbations which show
a desired effect.

This effect is also user-defined. Attractors which are intended
to exist or not exist under perturbation conditions can be
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selected (Figure 1A,B). For k user-selected components of
interest (Figure 1C) all knock-down and/or over-expression
combinations of size one up to a user-specified maximum
size m are generated. This results in a set P of perturbation
combinations to test. Each perturbation pi ∈ P is another

combination of a number of components in one of the possible
perturbation types (knock-down/over-expression). For instance,
a set of components X′ = {x1, x2, x4} is selected and the
maximum combination size is two. This results in P = {(x1 =

0), (x1 = 1), . . . , (x1 = 0, x2 = 0), (x1 = 0, x2 =

FIGURE 1 | Search for meaningful perturbation effects. Colors green and red represent the Boolean values true and false, components the user declared irrelevant for

the analysis are gray. (A) attractors of the unperturbed network are searched exhaustively. (B) The user specifies the effects intended by perturbation of the network.

(C) Components to evaluate under perturbation conditions are selected. (D) Selection of components of interest for the attractors under investigation. After the setup

by the user (B–D) all possible combinations of perturbations are computed (E). Attractors for all perturbation sets are computed (F) and compared to the original

networks (G). All perturbation sets that match the intended effects are returned.
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1), . . .}, |P| = 18 (Figure 1E) . Next, these
∑m

i=1

(k
i

)

· 2i

combinations of perturbations are evaluated (Figure 1F). In this
evaluation the longterm behavior of the perturbed network is
compared to the longterm behavior of the unperturbed network
model (Figure 1G). Not all components of the network might
be of interest for every description of a biologically relevant
behavior. Thus, the user can specify a set of components and the
resulting attractors of perturbed network and original network
are compared on the basis of these components (Figure 1D).
Finally, all perturbation combinations pi that match the intended
longterm behavior are returned by the algorithm. To increase
the simulation speed in our implementation, the different
perturbation combinations are evaluated in parallel. The number
of parallel instances scales with the number of available cores.

2.5. Biological Example
To illustrate the feasibility of the methods we used the Boolean
network described in Meyer et al., 2017, which is a model
for the SASP after DNA damage induced senescence. Cellular
senescence is a tumor suppressor mechanism which arrests
cells before becoming malignant (Coppé et al., 2010; Muñoz-
Espín and Serrano, 2014). Senescent cells secrete different factors
to attract phagocytic immune cells. Early SASP is probably
beneficial to clear the damaged cells. However, once the immune
system cannot keep up with the emergence of damaged cells,
counteracting the SASP can prevent tissue damage (Meyer et al.,
2017). SASP can, for instance, turn senescent fibroblasts into pro-
inflammatory cells with the ability to promote tumor progression
(Coppé et al., 2010).

The published Boolean network model comprises of two
interacting subnetworks—one for DNA damage signaling
and one modeling the inflammatory response. The complete
model contains 51 components (Figure 2A). Attractor search
simulation of the network model shows an active immune
response after DNA damage (Figure 2B). Mayer et al. used
the Boolean network model to hypothesize about perturbations
that prevent an immune response after DNA damage. These
perturbations aim at counteracting the SASP to give the immune
system time to catch up. Manual perturbation simulations of
the network identified knocking-out NF-κB Essential Modulator
(NEMO) is a promising candidate to prevent an immune
response—a hypothesis which could be validated by in-vitro
approaches (Meyer et al., 2017).

3. SIMULATION RESULTS

Evaluation was performed with the previously described
Boolean network model of the SASP. In Meyer et al. (2017)
different perturbation candidates were manually tested for their
deactivation of the major SASP-mediators after DNA damage.
Also, attractors had to be analyzed manually to examine
feasible candidate perturbations. This approach can be very time
consuming for a growing number of candidates to test.

For the evaluation here, we screened the Boolean network
model for perturbation candidates that inhibit an immune
response after DNA damage. The results were then compared to
the results manually investigated by Meyer et al.

FIGURE 2 | Boolean network of the senescence-associated secretory phenotype (SASP). (A) Network wiring of the Boolean network. Blue nodes depict the

components of the network model. Black (Red) edges represent a activatory (inhibitory) dependency between the connected components. DNA damage as input

node of the network is marked in red. (B) Steady-state attractor of the SASP-network under DNA damage conditions (DNA damage input is 1/true). A green (red) row

indicates that the corresponding component is active (inactive) in the attractor.
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We selected IL-1, IL-6, and IL-8 as components in the Boolean
network which are overlapping with the up-regulated factors
in the SASP according to Coppé et al., 2010. This correlates
with the results of the exhaustive attractor search in the Boolean
network under DNA damage conditions (DNA damage input is
on, Hypoxia is off, Figure 2B shows IL1, IL6, and IL8 are active
in the attractors).

For the automatic screening, we selected to remove the
attractor (Figure 3A) according to their state of the interleukins
IL1, IL6, and IL8 (Figure 3C). With the perturbation, we aim
at blocking the inflammatory response after DNA damage
but not at a general inhibition of pro-inflammatory signaling.
Thus, we chose each single-component perturbation of all
components of the DNA damage signaling subnetwork of the
network model as perturbation candidates (19 components
which lead to 38 perturbations to test, see Figure 3B). During
the screening process, attractor search is performed for each
candidate perturbation. The attractors are then compared to
the original attractors of the network under DNA damage
conditions. Perturbations which result in attractors that are
differing from the original ones according to there values of a

selected set of components (here IL1, IL6, IL8) are returned as
valid perturbations.

The screening took 64 s on a MacBook Pro (Intel Core I5,
3.1 GHz and 16GB RAM). The analysis shows a deactivation of
the immune response for a knock-out of NEMO, NF-κB, ATM,
IKK, or an over-expression of IκB (Figure 3C). In addition to the
suggested NEMO knock-out of Meyer et al. (2017), the automatic
screening reveals four new candidate perturbations - knock-out
of ATM, NF-κB, and IKK as well as over-expression of IκB.
One possible explanation is their ability to act as SASP-triggering
factors, which are mainly relayed through NF-κB. NF-κB has a
direct regulatory link to IL1, IL6, and IL8. IKK and IκB both have
a direct effect on NF-κB and thus have a regulatory impact on
the different Interleukins. NEMO has a regulatory effect on these
components via IKK and NF-κB and ATM via NEMO/IKK/NF-
κB. The shortest paths from the perturbed components to the
Interleukins IL1, IL6, IL8 are between one (perturbation of NF-
κB) and four (perturbation of ATM) interactions long. This
shows the ability to not only identify direct but also indirect
regulators as meaningful perturbation candidates in this complex
network by our automatic procedure.

FIGURE 3 | Perturbation screening results in the SASP model (Meyer et al., 2017). (A) Attractor under DNA damage conditions which should be removed by

perturbation. Green (Red) rows indicate the corresponding component is active (inactive) in the attractor. (B) Selection of perturbation candidates to test. Selection of

the gray box indicates the component is not of interest for perturbation. Green (Red) means the component is over-expressed (knocked-out). Blue means that both

possible perturbations (over-expression/knock-out) are tested for the corresponding component. In this simulation all 19 non-input components that belong to the

DNA damage signaling subnetwork of the SASP network are perturbation candidates for knock-out or over-expression. The inputs DNA damage (DNAD) and Hypoxia

are fixed to over-expression and knock-out, respectively. The inflammatory signaling part of the network is not selected for perturbation. (C) Selection of the genes of

interest for attractor comparison. IL1, IL6, and IL8 are selected, which means these components have to be inactive after perturbation. (D) Results showing the

perturbation candidates that removed the attractor in (A) according to the components selected in (C).
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4. CONCLUSION

Perturbation studies of Boolean networks can provide more
detailed information about the network’s inner dynamics. Among
others, network perturbation can help to identify therapeutic
targets (Saadatpour et al., 2011), to measure a network’s
capability to compensate mutations (Kwon et al., 2016) or to
quantify the robustness of Boolean networks (Schwab et al.,
2017b). Furthermore, perturbation of components can be a
helpful, assistive tool to check for the expected behavior during
the modeling process. Simulation of network perturbation is
commonly used in multiple frameworks (Gonzalez et al., 2006;
Müssel et al., 2010; Stoll et al., 2017).

The automated screening for perturbations that fulfill
user-defined changes in the long-term behavior is—to our
best knowledge—a new feature for the analysis of Boolean
networks. This feature aims at identifying crucial components for
developing a specific long-term behavior. Finding perturbations
that eliminate a specified long-term behavior can also be used to
screen for therapeutic targets.

These methods were integrated into the Java framework
ViSiBooL (Schwab et al., 2017a). ViSiBooL aims at a straight-
forward and easy-to-use modeling and simulation of Boolean
networks. The temporal extension of synchronous Boolean
networks allows for a more realistic way of modeling biological
processes while maintaining the simple interpretation of

synchronous Boolean networks. Moreover, the temporal
operators ALL and ANY provide a straight-forwardmethodology
to simplify large terms to model processes over more than one
time step. All implemented network perturbation experiments
support the temporal network extensions.
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