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Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle
fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in
humans and rodents provide evidence that challenge this axiom. Specifically, Type 2
muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence
of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain
(i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain
ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has
yet to be identified. Satellite cells respond to muscle damage, and also play an important
role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate
that robust satellite cell activation and proliferation in response to mechanical loading is
largely for these purposes. Future work will aim to elucidate the mechanisms by which
Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1
fibers can grow without myonuclear accretion, and whether a true myonuclear domain
ceiling exists.
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INTRODUCTION

Skeletal muscle is a unique tissue for many reasons, the most striking of which is that its cells
are multi-nucleated (i.e., syncytial). Further, as skeletal muscle nuclei are post-mitotic, there is
a reliance on the dedicated myogenic stem cell population, called satellite cells, to fuse into the
syncytium for the purposes of myonuclear addition or possibly replacement. These properties
make satellite cells essential for post-natal muscle growth and muscle fiber regeneration after injury
(Seale et al., 2000; Lepper et al., 2011; McCarthy et al., 2011; Murphy et al., 2011; Sambasivan
et al., 2011). Following the discovery of satellite cells (Robertson, 1960; Katz, 1961; Mauro, 1961),
scientists postulated that a given myonucleus can only transcriptionally govern a fixed volume of
cytoplasm, or “myonuclear domain” (Cheek et al., 1971; Hall and Ralston, 1989; Pavlath et al.,
1989). This hypothesis was reinforced by early experiments in rodents that indicated load-induced
hypertrophy was accompanied by myonuclear accretion (Schiaffino et al., 1976).
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The myonuclear domain theory in skeletal muscle can be
traced back to the work of Dr. Charles Epstein, who reported
that cell size was directly proportional to gene dosage in
polyploidy liver cells (Epstein, 1967). Incidentally, hepatocytes
have a marked capacity for hypertrophy without DNA synthesis
(Nagy et al., 2001; Miyaoka et al., 2012), and resident hepatocyte
nuclei can transcriptionally support at least a doubling in cell
size (Kim et al., 2000). The idea of a rigid nuclear domain is
nevertheless ascribed to highly plastic, multi-nucleated skeletal
muscle fibers and is pervasive and engrained within the context of
skeletal muscle fiber hypertrophy. The controversy surrounding
this idea is evidenced by a recent debate regarding the necessity
of satellite cell-mediated myonuclear accretion for loading-
induced hypertrophy (Egner et al., 2017; McCarthy et al., 2017),
as well as recent studies supporting the existence of a rigid
myonuclear domain during hypertrophy (Egner et al., 2016;
Goh and Millay, 2017; Hindi et al., 2017; Moriya and Miyazaki,
2018; Randrianarison-Huetz et al., 2018). The purpose of this
Mini Review is to provide perspective on myonuclear domain
flexibility in skeletal muscle fibers during hypertrophy. We
will discuss recent examples of myonuclear domain flexibility,
specifically in fast-twitch Type 2 fibers of humans and rodents,
and highlight the emerging role of satellite cells as key mediators
of extracellular matrix remodeling during adult muscle fiber
growth.

EVIDENCE FOR MYONUCLEAR DOMAIN
FLEXIBILITY DURING HYPERTROPHY

Adult humans, mice, and rats have nearly identical myonuclear
domain sizes (Liu et al., 2009). Numerous studies in humans
and rodents report that satellite cell proliferation and myonuclear
accretion occurs with skeletal muscle fiber hypertrophic growth
(reviewed in Van der Meer et al., 2011a; Murach et al., 2018a).
The often-observed incidence of large muscle fibers with a high
proportion of myonuclei after training reinforces the notion that
the myonuclear domain may expand modestly (Conceicao et al.,
2018), but generally remains stable during hypertrophy (Scenario
A in Figure 1). Muscle fiber hypertrophy and myonuclear
accretion via testosterone supplementation further implies that
myonuclear accretion directly contributes to adult muscle growth
(Sinha-Hikim et al., 2003; Egner et al., 2013). Conversely, time-
course studies in rats (van der Meer et al., 2011b) and humans
(Kadi et al., 2004) show a substantial degree of loading-induced
muscle fiber hypertrophy can occur prior to or in the absence of
myonuclear accretion, resulting in significant expansion of the
myonuclear domain.

Type 1 and 2 muscle fibers demonstrate differential
hypertrophic plasticity under a wide variety conditions in
humans (Luden et al., 2010; Murach et al., 2014, 2018b), and
myonuclear domain flexibility during hypertrophy accordingly
seems to differ by fiber type. Our laboratory (Fry et al., 2014b) and
others (Herman-Montemayor et al., 2015; Damas et al., 2018)
showed that the myonuclear domain of human Type 2 muscle
fibers, which comprise ∼50% of muscle fibers in most muscles,
is highly flexible. Herman-Montemayor et al. (2015) reported

Type 2 fiber hypertrophy > 30% with non-statistically significant
myonuclear accretion (9.5%, P < 0.10) and a 29% expansion of
the myonuclear domain after resistance training in untrained
women. These findings do not necessarily rule out the existence
of a “myonuclear domain ceiling”, but do challenge the idea of
a muscle fiber growth “threshold” beyond which myonuclear
accretion is theoretically required to sustain hypertrophy (Kadi
et al., 2004; Petrella et al., 2006; Conceicao et al., 2018). This
threshold was derived most recently from correlations in human
work and, while translational outcomes in humans are the
ultimate goal, loss-of-function studies in mice are necessary to
complement the indirect, correlative evidence gained in humans
and to determine causality. It has also been proposed that
differences between “low” and “high” hypertrophic responders
to resistance training was explained by the extent of myonuclear
accretion (Petrella et al., 2006, 2008), but this has recently been
challenged in the literature by evidence showing myonuclear
accretion is uncoupled from muscle fiber hypertrophy (Mobley
et al., 2018). We acknowledge that baseline myonuclear density
and/or fiber size could influence the requirement for myonuclear
accretion during hypertrophy (Snijders et al., 2016), but it should
be noted that identifying bona fide myonuclei on histological
cross sections (the prevailing method) is somewhat subjective.
The absolute number of myonuclei in a muscle fiber is dependent
on the assessor’s interpretation of whether the central mass of
a nucleus is inside or outside of a dystrophin border, which is
highly contingent on the quality of staining and the experience
of the technician. This ambiguity makes it difficult to compare
absolute values across laboratories. The development of an
antibody against the myonuclear marker PCM-1 may help
resolve this issue (Winje et al., 2018).

Genetically modified mouse models provide overwhelming
evidence for Type 2 fiber-specific hypertrophy in the absence
of myonuclear accretion (Scenario B in Figure 1). Following
conditional genetic deletion of satellite cells, our laboratory
reports substantial hypertrophy in the plantaris muscle, primarily
composed of Type 2 fibers, following synergist ablation surgery
in adult mice (>4 months old) (McCarthy et al., 2011, 2017;
Fry et al., 2014a, 2017; Kirby et al., 2016; Murach et al.,
2017b, 2018a). Importantly, the lack of myonuclear accretion
during hypertrophy does not negatively affect single muscle
fiber contractile function (McCarthy et al., 2011; Fry et al.,
2014a). Furthermore, resident myonuclei possess a significant
transcriptional reserve that compensates for a lack of satellite
cells during Type 2 fiber hypertrophy (Kirby et al., 2016).
A maximal transcriptional rate for a given myonucleus that
corresponds to a specific myonuclear domain size has yet
to be identified. Manipulating signaling pathways that are
central to muscle fiber size regulation (e.g., Myostatin, AKT,
JunB), in the absence of muscle overload or damage, also
induces significant hypertrophy without myonuclear accretion
and provides further evidence for myonuclear domain flexibility
in Type 2 muscle fibers (Welle et al., 2007; Amthor et al.,
2009; Blaauw et al., 2009; Raffaello et al., 2010; Lee et al., 2012;
Wang and McPherron, 2012; Omairi et al., 2016). Interestingly,
when Type 2 fibers are genetically modified to be more
oxidative, hypertrophy is associated with myonuclear accretion
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FIGURE 1 | Flow chart describing the different perspectives on satellite cell-mediated myonuclear accretion and myonuclear domain expansion during Type 2 fiber
hypertrophy across species. In scenario (A), the myonuclear domain expands modestly until an upper limitation is reached, and then satellite cell-mediated
myonuclear accretion ensues to support further hypertrophy. Evidence for this scenario is found in humans and rodents. In scenario (B), satellite cell density
increases in the absence of myonuclear accretion, and the myonuclear domain expands significantly or indefinitely as hypertrophy progresses. An upper limit in the
myonuclear domain has not yet been identified. Evidence for this scenario is found primarily in rodent models, but significant hypertrophy without myonuclear
accretion in humans has been reported. In scenario (C), satellite cell-mediated myonuclear accretion precedes hypertrophy and is absolutely required for growth,
implying that the myonuclear domain is tightly regulated. This scenario may apply to immature, growing skeletal muscle, but the evidence is limited in adult muscle.

(Omairi et al., 2016); this dovetails with human data showing
oxidative Type 1 fiber hypertrophy from exercise is accompanied
by increased myonuclear density (Fry et al., 2014b). More
work is needed to determine whether increased biosynthetic
activity associated with the high metabolic demands of oxidative

muscle fibers influences fiber type-specific requirements for
myonuclear accretion during hypertrophy. Alternative non-
surgical methods of inducing hypertrophy in muscles other than
the plantaris in mice will likely be required to address this
question.
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LIMITED EVIDENCE FOR PREREQUISITE
MYONUCLEAR ACCRETION TO
SUPPORT ADULT MUSCLE FIBER
HYPERTROPHY

It is clear that the myonuclear domain is more flexible
than previously appreciated, but some evidence suggests that
myonuclear accretion is absolutely required for, and in fact
precedes hypertrophy (Scenario C in Figure 1). Type 2 fibers
in young mice (<4 months old) appear to have an absolute
requirement for myonuclear accretion to mount a hypertrophic
response (Guerci et al., 2012; Egner et al., 2016; Goh and Millay,
2017; Hindi et al., 2017; Randrianarison-Huetz et al., 2018)
which, as noted above, is not the case in full-grown adult mice
(McCarthy et al., 2011; Fry et al., 2014a, 2017; Kirby et al., 2016;
Murach et al., 2017b). The evidence for myonuclear accretion and
contraction of the myonuclear domain preceding hypertrophy is
very limited (Bruusgaard et al., 2010). Additionally, significant
myonuclear accretion ensues in response to non-hypertrophic
stimuli such as heavy endurance training (Frese et al., 2015,
2016; McKenzie et al., 2016), which is antithetical to the position
that myonuclear accretion drives hypertrophy. This is especially
salient since myonuclear accretion is not necessary for oxidative
adaptations to endurance training (Jackson et al., 2015), even in
the highly-active diaphragm muscle (Murach et al., 2017a).

The effects of anabolic steroid usage provide circumstantial
evidence that myonuclear accretion facilitates hypertrophy.
Supraphysiological testosterone levels elicit hypertrophy in
conjunction with myonuclear addition (Sinha-Hikim et al., 2003;
Egner et al., 2013), which is compounded during heavy resistance
training and pronounced hypertrophy (Kadi et al., 1999; Eriksson
et al., 2005). However, androgen signaling can increase myogenic
cell proliferation and differentiation in vitro and in vivo (Lee,
2002; Fu et al., 2012; Serra et al., 2012; Deane et al., 2013),
making it difficult to tease out the contribution of testosterone-
directed fusion versus inflammation/damage versus hypertrophy
on myonuclear accretion. Recent evidence also suggests that an
inflammatory environment alone causes myonuclear accretion
in the absence of exercise training and altered muscle fiber
size (Boutrup et al., 2018). We interpret these findings to
mean that satellite cell fusion to muscle fibers in vivo can be
mediated solely by the signaling milieu and uncoupled from
muscle fiber size. During short-term muscle atrophy induced
by hind limb suspension in mice, the myonuclear domain is
dramatically reduced in size, further demonstrating the flexibility
of the myonuclear domain (Bruusgaard and Gundersen, 2008;
Bruusgaard et al., 2012; Jackson et al., 2012; Murach et al., 2018a).
That is to say, if the myonuclear domain were truly rigid, one
may expect myonuclear loss to consistently scale with atrophy in
order to maintain the myonucleus-to-protein ratio, which would
be consistent with the original “DNA unit” concept that is the
foundation of the myonuclear domain theory (Cheek et al., 1971).
Worth noting is that the duration of unloading, as well as the
species and muscle under investigation, can produce differing
results regarding myonuclear loss during unloading (reviewed
in Murach et al., 2018a). Since atrophy and hypertrophy are

distinct processes, more work is needed to determine whether
prerequisite myonuclear accretion is required for regrowth after
unloading in instances where myonuclei are lost during atrophy
(Ohira et al., 1999; Siu et al., 2005; Dupont-Versteegden et al.,
2006).

PERSPECTIVES ON THE EARLY
SATELLITE CELL RESPONSE TO
RESISTANCE EXERCISE

Following severe muscle fiber injury, satellite cells mediate
skeletal muscle regeneration via myogenesis and interactions
with fibroblasts to coordinate proper extracellular matrix
remodeling (Murphy et al., 2011). Resistance exercise in humans
is not typically associated with muscle degeneration, but muscle
injury, inflammation, and sarcolemmal damage may ensue
(Damas et al., 2016). One hypothesis is that the magnitude of
early satellite cell proliferation after unaccustomed resistance
exercise reflects myonuclear accretion potential and predicts
hypertrophic adaptation; however, the relationship to muscle
fiber growth is unclear (Bellamy et al., 2014). Once muscle
damage subsides, satellite cell proliferation after resistance
exercise is attenuated (Murach et al., 2016; Damas et al.,
2018), and is not predictive of the ∼16% Type 2 muscle fiber
growth reported by Damas et al. (2018). Consistent with initial
conjectures on early satellite cell proliferation with overload
(Snow, 1990), it seems that muscle fiber damage and satellite
cell niche disruption primarily dictates satellite cell responses to
resistance exercise, and not hypertrophy per se. The relationship
between exercise-mediated muscle fiber damage and satellite cell
proliferation is underscored by greater satellite cell density after
highly- versus minimally-damaging contractions in exercise-
naïve men (Crameri et al., 2007; Hyldahl et al., 2014).

Under certain conditions, the propensity to fuse is an inherent
property of activated satellite cells (Moss and Leblond, 1971).
As such, it is conceivable that satellite cell-mediated myonuclear
accretion observed with resistance training is simply a response
to muscle fiber damage and the accompanying milieu, and
not a requirement to maintain myonuclear domain size. In
support of this hypothesis, Type 2 fiber myonuclear accretion
occurs during 12 weeks of eccentric (i.e., damaging) but not
concentric (i.e., minimally damaging) resistance training, despite
similarly modest hypertrophic responses to both modes (Farup
et al., 2014). The most strenuous exercise may induce the
most damage, and subsequently the most myonuclear accretion.
Worth mentioning is that the synergist ablation model of
skeletal muscle overload used to induce hypertrophy in rodents
can be rather severe and damage-inducing depending on how
the surgery is conducted (Snow, 1990), which is an obvious
drawback of the model that may affect translatability to humans.
Nevertheless, muscle fibers can hypertrophy successfully without
satellite cells using this extreme model, and in the absence of
degeneration–regeneration (McCarthy et al., 2011). Interestingly,
our laboratory recently showed that the early satellite cell
proliferative response to mechanical loading is crucial for proper
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extracellular matrix remodeling during hypertrophy (Fry et al.,
2017). Instead of myonuclear addition to muscle fibers, we
suggest that the critical role for activated satellite cells in response
to a hypertrophic stimulus is to participate in extracellular matrix
remodeling which ulitmately facilitates growth, at least in Type 2
fibers (Fry et al., 2014a, 2017; Murach et al., 2018a).

CONCLUSION

The role of satellite cells during hypertrophy extends beyond
myonuclear accretion. Significant myonuclear domain flexibility
is apparent in human and rodent muscle fibers during growth,
which is most evident in Type 2 fibers. Satellite cells play an
important role in the hypertrophic process, and we cannot
rule out that myonuclear accretion may be necessary for
hypertrophy under some conditions. However, we contend that
satellite cell proliferation with loading, particularly in early
phases but potentially throughout training, is likely for the
purposes of supporting muscle repair and extracellular matrix
remodeling, and not necessarily a precursor to fusion for
augmenting transcriptional capacity during adult muscle fiber

hypertrophy. The critical function of satellite cells in regulating
the extracellular environment, but not necessarily driving growth
via myonuclear accretion, can be leveraged to help guide
therapeutics aimed at preserving or enhancing muscle mass and
function. More work is needed to determine the upper limit
of myonuclear domain flexibility and mechanisms regulating
transcriptional reserve capacity, as well as the extent to which
Type 1 fibers can grow without myonuclear accretion.
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