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Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies,
play an important role in cellular communication during skeletal growth and
homeostasis. Bioactive molecules carried by EVs are transported to neighboring and
distant cells to trigger a series of signaling cascades influencing bone homeostasis. The
bioactive activities of osteoclast-derived EVs include regulation of osteoclastogenesis
and osteoclast–osteoblast communication. As osteoclast-derived EVs have the
potential to regulate osteoclasts and osteoblasts, their application in osteoporosis
and other bone metabolic disorders is currently under investigation. However, very
few reviews of osteoclast-derived EVs in bone remodeling regulation have yet been
published. This article aims to review recent advances in this field, summarizing a new
regulator of osteoclastogenesis and osteoclast–osteoblast communication mediated by
osteoclast-derived EVs. We will analyze the major challenges in the field and potential
for the therapeutic application of EVs.
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INTRODUCTION

Bone is a dynamic, living tissue continually undergoing modeling and remodeling. Many factors,
including hormones, growth factors, physical activity, and drugs, can influence bone homeostasis
(Xiao et al., 2016; Delgado-Calle et al., 2017; Li X. et al., 2017). Bone remodeling is accomplished
via the precise coordination of the activities of the two specific cells: osteoblasts (which deposit
calcium into the bone matrix) and osteoclasts (which resorb bone tissues) (Ramasamy et al., 2014;
Yuan et al., 2016). Many bone metabolic disorders, such as Paget’s disease or osteoporosis, can be
attributed to the imbalance of bone remodeling (Narducci et al., 2011).

Abbreviations: Eph, erythropoietin-producing human hepatocellular; Ephrins, Eph receptor-interacting proteins; EV,
extracellular vesicle; M-CSF, macrophage colony-stimulating factor; NF-κB, receptor activator of nuclear factor kappa B;
OPG, osteoprotegerin; RANKL, NF-κB ligand.
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Intercellular communication between osteoblasts and
osteoclasts plays an important role in the regulation of bone
homeostasis (Cao, 2011; Deng et al., 2015), as maintenance of
bone requires careful balancing of resorption and formation
processes (You et al., 2013). Maintenance and repair of bone,
involves both bone degradation, dismantling of old bone matrix,
and its replacement with new bone matrix (Kylmaoja et al.,
2016). Osteoclasts are derived from hematopoietic progenitor
cells by a process controlled by signaling molecules secreted from
osteoblasts. Among them M-CSF and RANKL are two crucial
signals promoting osteoclast development and survival, thus
inducing bone matrix degradation (Li et al., 2010; Negishi-Koga
et al., 2011; Chen et al., 2016). To avoid excessive degradation of
bone matrix, osteoblasts also secrete OPG to prevent the binding
of RANKL to the RANK receptor on osteoclasts (Pneumaticos
et al., 2013). The recent characterization of the RANKL–RANK–
OPG axis represents an important advance in understanding
bone homeostasis (Walsh and Choi, 2014). Moreover, recent
studies suggest that Eph receptors on osteoblasts and their ligands
on osteoclasts generates bidirectional anti-osteoclastogenic and
pro-osteoblastogenic signals into respective cells and presumably
influences transition from bone resorption to bone formation
(Zhang et al., 2014).

Some factors, such as M-CSF, RANKL, FAS ligand,
complement component 3a, and semaphorin produced by
osteoblasts have been demonstrated to influence osteoclastic
bone resorption. Besides the well-documented regulatory
mechanism of osteoblast–osteoclast communication involved in
bone resorption, it is now being challenged by several studies
supporting the fact that osteoclasts in turn regulate osteoblastic
bone formation either by direct cell–cell contact or indirectly via
cytokines, however, precisely how osteoclasts regulate osteoblasts
is unclear. Accumulating evidence indicates that through either
direct cell–cell communication or indirect cytokine-mediated
communication, osteoclasts repress osteoblastic bone formation
(Ishii et al., 2009; Tang et al., 2009; Negishi-Koga et al., 2011;
Li et al., 2016). So far, a growing body of studies has reported
that cell–cell communication via EVs is involved in the immune
response (Nair and Salomon, 2018). The first description of EVs
contain RNA, including microRNA, demonstrates the ability that
a cell has to communicate with neighboring cells or with distant
cells (Valadi et al., 2007).

Interestingly, communication between osteoclasts and
osteoblasts may occur via small membrane-enclosed vesicular
particles termed EVs which can fuse with the nearby cell
membranes within circulatory pathways (Huynh et al., 2016;
Sun et al., 2016). The various roles of EVs, which are released
by various cells into the extracellular space, in intercellular
communication are only beginning to be understood (Pitt
et al., 2016). EVs are broadly classified into three major types:
exosomes, microvesicles, and apoptotic bodies, according to
their size and presumed biological pathways (Boulanger et al.,
2017). Bone-derived exosomes act in the regulatory processes of
differentiation and communication of bone cells. EV-mediated
communication has been hypothesized to play an important
role in the coordination of bone remodeling (Qin et al., 2016;
Schmidt et al., 2016; Wang et al., 2016). Earlier studies suggested

that osteoblast-derived EVs regulate osteoclast activity (Deng
et al., 2015). Recent studies found that EVs play an important
role in bone metabolism and the bone microenvironment
(Li Q. et al., 2017). Subsequently, studies increasingly show
that osteoclast-derived EVs can affect osteoblast formation
and function (Ciardiello et al., 2016; Huynh et al., 2016; Sun
et al., 2016). In this review, we will summarize recent findings
elucidating the mechanism by which osteoclast-derived EVs
participate in osteoclast–osteoblast communication in bone
development and maintenance.

CHARACTERIZATION OF
OSTEOCLAST-DERIVED EVs

So far, two types of osteoclast-derived EVs, exosomes and
apoptotic bodies, have been described (Huynh et al., 2016; Li
et al., 2016; Sun et al., 2016). Exosomes are defined as small
EVs (30–100 nm in diameter) which are released following
fusion of endosomes with the plasma membranes (Jørgensen
et al., 2013). Transmission electron microscopy revealed that
the exosomes released from osteoclasts or their precursors
are generally between 25 and 120 nm (mean, 40 nm) in
diameter at their widest point (Huynh et al., 2016) and their
membranes characteristically include epithelial cell adhesion
molecule (EpCAM) and CD63 (Figure 1), but not the markers
(gp96 calnexin, endoplasmic reticulum) which are common
contaminants of EV. Apoptotic bodies are usually larger than
exosomes (50–5000 nm in diameter) and are generated by
blebbing of the surface of apoptotic cells, resulting in vesicles
composed of plasma membranes and organelle with nuclear
and cytoplasmic contents (Thompson et al., 2016; Figure 1).
The apoptosis of osteocyte has been regarded a chemotactic
signal to osteoclastic bone resorption. A recent study identified
that apoptotic osteocytes are engulfed by osteoclasts during
bone resorption, where osteoclasts exhibited TUNEL positive
apoptotic bodies share surface markers of the bone matrix, and
contain osteoclast vacuoles and osteocytic lacunae.

THE BIOACTIVITY OF
OSTEOCLAST-DERIVED EVs

EVs shed from cells can carry proteins, lipids, mRNAs, and
microRNAs (miRNAs) (Penfornis et al., 2016). EVs can transport
this cargo into adjacent or distant cells, perhaps altering the
behavior of the target cell (Ciardiello et al., 2016; Tkach and
Thery, 2016). Huynh et al. (2016) recently reported that EVs
released by osteoclasts regulate osteoclastogenesis in vitro. In
this study, exosome-like EVs from osteoclasts or their precursors
were isolated using ExoQuickTM exosome isolation method. The
diameter of exosome-like EVs was visualized by transmission
electron microscopy. The marker of exosome-like EVs is
detectable by Western blot (Huynh et al., 2016). Immunoelectron
microscopy revealed RANK on the surface of EVs released from
osteoclasts (Huynh et al., 2016). In addition, Western blots
indicated that EVs released from osteoclasts contained more
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FIGURE 1 | Typical characteristics of osteoclast-derived EVs. Exosomes
(Upper) are formed from the osteoclast compartment (blue vesicles), and
subsequently released into the extracellular space (light yellow vesicles).
Epithelial cell adhesion molecule (EpCAM) and CD63 are exosome marker
proteins on exosomes. Apoptotic bodies (Lower) are usually larger than
exosomes (50–5000 nm in diameter) and generated by blebbing of the
surface of apoptotic cells from osteoclasts.

RANK than precursors, which could inhibit osteoclastogenesis.
On the other hand, ephrinA2 protein was also recently reported
to be enriched in osteoclast-derived exosomes (Huynh et al.,
2016).

In addition to characteristic proteins, another feature of
osteoclast-derived EVs is presence of nucleic acids (such as
miRNAs) (Jørgensen et al., 2013; Li et al., 2016; Sun et al.,
2016; Xie et al., 2017). miRNAs are a class of small noncoding
RNAs of about 22 nucleotides in length (Felekkis et al., 2010).
After fusing with the target cellular membrane, internalized
miRNAs bind corresponding mRNAs to regulate gene expression
(Cong et al., 2017; Maeda et al., 2017). EV-derived miRNAs have
been implicated in bone homeostasis (Li et al., 2016), immune
responses (Kouwaki et al., 2017), tumor survival (Bell and Taylor,
2017), stress responses (Alexander et al., 2015), and angiogenesis
(Wang et al., 2017) by regulating intercellular communication.
The transfer of EV-derived miRNAs to a recipient cell where
they can affect target gene expression is very important, both
in understanding the basic biology of disease progression
and for the development of therapeutic approaches. Exosomes
released from RANKL-induced RAW 264.7 cells have been
demonstrated to play a role in the cross-talk between osteoclasts
and osteoblasts (Sun et al., 2016). In that study, microarray
analysis identified 13 miRNAs in osteoclast-derived EVs (Sun
et al., 2016). Among these miRNAs, miR-148a-3p, miR-183a-5p,
miR-214-3p, miR-27a-3p, miR-92a-3p, miR-378a-3p, miR-23a-
3p, miR-21a-5p, and miR-16-5p were significantly upregulated,
however, miR-155-5p, miR-199a-3p, miR-320-3p, and miR-125a-
5p were downregulated in the exosomes released from RANKL-
induced osteoclasts. Among the upregulated miRNAs, miR-214-
3p has been reported to involved in regulation of osteoclasts

FIGURE 2 | The schematic presentation of osteoclast-derived EV
anti-osteoclastogenic activity. RANKL localized on the surface of osteoblasts
binds to RANK on the surface of inactive osteoclasts to stimulate
osteoclastogenesis. RANK-enriched EVs (exosomes, red vesicles) from
inactive osteoclasts may interact with RANKL on osteoblasts to competitively
inhibit the association of RANKL and osteoclast-RANK, thus preventing
stimulation of the RANK signaling pathway in osteoclasts.

and osteoblasts. The miR-214-3P and exosomal-miR-214-3p were
further demonstrated to be more abundant in mature mouse
osteoclasts than mature osteoblasts. Recent data from abstracts
of papers presented in the 40th Annual Meeting of the Canadian
Association for Dental Research also showed that miR-146a is
abundant in EVs released from osteoclasts.

ANTI-OSTEOCLASTOGENIC ACTIVITY
OF OSTEOCLAST-DERIVED EVs IN
OSTEOCLASTS

The activity of osteoblast-derived EVs on bone remodeling
has been well documented (Xie et al., 2017), however,
the mechanism by which osteoclast-derived EVs influence
bone remodeling remains uncertain. Huynh et al. (2016)
demonstrated that RANKL rich osteoclast-derived EVs inhibit
1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-induced formation
of osteoclast-like multinucleated cells in mouse marrow by
inhibiting the interaction of RANKL-RANK, and thus the
interaction between osteoblasts and osteoclasts. In contrast,
incubation of mouse marrow hematopoietic precursor cells
directly with RANK rich osteoclast-derived EVs induces
osteoclast differentiation, but not generation of TRAP+

multinuclear or giant cells. Thus, RANK rich osteoclast-derived
EVs act as inhibitors of osteoclastogenesis through competitively
inhibiting the RANK-RANKL interaction in osteoblasts. RANK
levels were much higher in osteoclast-derived EVs, and the
depletion of EVs containing RANK significantly reduced the
inhibition of osteoclastogenesis (Figure 2). Furthermore, the
depletion of RANK-enriched osteoclast-derived EVs inhibits
formation of osteoclast-like cells in 1,25(OH)2D3-treated bone
marrow cultures. These data imply that the inhibitory effect
of RANK-rich EVs could be applied in bone disease or injury
treatment. However, currently we do not know the regulatory
activity of RANK-rich EVs from resorbing osteoclasts, which will
be of interest for future investigation.
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FIGURE 3 | Potential mechanisms by which osteoclast-derived EVs may
mediate osteoclast–osteoblast communication. Osteoclast-derived miR-214
packaged into exosomes (yellow green) can inhibit local or distant osteoblast
activity via ephrinA2/EphA2 (right aside picture)-mediated
osteoclast–osteoblast interactions.

COMMUNICATION BETWEEN
OSTEOCLASTS AND OSTEOBLASTS
THROUGH OSTEOCLAST-DERIVED EVs

The maintenance of bone homeostasis relies heavily on cellular
communication between osteoblasts and osteoclasts through the
RANKL–RANK interaction (Chen et al., 2017). In addition to
RANK-RANKL signaling, several other molecules were found
to mediate communication between osteoclasts and osteoblasts,
and to influence osteoblastic bone formation either directly or
indirectly (Matsuo and Irie, 2008). Recent studies revealed that
osteoclasts may also communicate with osteoblasts via the fusion
of osteoclast-derived exosomes containing miRNAs containing
(Ciardiello et al., 2016; Sun et al., 2016). Li et al. (2016) reported
that in elderly women with fractures, as in ovariectomized
(OVX) mice, miR-214-3p, found in osteoclast-derived exosomes,
inhibited osteoblastic bone formation. This activity was tightly
associated with elevated levels of serum exosomal miR-214-3p.

Moreover, compared with wild-type mice, osteoclastic-
specific miR-214-3P knock-in (OC-miR-214-3p) mice has lower
bone mass and poorly organized trabecular architecture at
distal femur. Histomorphometric analysis of the age-related
changes and Masson’s trichrome staining also showed less
bone formation in OC-miR-214-3p mice than WT mice. In
in vitro osteoblast/osteoclast co-culture, expression of all the
osteoblastic activity-related genes was significantly decreased
in OC-miR-214-3p mice than wild type mice. Overexpression
of miR-214-3p expression in osteoclasts inhibited osteoblast
activity in this co-culture system. These findings suggest that
exosomal miR-214-3p could be transferred from osteoclasts
to osteoblasts to inhibit osteoblast activity in vitro. In a series
of tracking experiments, CMV-GFP-CD63 stained osteoclast-
derived exosomes were found in co-cultured osteoblasts,
indicating that the extracellular osteoclast-derived exosomes
effectively reached osteoblasts. In vivo injection of purified
PKH67 exosomes isolated from the supernatant of OC-miR-
214-3p osteoclast dramatically decreased bone formation. In
contrast, inhibition of osteoclastic-specific miR-214-3P by
osteoclast-targeted antagomiR-214-3p treatment significantly

enhanced bone formation (Li et al., 2016). These results indicate
that the osteoclast-derived EVs could be important intercellular
messengers regulating communication between osteoclasts and
osteoblasts to inhibit osteoblastic bone formation. However,
this study only suggests a correlation between osteoclast-
derived EVs and the intercellular communication, and further
investigation of these EVs containing miRNAs in regulating bone
remodeling via autocrine and paracrine signaling mechanisms
is still needed. Another mechanism was reported by Sun et al.
(2016) osteoclast-derived miR-214-containing exosomes could,
locally or traveling via the bloodstream to distant sites, inhibit
osteoblast activity via ephrinA2/EphA2-mediated osteoclast–
osteoblasts interactions. Thus, molecular communication
between osteoclasts and osteoblasts are likely to be regulated by
osteoclast-derived EVs (Figure 3). Although osteoclast-derived
exosomes may attach to the membrane of the objective cell to
induce intracellular signaling through corresponding receptors,
it is recognized as well that osteoclast-derived microvesicles
and even osteoclast-derived apoptotic bodies may have largely
analogous physiological and pathological roles in intercellular
communication. While osteoclast-derived exosomes could be
endocytosed via micropinocytosis, phagocytosis, or receptor-
/raft-mediated endocytosis, to merge with the membrane of
endocytic compartment to emancipate their content into the
cytoplasm of the target cells, however, it need to further test
in vitro or in vivo, in addition, the molecular cargo within the
osteoclast-derived EVs responsible for this effect is unidentified.

PERSPECTIVES

In summary, bone remodeling is influenced by several hormonal
factors. Osteoclast-derived EVs contain multiple key bone-
regulatory proteins which can modulate osteoblastic bone
formation. This regulative process may reveal a novel mechanism
of osteoclast–osteoblast communication. Interestingly, more and
more molecules have been isolated from bone-derived EVs,
and have been found to influence a number of biological
processes through cell–cell communication or via interacting
with the extracellular matrix (Deng et al., 2015; Raimondi et al.,
2015; Karlsson et al., 2016). The message delivered to target
neighboring or more distant cells is determined by the contents
of these EVs. The bioactive payload depends on the surrounding
microenvironment and the cell of origin during EVs biogenesis
(Karlsson et al., 2016). In our opinion, novel osteoclast-derived
EVs will continue to be discovered, revealing more and more
new molecules that regulate the communication between bone
cells. In addition to their role in cell–to–cell communication
in normal physiology and disease, recently EVs have been
identified as promising biomarkers and novel therapeutic agents
in various pathological conditions (Sadovska et al., 2015; Zhang
et al., 2016). Compositions of EVs cover most cell-associated
biomarkers, including proteins, mRNAs, and miRNAs, which
are the focus of EV biomarker research. Simultaneously, EVs
have been widely applied in profiling of mRNA, microRNA, and
proteins, which may lead to the development of commercial
diagnostic kits and potential innovative therapeutic tools
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(Crossland et al., 2016; Royo et al., 2016). Nevertheless, in order to
utilize these osteoclast-derived EVs in the therapy of osteoporosis
clinically, further exploration will be required.
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