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The Harderian gland is a sparsely characterized immune tissue known to play an
important role in local immunity. The function of the Harderian gland, however, is
not clearly defined. Measuring the expression of all genes using RNA-seq enables
the identification of genes, pathways, or networks of interest. Our relative RNA-seq
expression analysis compared the chicken Harderian gland transcriptome to other
important primary and secondary immune tissues including the bursa of Fabricius,
thymus, and spleen of non-challenged birds. A total of 2,386 transcripts were
identified as highly expressed in the Harderian gland. Gene set enrichment showed
the importance of G-protein coupled receptor signaling and several immune pathways.
Among the genes highly expressed in the Harderian gland were 48 miRNAs, a category
of genetic elements involved in regulation of gene expression. Several identified miRNAs
have immune related functions. This analysis gives insight to the unique immune
processes inherent in the Harderian gland.
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INTRODUCTION

Avian species have many unique immunological features compared to mammals with whom they
last shared a common ancestor over 310 million years ago (Hedges, 2002). In birds the spleen is
the largest lymphoid tissue, but is only able to encounter antigens that circulate through the blood
because unlike mammals, birds lack a lymphatic system (Oláh et al., 2013). T cell development
is similar in mammals and birds, but chickens have more γδ T cells than humans (Smith and
Göbel, 2013). The thymus is a primary immune tissue where T cell development, differentiation,
and maturation occurs.

Humans completely lack the bursa of Fabricius and only have a rudimentary Harderian gland,
whereas these two tissues play very important roles in the chicken immune system. The bursa is a
unique primary immune organ found in birds that plays a critical role in the immune response. B
cell development, proliferation, and diversification occurs in the bursa, where B cells also undergo
immunoglobulin rearrangement to create B cell receptors and mature B cells (Glick et al., 1956).
The Harderian gland is located behind the eyes of the chicken and its function is not clearly defined,
but includes the lubrication of the nictitating membrane (Bang and Bang, 1968). It is a relatively
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small tissue; in adult chickens the average weight was found to be
84.4 mg (Wight et al., 1971). The Harderian gland is known to
contain many B cells. The majority of cells within the Harderian
gland react to anti-chicken bursa cell serum (Albini and Wick,
1974). Lymphocytes from the bursa migrate to the Harderian
gland prior to hatch and may not be involved in systemic
immunity (Mueller et al., 1971; Baba et al., 1988). Also, terminal
B cell maturation may occur in the Harderian gland (Manisikka
et al., 1989). The Harderian gland is also home to large numbers
of T cells. Equal numbers of CD3+ and Bu-1+ cells were
found in the Harderian gland of both control and vaccinated
chicks, and there were twice as many CD4+ than CD8+ cells
in unvaccinated chicks as measured by immunostaining using
monoclonal antibodies (Russell et al., 1997). The B and T cells
of the Harderian gland play an important role in local immunity
(Manisikka et al., 1989; Maslak, 1994). The bursa, thymus, spleen,
and Harderian gland are among the most important immune
tissues in the chicken.

Previously, these four immune tissues were compared directly
via immunohistochemistry staining. In ducks, induction of
CD8+ cell immunity within the spleen and thymus was stronger
after challenge with an attenuated strain of hepatitis A, whereas
in the bursa and Harderian gland CD8+ cell immunity was
induced more strongly after challenge with the virulent strain
(Ou et al., 2017). These tissues respond differently to antigen.
In unstimulated chickens, µ Heavy chain and λ Light chain
mRNA were expressed higher in the Harderian gland than the
bursa, spleen, and thymus (Manisikka et al., 1989). Studying the
transcriptome of these tissues elucidates the mechanisms utilized
in response to pathogens. Until recently, the Harderian gland
transcriptome had never been analyzed (Deist et al., 2018).

Unlike the Harderian gland, the transcriptomes of the bursa,
spleen, and thymus tissues are well-characterized. Transcriptome
analysis of the bursa revealed BCR receptor signaling and
cytokine–cytokine receptor interaction pathways were impacted
by avian pathogenic E. coli (APEC) (Sun et al., 2015), apoptosis
of IgM+ cells, infiltration of macrophages, and increased
expression of pro-inflammatory genes were seen after infection
with velogenic Newcastle disease virus (NDV) (Kristeen-Teo
et al., 2017), and defense response to virus, positive regulation
of T cell-mediated cytotoxicity, and IFN-γ production pathways
were impacted by infectious bursal disease virus (IBDV) infection
(Ou et al., 2017).

The spleen transcriptome responded to a combined heat
stress and LPS treatment by altering the expression of genes
within the Hepatic Fibrosis/Hepatic Stellate Cell Activation and
Macrophages pathway in two distinct genetic lines (Van Goor
et al., 2017). In response to APEC infection, broiler splenic gene
expression was predicted to affect the Jak-STAT and cytokine–
cytokine receptor signaling pathway (Sandford et al., 2011), and
the spleen responded to NDV challenge by activating interferon-
stimulated genes (Zhang et al., 2018).

Compared to the bursa and spleen, there have been relatively
few RNA-seq studies conducted on the chicken thymus. The
thymus transcriptome responded to APEC by impacting the
TLR signaling pathway, lysosome pathway, CAMs, and TCR
signaling pathway (Sun et al., 2016). Another study showed

thymus atrophy and its possible relationship with the expression
of immune genes after challenge with LPS and Salmonella (Huang
et al., 2016). In response to heat stress and an LPS challenge in
the thymus transcriptome, ILK Signaling, Integrin Signaling, and
cell proliferation pathways were all impacted (Lamont, personal
communication).

Within each immune tissue, pathogen, strain, dose, time,
genetic line, and more, greatly impact gene expression. Under
basal conditions it is unclear how these tissues’ transcriptomes
compare, especially how they compare to the Harderian gland.
A relative expression analysis of these fundamental immune
tissues will help to better characterize the Harderian gland by
identifying genes highly expressed (relative expression value
greater than 2 SD from the mean) in this tissue relative to
the bursa, thymus, and spleen. We assume the genes highly
expressed in the Harderian gland are either related to tissue-
specific non-immune function of the gland, or related to
the unique immune function of this tissue in contrast to
the other immune tissues studied. We hypothesize that the
Harderian gland has mechanisms of defense that can be triggered
rapidly because of its role in local immunity compared to the
other more systemic immune tissues, and that the functional
analysis of the genes highly expressed in the Harderian gland
compared to the bursa, thymus, and spleen may elucidate these
mechanisms.

MATERIALS AND METHODS

Sample Descriptions and Processing
The Fayoumis (Line M 15.2) from the Iowa State University
Poultry Farm (Ames, IA, United States) have been maintained as
an inbred line since 1954 resulting in an inbreeding coefficient
of 99.95% (Fleming et al., 2016). All publically available RNA-
seq data comes from the non-challenged Fayoumi controls from
either a NDV challenge experiment (Experiment 1) (Deist et al.,
2018; Zhang et al., 2018) or a combined heat stress and LPS

TABLE 1 | Sample information.

Tissue Age
(days)

Number of
birds

Male:Female Accessionc

Harderian
glanda

23 4 2:2 E-MTAB-6038

Harderian
glanda

27 4 3:1 E-MTAB-6038

Harderian
glanda

31 4 2:2 E-MTAB-6038

Spleena 23 4 2:2 E-MTAB-5851

Spleena 27 4 3:1 E-MTAB-5851

Spleenb 22 4 1:3 GSE85434 (GEO)

Thymusb 22 4 1:3 E-MTAB-6290

Bursab 22 4 1:3 E-MTAB-6289

aFayoumi controls from Experiment 1. bFayoumi controls from Experiment 2. cData
sets available from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) or GEO
(https://www.ncbi.nlm.nih.gov/geo).
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FIGURE 1 | Principal component analysis shows clear clustering by tissue type. Each dot represents a tissue from an individual chicken. Principal component 1
(PC1) separated the Harderian gland samples (green) from the other immune tissues. Principal component 2 (PC2) separated the Bursa (pink), Thymus (purple), and
Spleen (blue). Ellipses were drawn with a 95% confidence. Dots with a black center were from Experiment 2. This plot was generated using pcaExplorer.

FIGURE 2 | Histogram of the relative expression values for each transcript.
Each bar represents the number of transcripts with a relative expression value
within that range (x-axis). The red vertical lines represent two standard
deviations below the mean (left) and above the mean (right). Transcripts to the
left of the left red line are highly expressed in the other immune organs
(spleen, bursa, and thymus). Transcripts to the right of the right red line are
highly expressed in the Harderian gland. Figure generated in R.

experiment (Experiment 2) (Van Goor et al., 2017) (Table 1).
In both experiments the Fayoumis were raised in floor pens
with wood chips and ad libitum access to food and water.
Although performed in separate batches, all tissues were collected

and placed into RNAlater solution (Thermo Fisher Scientific,
Waltham, MA, United States) for short-term storage, tissues were
homogenized using mechanical disruption, RNA was isolated
using an RNAqueous kit (Thermo Fisher Scientific, Waltham,
MA, United States), DNAse treated with the DNA-free kit
(Thermo Fisher Scientific, Waltham, MA, United States), and
assessed for quality (RQN or RIN > 8). All samples underwent
the same protocols to generate the cDNA libraries (TruSeq
RNA sample preparation guide (v2; Illumina, San Diego, CA,
United States), and were sequenced on the same HiSeq2500
machine to generate 100 bp single-end reads at the Iowa State
University DNA Facility (Ames, IA, United States) (Table 1).
Spleen samples were collected in both Experiments 1 and 2.
From Experiment 1 at ages 23 and 27 days, three of the
four spleen and Harderian gland tissue samples were from the
same individuals. No spleen samples from Experiment 1 were
analyzed at 31 days of age. The spleen, thymus, and bursa
samples from Experiment 2 came from the same four individuals
(Table 1).

The RNA-seq data underwent a standard pipeline previously
described (Deist et al., 2017) and was mapped to the
Gallus_gallus-5.0 (GCA_000002315.3) reference genome using
TopHat2 (Kim et al., 2013). The number of reads mapped
to each transcript was counted using HTSeq (Anders et al.,
2015). All transcripts with less than four counts across all
samples were removed resulting in 18,123 of 38,118 usable
transcripts.
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Calculating Relative Expression Values
The protocol for calculating relative expression values was
previously described (Bailey et al., 2009; Pritchett et al., 2017).
Pritchett et al. (2017) used the Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) normalization
method to normalize their counts. The current study has
adapted the method using count data normalized with the
variance stabilizing transformation in DESeq2 (fittype = mean;
blind = true) (Love et al., 2014). A constant (2.32) was added to
all normalized counts to make all values positive. The following
formula was used to calculate the relative expression values (rEx).

rEx = log2


Maximum normalized counts for each

transcript in the Harderian gland

Median normalized count for each
transcript in other immune tissues


A transcript’s rEx value was considered significant if it was

more than two standard deviations from the mean. The same
significance threshold was used previously (Pritchett et al., 2017).
Comparing the maximum value to the median emphasizes the
identification of transcripts highly expressed in the Harderian
gland. Although this method may be sensitive to outliers, the
standard deviation of individuals’ normalized counts within
each transcript in the Harderian gland was on average 1.05

(maximum SD = 5.07, minimum = 2.26E-19). The individual
sample from which the maximum normalized count value
was obtained was well-represented across all samples. Each
Harderian gland sample contributed a maximum normalized
count value for at least 1,324 transcripts and at most 3,859
transcripts.

Analysis of Relative Expression Data
For data visualization, pcaExplorer (Marini, 2016) PCA plots
were generated using dds and vst normalization from DESeq2
(Love et al., 2014) accounting for tissue and individual. The top
1000 most variant transcripts were used to calculate the principal
components.

Transcripts highly expressed in the Harderian gland
were further analyzed using Panther (Mi et al., 2017),
Ingenuity Pathway Analysis (IPA; Qiagen, Redwood City,
CA, United States), and STRING (Szklarczyk et al., 2017).
These transcripts were converted to their associated gene
name using BioMart on Ensembl (version 89) and input into
Panther. Panther recognized 757 of the 992 input genes for
an overrepresentation test using the GO biological process
complete annotation set and the Gallus gallus reference list
with a Bonferroni correction for multiple testing. Ensembl
transcript identifiers (IDs) and the relative expression values for
the transcripts highly expressed in the Harderian gland were
used as input to IPA. Of the 2,386 transcripts, 942 were mapped

FIGURE 3 | Significant GO terms associated with genes highly expressed in the Harderian gland. Transcripts highly expressed in the Harderian gland were converted
to their corresponding gene ID using Ensembl (766 total) and input into Panther for statistical overrepresentation analysis using GO biological process (757 genes
recognized and used for the analysis). The fold enrichment (purple bar) was calculated as the number of observed input genes divided by the number of expected
genes based on the number of genes in the chicken genome. The number of genes associated with each GO term is listed to the right of the GO term in
parenthesis. The Bonferroni correction for multiple testing was used to adjust p-values. The -Log10(p-value) for each GO term is represented by orange markers.
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(identified) by IPA and used for analysis. Several canonical
pathways were identified as significant, and those pathways
with p-values less than 0.05 and included more than five genes
have been reported. Associated gene names of transcripts highly
expressed in the Harderian gland were input into STRING and
used to generate a network. A high confidence (0.700) was
used, all unconnected nodes were removed, and MCL clustering
(inflation parameter = 3) was performed. A total of 836 nodes
and 669 edges were included.

RESULTS

Principal Component Analysis
Samples clustered very tightly by tissue (Figure 1). Bursa,
spleen, and thymus samples from Experiment 2 came from
the same four birds, and there was also overlap between
the birds that contributed the Harderian gland and spleen
samples from Experiment 1 (Table 1). However, no clustering
by individual bird was observed. Also, samples did not cluster
by age or experiment. The large first principal component
(70.3%) separated the Harderian gland from the other three
tissues, showing the distinctiveness of the Harderian gland
transcriptome. The second principal component separated the
bursa, thymus, and spleen (PC2 = 13.9%). The two primary
immune tissues, bursa and thymus, clustered more closely than
the spleen (Figure 1). The spleen samples clustered very tightly
together within group even though they were different ages
and from different experiments (Figure 1 and Table 1). Six
of the ten top loading genes for principal component 1 were
also identified as highly expressed in the Harderian gland and
included: MYL1, MYL2, CKMT2, and TMEM182. A list of the top
and bottom loading genes was included in Supplementary Data
Sheet S1.

Relative Expression Analysis
The relative expression values followed a tri-modal distribution
(mean = 1.676; SD = 3.997) (Figure 2). Gaps in the distribution
may be related to the distinct clustering of the Harderian
gland and other immune tissues (PC1 = 70.3%; Figure 1).
A total of 143 transcripts were highly expressed in the non-
Harderian immune tissues, whereas 2,386 transcripts were
highly expressed in the Harderian gland. The 2,386 transcripts
were input into Ingenuity Pathway Analysis (IPA; Qiagen,
Redwood City, CA, United States) and of the 936 identified
by IPA, 96 were classified as transcription regulators and 4 as
translation regulators. Of the 143 transcripts highly expressed
in the other immune tissues only 53 had an associated
gene name. No significant GO terms were identified. Some
immune genes of interest in the 143 transcripts included
C1QL3, C8A, and TLX1. For a complete list of the 143
transcripts see Supplementary Data Sheet S2. The relative
expression analysis was more stringent than a differential
expression analysis in which 99% of the transcripts were
differentially expressed (false discovery rate < 0.05; data not
shown).

TABLE 2 | Canonical pathways associated with genes highly expressed in the
Harderian gland.

Ingenuity canonical pathways p-Value z-Score Genes

Calcium signaling 0.0001 2.646 20

ILK signaling 0.0005 3.771 19

Thrombin signaling 0.0008 3 19

Actin cytoskeleton signaling 0.0028 3.873 19

Protein ubiquitination pathway 0.0141 — 19

Signaling by rho family GTPases 0.0072 4 18

G-Protein coupled receptor signaling 0.0347 — 18

Tight junction signaling 0.0006 — 17

cAMP-mediated signaling 0.0112 4 17

Cardiac hypertrophy signaling 0.0186 3.207 17

Phospholipase C signaling 0.0407 3.051 16

Cellular effects of sildenafil (Viagra) 0.0003 — 15

Epithelial adherens junction signaling 0.0010 — 15

RhoGDI signaling 0.0054 −3.464 15

Agranulocyte adhesion and diapedesis 0.0129 — 15

Mitochondrial dysfunction 0.0115 — 14

Sertoli cell-Sertoli cell junction signaling 0.0158 — 14

Hepatic fibrosis/hepatic stellate cell
activation

0.0195 — 14

CREB signaling in neurons 0.0214 3.162 14

CXCR4 signaling 0.0195 1.897 13

Aldosterone signaling in epithelial cells 0.0219 — 13

GABA receptor signaling 0.0001 — 11

Gαi signaling 0.0107 1.897 11

Ovarian cancer signaling 0.0363 — 11

Synaptic long term depression 0.0407 3.317 11

Corticotropin releasing hormone signaling 0.0166 3 10

RhoA signaling 0.0324 3.162 9

Oxidative phosphorylation 0.0363 — 9

Transcriptional regulatory network in
embryonic stem cells

0.0002 — 8

GPCR-mediated integration of
enteroendocrine signaling exemplified...

0.0102 — 8

Crosstalk between dendritic cells and
natural killer cells

0.0302 — 8

Regulation of actin-based motility by rho 0.0324 2.828 8

Glutamate receptor signaling 0.0087 — 7

Agrin interactions at neuromuscular junction 0.0234 2.449 7

Remodeling of epithelial adherens junctions 0.0234 — 7

Caveolar-mediated endocytosis signaling 0.0269 — 7

Basal cell carcinoma signaling 0.0288 1.633 7

Serotonin receptor signaling 0.0079 — 6

Ethanol degradation II 0.0174 — 5

Noradrenaline and adrenaline degradation 0.0234 — 5

MIF regulation of innate immunity 0.0309 2.236 5

Triacylglycerol biosynthesis 0.0398 — 5

Gene Set Enrichment Analyses
GO term analysis, pathway analysis, and network analysis were
applied to the genes highly expressed in the Harderian gland on
the assumption that these genes are the main drivers of functions
that differentiate the Harderian gland from the other immune
tissues. A cell type enrichment analysis (Shoemaker et al., 2012)
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showed no significant enrichment of any cell type based on these
genes (data not shown); therefore, differences in expression levels
among these tissues were likely not due to large differences in
cell-type composition.

The top-layer GO terms identified by Panther for the
genes highly expressed in the Harderian gland are shown
(Figure 3). Most GO terms were related to development
and morphogenesis. The most significant GO term
was G-protein coupled receptor signaling (Figure 3).
No classic immune related GO terms were identified,

however, cell fate commitment, G-protein coupled
receptor signaling, and cell–cell signaling may be immune
related.

IPA identified pathways associated with genes highly
expressed in the Harderian gland (Table 2). IPA identified more
immune related pathways than the Panther GO term analysis
(Figure 3). Notably, G-protein coupled receptor signaling was
represented in both analyses (Figure 3 and Table 2). Calcium
Signaling, ILK signaling, CXCR4 signaling, Crosstalk between
Dendritic Cells and Natural Killer Cells, and MIF Regulation of

FIGURE 4 | Network of genes highly expressed in the Harderian gland. Network generated by STRING. Edge thickness represents the confidence or strength of
data support. A high confidence (0.700) cut-off was used to generate the network and all unconnected nodes were removed. Node color was based on MCL
clustering (inflation parameter = 3). Supplementary Figure S1 includes the full network where a total of 836 nodes and 669 edges were included. The high number
of nodes and edges led to a large network. From that network four clusters of interest (A–D) were chosen to display.
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Innate Immunity are all pathways that have a direct relationship
with the immune response.

The genes highly expressed in the Harderian gland formed
a network with significantly more interactions than expected
(p = 6.6e-16) (Supplementary Figure S1). STRING identified two
significant (FDR < 0.05) KEGG pathways associated with these
genes including Neuroactive ligand-receptor interaction (04080)
and Tight junction (04530). Specific clusters of interest from the
large network included Wnt genes (Figure 4A), GABA genes
(Figure 4B), Heat shock proteins (Figure 4C), and G-protein
coupled receptors (GPCR) (Figure 4D).

A total of 48 miRNAs were highly expressed in the Harderian
gland (Table 3), representing 39% of the miRNAs identified
in this analysis. As the library construction kit used in this
study employs a poly-A-tail selection, the reads that mapped to
miRNA were likely from pre-processed miRNA. The correlation
between the abundance of precursor miRNA and mature miRNA
is dependent on the tissue and miRNA (Lee et al., 2008). It is
possible that trace amounts of mature miRNA remained after
poly-A-tail selection, but because the same kit was used for
all tissues analyzed in this study, we assume no bias amongst
tissues. It is also possible that reads belonging to the miRNA
target sequence in regulated genes were incorrectly mapped
to the miRNA itself. However, since reads that mapped to
multiple places in the genome were removed, this is less
likely.

DISCUSSION

The immune related genes that were highly expressed in the
Harderian gland are of particular interest because they show how
the homeostatic state is different compared to the bursa, spleen,
and thymus. GPCR related genes, functions, and pathways
were represented in every functional analysis. Every GPCR is
activated by a specific ligand, which results in downstream
signaling events. Glutamate is the ligand for several GPCRs
identified as highly expressed in the Harderian gland, and
IPA identified Glutamate Receptor Signaling as an impacted
pathway. Glutamate is an amino acid that functions as a neuro-
immuno-transmitter (Ganor and Levite, 2012). Glutamate can
impact the immune system in several ways, i.e., affecting T
cell survival, calcium levels, and cytokine expression levels
(Ganor and Levite, 2012). Also, T cells, B cells, macrophages,
and dendritic cells, express high levels of glutamate receptors
(Ganor and Levite, 2012). The neurotransmitter GABA also
acts as an immunomodulator (Jin et al., 2013). The genes
highly expressed in the Harderian gland significantly impacted
the GABA Receptor Signaling pathway and GABA receptors
were represented in the network generated by STRING. GABA
signaling can impact chemotaxis, phagocytosis, and cytokine
secretion in immune cells (Jin et al., 2013). It is known there is a
strong link between the central nervous system and the immune
system (Black, 1994). The utilization of these neurotransmitters
and their receptors in the Harderian gland compared to other
immune tissues may be due to the focal role of local immunity
in the Harderian gland, whereas, the other immune tissues in

TABLE 3 | miRNAs highly expressed in the Harderian gland.

miRNA Accessiona

gga-mir-1b MI0001254

gga-let-7f MI0001233

gga-let-7j MI0001262

gga-let-7a-1 MI0001234

gga-mir-29b-2 MI0001266

gga-mir-29c MI0001265

gga-mir-30c-2 MI0001205

gga-mir-30d MI0001198

gga-mir-34c MI0001261

gga-mir-101-2 MI0007558

gga-mir-130a MI0001241

gga-mir-130b MI0001239

gga-mir-133a-2 MI0001248

gga-mir-133b MI0001206

gga-mir-133c MI0001255

gga-mir-138-2 MI0001228

gga-mir-144 MI0004996

gga-mir-193b MI0003698

gga-mir-200b MI0001250

gga-mir-214 MI0008208

gga-mir-221 MI0001178

gga-mir-301a MI0001240

gga-mir-365b MI0022403

gga-mir-365-2 MI0003704

gga-mir-451 MI0004995

gga-mir-454 MI0006984

gga-mir-1592 MI0007319

gga-mir-1640 MI0007372

gga-mir-1684b MI0022501

gga-mir-1737 MI0007476

gga-mir-1764 MI0007506

gga-mir-1772 MI0007515

gga-mir-1773 MI0007516

gga-mir-1800 MI0007544

gga-mir-1812 MI0007557

gga-mir-2126 MI0010731

gga-mir-6546 MI0022362

gga-mir-6580 MI0022399

gga-mir-6606 MI0022425

gga-mir-6609 MI0022428

gga-mir-6614 MI0022433

gga-mir-6653 MI0022473

gga-mir-6663 MI0022483

gga-mir-6668 MI0022488

gga-mir-6677 MI0022497

gga-mir-6701 MI0022523

gga-mir-6704 MI0022526

gga-mir-7474 MI0024147

aSource mIRBase.

the current study are generally more important to systemic
immunity.

Another GPCR, FZD1, is the receptor for Wnt proteins.
Several Wnt genes were identified as highly expressed in the
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Harderian gland and were represented in the network analysis.
The Wnt pathway is tightly regulated, as it is involved in
development, cell differentiation, and the immune response
(Staal et al., 2008). A combined heat and LPS stress event
showed the bursa transcriptome decreased expression of
Wnt signaling genes (Lamont, personal communication).
The miRNA mir-301a, has been shown to be activated by
the Wnt pathway in glioma cells (Yue et al., 2016). Let-
7 is also involved in cell proliferation and differentiation
(Roush and Slack, 2008). Previously, increased levels of let-
7 pri-miRNA were found in undifferentiated embryonic
stem cells (Wulczyn et al., 2007). Increased expression of
Wnt genes and let-7 miRNAs in the Harderian gland may
increase the efficiency of this lymphoid tissue, by serving
as a home to progenitor or naïve lymphocytes that can
quickly be differentiated or activated in response to a
stimulus.

Small, non-coding, miRNAs regulate gene expression levels
post-transcription. Many of the miRNAs identified as highly
expressed in the Harderian gland influence immune related
genes and pathways. In human cell lines, mir-200b was shown
to inhibit the TLR4 pathway (Wendlandt et al., 2012), mir-221
increased the expression of NF-κβ and STAT3 (Liu et al., 2014),
and mir-193b overexpression resulted in increased autophagy
(Nyhan et al., 2016). In chickens, mir-1764 decreased the
expression levels of the inflammatory cytokine STAT1 (Jeong
et al., 2013), and mir-30d may regulate IRF4 (Li et al.,
2017). Avian influenza impacted the expression levels of
several miRNAs in the chicken trachea and lung including
the following miRNAs significant in the current study: let-
7a-1, let-7f, let-7j, mir-1b, mir-30d, mir-34c, mir-101-2, mir-
144, mir-200b, and mir-451 (Wang et al., 2009). Increased
expression of these miRNAs in the Harderian gland would
clearly impact the immune response in this tissue. Using
miRNAs for regulation purposes in a tissue that is required
to respond quickly to pathogens that enter via the eye is
a useful strategy. Since the Harderian gland transcriptome
has not been analyzed until recently (Deist et al., 2018)
and was not used to generate the reference genome, there
were likely several Harderian gland specific lncRNAs and
miRNAs not identified in this analysis. Further research is
necessary to confirm the correlation of abundance between
the likely precursor miRNAs identified in this study and the
mature miRNA levels, and to identify tissue specific, novel
RNAs.

Overall this study identified 2,386 transcripts that were
highly expressed in the Harderian gland compared to the
bursa, thymus, and spleen of non-challenged chickens. These
transcripts highlighted the interaction between the central
nervous system and the immune system via the neuro-
immuno-transmitters glutamate and GABA. The Harderian
gland may utilize Wnt genes and let-7 miRNAs to control or
stall cell differentiation. Previous studies have shown, several
miRNAs identified as highly expressed in the Harderian gland
have immune function. Moreover, these results elucidated
the unique immune properties of the Harderian gland, a
local immune tissue that must quickly respond to pathogens

and vaccines that enter via the eye. It is important to
gain a better understanding of the physiology of important
avian tissues to develop better vaccines, breed for disease
resistance in chickens, and potentially prevent zoonotic
outbreaks.
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