
ORIGINAL RESEARCH
published: 30 May 2018

doi: 10.3389/fphys.2018.00648

Frontiers in Physiology | www.frontiersin.org 1 May 2018 | Volume 9 | Article 648

Edited by:

Thomas Heldt,

Massachusetts Institute of

Technology, United States

Reviewed by:

Arun V. Holden,

University of Leeds, United Kingdom

Andrea Fanelli,

Massachusetts Institute of

Technology, United States

*Correspondence:

Radek Martinek

radek.martinek@vsb.cz

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 05 December 2017

Accepted: 11 May 2018

Published: 30 May 2018

Citation:

Martinek R, Kahankova R, Jezewski J,

Jaros R, Mohylova J, Fajkus M,

Nedoma J, Janku P and Nazeran H

(2018) Comparative Effectiveness of

ICA and PCA in Extraction of Fetal

ECG From Abdominal Signals: Toward

Non-invasive Fetal Monitoring.

Front. Physiol. 9:648.

doi: 10.3389/fphys.2018.00648

Comparative Effectiveness of ICA
and PCA in Extraction of Fetal ECG
From Abdominal Signals: Toward
Non-invasive Fetal Monitoring

Radek Martinek 1*, Radana Kahankova 1, Janusz Jezewski 2, Rene Jaros 1, Jitka Mohylova 3,

Marcel Fajkus 4, Jan Nedoma 4, Petr Janku 5 and Homer Nazeran 6

1Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science,

VSB-Technical University of Ostrava, Ostrava, Czechia, 2 Institute of Medical Technology and Equipment ITAM, Zabrze,

Poland, 3Department of General Electrical Engineering, Faculty of Electrical Engineering and Computer Science,

VSB-Technical University of Ostrava, Ostrava, Czechia, 4Department of Telecommunications, Faculty of Electrical

Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia, 5Department of Obstetrics and

Gynecology, Masaryk University and University Hospital Brno, Brno, Czechia, 6Department of Electrical and Computer

Engineering, University of Texas El Paso, El Paso, TX, United States

Non-adaptive signal processing methods have been successfully applied to extract fetal

electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and

initial tests to evaluate the efficacy of these methods have been carried out by using

synthetic data. Nevertheless, performance evaluation of such methods using real data

is a much more challenging task and has neither been fully undertaken nor reported in

the literature. Therefore, in this investigation, we aimed to compare the effectiveness of

two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI)

extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance

of these well-known methods was enhanced by an adaptive algorithm, compensating

amplitude difference and time shift between the estimated components. We used real

signals compiled in 12 recordings (real01–real12). Five of the recordings were from the

publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram

Database), which included data recorded by multiple abdominal electrodes. Seven

more recordings were acquired by measurements performed at the Institute of Medical

Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of

data (i.e., around 88,000 R waves) for our experiments. This dataset covers different

gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc.

Such a unique heterogeneous dataset of sufficient length combining continuous Fetal

Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing

of the applied ICA and PCA methods. The performance of these signal separation

methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR)

values determined from the extracted fECGs with those calculated from the fECG signals

recorded directly by means of a reference FSE. Additionally, we tested the possibility

of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results
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demonstrated that even though these advanced signal processing methods are suitable

for the non-invasive estimation and monitoring of the fHR information from maternal

aECG signals, their utility for further morphological analysis of the extracted fECG signals

remains questionable and warrants further work.

Keywords: electronic fetal monitoring (EFM), fetal electrocardiogram (fECG), non-invasive fetal heart rate (NI-

fHR) estimation, non-invasive fetal ECG (NI-fECG), nonadaptive methods, independent component analysis (ICA),

principal component analysis (PCA), non-invasive ST analysis (NI-STAN)

1. INTRODUCTION

Electronic fetal monitoring (EFM) is a routine monitoring
modality during labor and delivery in developed countries.
Currently, Doppler ultrasound and fetal electrocardiography
(both invasive and non-invasive) are recognized as reliable
and proven techniques for monitoring the Fetal Heart Rate
(fHR) (Jezewski et al., 2017). The monitoring of fHR using
Doppler ultrasound, also called Cardiotocography (CTG), is well
established as it is considered effective and is therefore widely
used in clinics. However, the fetal Electrocardiogram-based
(fECG-based) EFM seems to offer a more promising approach
Jezewski et al. (2017) and Hasan et al. (2009b), as it significantly
outperforms the Doppler-based CTG, especially during the early
stages of labor (Reinhard et al., 2012). Moreover, Reinhard et al.
(2013) have concluded that the intrapartum fHR monitoring
using the CTG has the disadvantage of more maternal and fetal
HR ambiguity compared to the ECG, which additionally provides
the maternal Heart Rate (mHR) information.

The non-invasive variants of fECG signals are sensed by
abdominal electrodes, amplified and filtered by proper analog
signal processing circuitry with adequate gain and bandwidth.
Nevertheless, besides the desired fECG signal, there are many
other unwanted components originating from biological sources
(maternal and fetal muscles, stomach, uterus) as well as technical
noise from the powerlines and their surrounding electrical
devices that contaminate the recorded abdominal ECG (aECG)
signals. Most of these unwanted signals can be eliminated
by conventional signal processing techniques (linear filtering)
because their frequency ranges are different from the spectrum
of the desired (fECG) signals (Sameni and Clifford, 2010).
The main challenge in fECG signal processing is suppressing
the maternal component, i.e., the maternal electrocardiogram
(mECG). Since both signals overlap in the time and frequency
domains, advanced signal processing methods must be used to
extract the fECG signals.

There are several methods that can be used for extracting
fECG component from aECG signals. Generally, they can be
divided into two main groups: adaptive and non-adaptive. In
our previous research reported elsewhere (Martinek and Zidek,
2012; Martinek et al., 2016a, 2017a,b; Fajkus et al., 2017) we used
the adaptive methods and achieved good results in suppressing
the mECG signals present in the aECG signals. In spite of
producing good outcomes, these methods have the disadvantage
of requiring additional thoracic electrodes to provide reference
mECG signals. This fact affects the patient’s comfort, and

complicates its usage in clinical practice. Furthermore, the
efficiency of the adaptive methods is closely connected with
the adaptive filter’s settings. The optimal settings vary with
gestational age, fetal position in the uterus, etc. (Martinek et al.,
2017a).

From a practical clinical point of view, non-adaptive methods
offer the advantage of using ECG signals acquired from the
abdominal electrodes alone. In addition, there is a trend toward
using SMART technologies in medicine. Thus a multisource
system, where the electrodes are embedded within a flexible
garment (one electrode grid/strip for the abdominal area)
seems to be very promising for the future of continuous fetal
monitoring. In such a system, the ICA and PCA methods
presented in this article could prove to be the most suitable
for implementation. Consequently, to complement our previous
work and compare the effectiveness of non-adaptive signal
processing methods in suppressing the mECG signals, we carried
out the current investigation focusing on the Independent
Component Analysis (ICA) and Principal Component Analysis
(PCA). The results of our initial experiments applying the
popular PCA and ICA methods to synthetic data are presented
and reported elsewhere (Kahankova et al., 2017a). The next
logical step was to expand our previous work and perform our
experiments using real data. The main difference between using
synthetic versus real data is in the evaluation of the results. In
case of synthetic data, we can benefit from the fact that the ideal
fECG signal is available to be used as the reference for objective
quality assessment based on metrics such as: Signal-to-Noise
Ratio (SNRin, SNRout), Percentage Root Difference (PRD), Root
Mean Square Error (RMSE), etc. However, for the experiments
with real data, the efficacy of the applied methods can only be
evaluated based on the reference signal recorded by the FSE,
which is considered as a “gold standard” for fHR determination.

In this investigation, we evaluated the comparative efficacy
of the ICA and PCA methods by using real data from a
publicly available database (Jezewski et al., 2012) as well as
those acquired at the Institute of Medical Technology and
Equipment, Zabrze, Poland. Our results show that these non-
adaptive methods are suitable for the extraction of fetal heart rate
(fHR) information from fECG signals. However, their utility for
further morphological analysis of these signals is questionable.

Nevertheless, the results of morphological analysis
showed that it is possible to extract relevant information
such as the T/QRS ratio from the estimated fECG signals
contingent upon ensuring the acquisition of high quality data
(elimination of the motion artifacts, correct electrode placement,
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suffient electrode-skin contact, etc.). In other words, reliable
morphological analysis of high quality fECG signals offers the
possibility of introducing the non-invasive STAN (NI-STAN)
to clinical practice, which would in turn lead to a significant
reduction in unnecessary C-sections due to misrepresented EFM
results.

2. STATE OF THE ART

The fetal heart rate undergoes dynamic adjustments as it
responds to the fetal environment and other stimuli. The changes
in fHR can reflect both physiological and pathological influences.
Physiological changes are associated with fetal movements and
also with maternal contractions during labor (the so-called
accelerations and decelerations Williams and Arulkumaran,
2004). A decrease or an increase in fHR which is not a
response to physiological events may be a sign of pathology
such as fetal hypoxia, i.e., the inadequate supply of oxygen to
the fetus (Chandraharan and Arulkumaran, 2007). Therefore,
it is essential to monitor fHR, fetal movements and uterine
contractions simultaneously. In other words, Electronic Fetal
Monitoring (EFM) is a method for observing and controlling a
variety of underlying physiological measures at the same time and
therefore it enables the detection of any unusual changes in fHR.

2.1. Electronic Fetal Monitoring
Instrumentation
Electronic fetal monitoring (EFM) using Cardiotocography
(CTG) is the most frequently used tool to assess fetal well-being
during labor and delivery. The fHR and uterine contractions
are detected by two external transducers placed on the maternal
abdomen. One of the transducers, placed above the fetal heart,
uses Doppler ultrasound to detect fetal heart motion. The second
transducer, placed at the fundus of the uterus, measures the
frequency of the uterine contractions (Sweha et al., 1999).

The disadvantage of CTG is that it tends to produce false-
positive (FP) results. These in turn lead to increased rates of
unnecessary caesarian sections, thereby increasing labor and
delivery costs Vintzileos et al. (1995). One of the reasons for
the production of FP results is the problematic interpretation
of CTG, which suffers from large inter-observer disagreement
(see Bernardes et al., 1997; Blix et al., 2003; Vayssière et al.,
2010; Blackwell et al., 2011; Hruban et al., 2015). This is clearly
noticeable when we compare the clinical expert interpretation
of the fetal Heart Rate Variability (fHRV) with those generated
by computerized systems (Jezewski et al., 2002). The accuracy of
the CTG method can be increased by using an internal probe
that measures the fetal heart rate directly from the fetal scalp
(Amer-Wåhlin et al., 2001; Jezewski et al., 2012). This is, however,
inconvenient for the mother and the fetus. Some authors have
suggested that fetal heart rate signal interpretation can be
improved by applying advanced signal processing techniques
(Wróbel et al., 2013; Wrobel et al., 2015; Jezewski et al., 2016).

In addition to CTG, fHR can be obtained from fECG signals.
Recent studies show that this method is the most promising one
(Jezewski et al., 2017). The monitoring of fECG is performed by

internal or external means. The internal monitoring of fHR is
performed by attaching a screw-type Fetal Scalp Electrode (FSE)
on the fetus forehead. At the same time, uterine contractions
are recorded by using an Intrauterine Pressure Catheter (IUPC)
placed in the uterus through the cervix. This approach ensures
accuracy; however, it poses a risk of infection for the mother
and the fetus (Peters et al., 2001; Neilson, 2006). Moreover, its
utilization is limited by several factors. The fetal membranes have
to be ruptured and the cervix must be at least partially dilated
before the FSE can be placed on the fetal scalp.

External fetal monitoring is performed by using surface
electrodes that are placed on the maternal abdomen. The internal
monitoring of fHR is performed by attaching a screw-type
Fetal Scalp Electrode (FSE) on the examiner (Burattini et al.,
2015). However, the placement of the electrodes significantly
influences the quality of the signal as well as the demands on
the system that processes it Martinek et al. (2017b). Compared to
internal monitoring, this approach is less stressful and dangerous
for the mother and her fetus (Neilson, 2006). Moreover, it
can be theoretically used from quite early stages of pregnancy
(Kahankova et al., 2017c). Nevertheless, the drawback of this
method is that the desired signal (fECG) is contaminated by
a large amount of noise. The main source of the noise is
of course the maternal body. These biological signals include
breathing and muscular activity, motion artifacts and maternal
ECG (mECG). Most of these unwanted signals may be reduced
by classical filtering methods because frequency ranges of these
contaminating signals are different from those of the fECG signal.
However, as the mECG signals overlap with fECG signals in the
time and frequency domains, they cannot be filtered out by using
conventional methods.

2.2. Non-invasive Fetal Electrocardiogarm
(NI-fECG) Signal Extraction Methods
Fetal ECG signals can be extracted from either single-channel
or multi-channel sources. These signals can be processed by
means of adaptive or non-adaptive methods. Even though many
different techniques have been implemented to extract the fECG
signals (Viunytskyi and Shulgin, 2017), researchers still strive for
more accurate and improved non-invasive fetal ECG (NI-fECG)
extraction (separation) methods.

Adaptive methods use filters that are able to automatically
self-adjust their coefficients (control parameters) according to
the information in the filtered signal. These methods are often
utilized for noise suppression in a variety of applications, where
the source of the signal is known and measurable, such as
Channel Equalization (Martinek and Zidek, 2014; Martinek et al.,
2015c), Speech Noise Removal (Martinek et al., 2015a), and
others. In NI-fECG signal extraction, the maternal component is
considered to be the noise in the composite aECG signal, which
is comprised of fECG as well as the mECG in addition to other
unwanted biological and technical contaminating components.
Therefore, adaptive methods can be used for the mECG signal
suppression, where the aECG is the primary output and the
mECG, recorded by means of the maternal thoracic leads, is the
reference input.
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2.2.1. Adaptive Methods
Adaptive methods can be divided into two groups: Linear and
Nonlinear. Linear adaptive methods that have been applied to
the NI-fECG signal extraction problem include algorithms based
on Kalman Filtering (KF), (Niknazar et al., 2013), Adaptive
Voltera Filtering (Shadaydeh et al., 2008), Comb Filtering (Wei
et al., 2013), Stochastic Gradient Adaptation, i.e., the Least Mean
Squares (LMS)method (Poularikas and Zayed, 2006; Swarnalatha
and Prasad, 2010; Kahankova et al., 2018), and algorithms
based on optimal recursive adaptation, i.e., the Recursive Least
Squares (RLS) method (Poularikas and Zayed, 2006; Swarnalatha
and Prasad, 2010; Martinek et al., 2016a; Kahankova et al.,
2017d). Adaptive Linear Neuron or Adaptive Linear Element
(ADALINE) (Reaz and Wei, 2004; Jia et al., 2010; Amin et al.,
2011), and so on.

Nonlinear methods are based on Artificial Intelligence (AI)
and those that have been applied to extract the NI-fECG
signals include: Adaptive Neural Networks (ANN), Hasan et al.
(2009a), Hybrid Neural Networks (HNN), Assaleh (2007),
Genetic Algorithms and Bayesian Adaptive Filtering Frameworks
Talha et al. (2010), Kam and Cohen (1999), as well as techniques
utilizing Adaptive Neuro-Fuzzy Interference System (ANFIS),
Assaleh (2007), Al-Zaben and Al-Smadi (2006), Martinek et al.
(2016c), and Martinek and Zidek (2012). In addition, Artificial
Neural Networks based on Logical Interpretation of fuzzy if-
then Rules (ANBLIR) has been introduced as an approach
to classify fetal cardiotocograms Czabanski et al. (2008). The
main difference between the Linear and Nonlinear approaches
is that the latter methods capture the underlying nonlinear
characteristics of the body and thus are theoretically more
suitable for NI-fECG extraction.

2.2.2. Non-adaptive Methods
Non-adaptive filtering methods eliminate the undesired signals
to yield the fECG signal without filter adaptation. More
specifically, in some of these methods, filter weights are
determined by using some initial training data and remain
constant. Thesemethods can use either a single-channel ormulti-
channel signal source. Techniques utilizing a multi-channel
signal source includemultiple and single-sourcemethods. Single-
channel signal source methods are based on for example
Wavelet Transform (WT), Karvounis et al. (2004), Datian and
Xuemei (1996), Hassanpour and Parsaei (2007), Bsoul (2015),
Ivanushkina et al. (2014), Abburi and Chandrasekhara Sastry
(2012), Bensafia et al. (2017), Castillo et al. (2013), Correlation
Techniques De Araujo et al. (2005), Averaging Techniques (AT)
Hon and Lee (1963), Hon and Lee (1964), Template Subtraction
Tsui et al. (2017), Singular Value Decomposition (SVD) Kanjilal
et al. (1997), Adaptive Noise Canceler (ANC) Zhang et al. (2017),
and so on.

The multi-source methods are based on Subspace Denoising
Fatemi and Sameni (2017) or Blind Source Separation (BSS),
namely: Independent Component Analysis (ICA), Martín-
Clemente et al. (2011), Vrins et al. (2004), Najafabadi et al. (2006),
Mochimaru et al. (2004), Sameni et al. (2007), De Lathauwer et al.
(2000), Marossero et al. (2003), Gurve et al. (2017), Billeci and
Maurizio (2017); Principal Component Analysis (PCA), Gurve

et al. (2017), Kahankova et al. (2017b), and so on. BSS is a
frequently used method for fECG signal filtering. It assumes the
statistical independence of the two processed signals: fECG and
mECG. It can be applied in the case of multi-channel abdominal
recording with the assumption that the signals from different
leads are a linear combination of independent signal sources
generated by the maternal and fetal hearts (Sameni et al., 2007).
The challenge, however, is that the relationship between the
mECG recorded on the maternal chest and the mECG in the
abdominal signal is rather nonlinear in nature. It is important
to emphasize that the greater the number of channels, the better
the quality of the extracted fECG signal. However, a large number
of electrodes is clinically difficult to use and, moreover, they are
unpleasant for the patient (Burattini et al., 2015).

De Lathauwer et al. applied the ICA method to fECG
signal processing and explained that it is a rather demanding
approach (De Lathauwer et al., 2000). They focused on the direct
reconstruction of various statistically independent bioelectric
signal sources while considering both the maternal and fetal
hearts as important sources of diagnostic information, and
paid special attention to the propagation characteristics of
these signals toward the recording electrodes. Their solution is
nonparametric and it is not based on sample averaging, which
may be a problem while detecting and analyzing atypical changes
in heart rate.

Marrosero et al. compared three ICA-based methods: the
Mermaid algorithm, Infomax, and Fast Independent Component
Analysis (FastICA), Marossero et al. (2003). By detecting fHR
from both real and synthetic records, they showed that the
Mermaid method outperforms the other two algorithms. It also
appears that this method is more efficient in batch and on-line
operating modes, which is vital for real-time implementation.

Sameni et al. applied the ICA method to extract fECG signals,
while taking into account the dimensionality of these signals and
the theory of the heart dipole (Sameni et al., 2007). In their work,
the interpretation of the independent components obtained
from multiple leads was closely related to the representation of
vectorcardiograms of individual signals. The subspaces of the
fetal and maternal ECG signals are not completely different. By
using dynamic filters, it should be possible to use a dynamic
model that is time-synchronous with mECG and thereby to
remove the maternal component while preserving the fetal one.

3. METHODS

Figure 1 shows a block diagram of the experimental setup used
for our investigation. The main aim of this investigation was
to process aECG signals in order to extract fECG signals from
them by applying and comparing two popular non-adapative
signal processing (ICA and PCA) methods and then successfully
determine the fetal Heart Rate fHR, which is one of the main
indicators used to detect and diagnose fetal hypoxia (Hyvarinen
and Oja, 2000).

The aECG signals were first pre-processed by FIR bandpass
filtering to remove baseline wander, and subsequently applied to
the ICA and PCA signal processing blocks to extract the fECG
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FIGURE 1 | Block diagram of the experimental setup for fECG signal extraction and quality assessment.

signals. The filtered fECG signals were then compared with the
direct (reference) fECG signals recorded by means of the FSE
using the fHR values determined from the extracted as well as
direct fECG signals. The FSE recordings were quality assured by
clinical experts resulting in a set of reference markers precisely
indicating the time of occurrence of the R-waves. Thus these
transvaginal records could be considered as a “gold standard”
for fHR determination and a relevant reference for validating
the outcomes of our experiments. Additionally, the results were
statistically evaluated bymeans of the Bland-Altmanmethod.We
also provide the graphical interpretation of the results to facilitate
the visual evaluation of the fECG signal separation process.

In addition to fHR determination, this article also focuses on
testing possible morphological analysis (MA) of the fECG signals,
namely non-invasive ST analysis (NI-STAN). We analyzed the
estimated as well as the reference fECG signals and also carried
out the evaluation of the MA as well.

Non-adaptive methods have been applied to the fECG
signal extraction problem (Kahankova et al., 2017b), and initial
investigations have been carried out by using synthetic data
from a novel signal generator (Martinek et al., 2015b, 2016b).
Nevertheless, performance verification of the applied methods
using real data is a more complex task than testing them with
synthetic signals.

In this research, we used abdominal ECG signals from a
publicly available database as well as data acquired in Poland
(for details please see section 5). Each recording in the Polish
data included four aECG signals. One recording could be tested
by:(1) using 11 possible combinations of electrodes; (2) 6 possible
combinations when utilizing 2 signal channels; (3) 4 possible
combinations when using 3 channels; and (4) 1 combination
when using all of the channels simultaneously.

3.1. Independent Component Analysis (ICA)
Figure 2 shows the block diagram for the optimized ICAmethod.
The pre-processing block includes a bandpass FIR filter (with a
bandwidth from 3 to 150 Hz) for isoline drift (baseline wander)
correction. The pre-processed signals were subsequently applied
to the ICA signal processing block, which produced the estimated
aECG∗ signals (with increased amplitude and enhanced fetal

and mECG∗ components, respectively). There was a time shift
between the estimated aECG∗ and mECG∗ components which
needed to be centered. Moreover, it was necessary to equalize
the amplitudes of both components in order to ensure that the
maternal components had the same amplitude. For this task, we
developed an adaptive algorithm that was able to correct the
amplitude and phase shifts (see block called Compensation of
samples and amplitude in Figure 2). This led to a significant
increase in the fECG extraction performance. Finally, the fECG
signals were extracted by subtracting the mECG∗ from aECG∗

signals. Beside fHR determination, this article also focuses on
testing possible morphological analysis (MA) of fECG, namely
non-invasive ST analysis. We analyzed the estimated as well as
the reference fECG signal and evaluated results (MA evaluation).

Figure 3 shows a depiction of the BSS extraction method
based on the ‘Cocktail Party Problem’ adapted for pregnant
women as signal sources. There are two signal sources in the
maternal body, maternal and fetal heart, producing signals that
can be measured by means of electrodes placed on the maternal
abdomen. Abdominal electrodesmeasure bothmaternal and fetal
signals. The signal from the first electrode is marked as x1(t)
and the second as x2(t). Each of these recorded signals was
generated by weighing the signals s1(t) and s2(t) of the individual
signal sources (hearts). The relationship between the signals
obtained from the electrodes xi(t) and the signals generated by
the individual hearts si(t) can be expressed as follows:

x1(t) = a11(t)s1(t)+ a12(t)s2(t), (1)

x2(t) = a21(t)s1(t)+ a22(t)s2(t). (2)

3.1.1. ICA Data Model
Independent Component Analysis (ICA) is a statistical analysis
technique used to decompose a multivariable signal into a set
of mutually independent, non-Gaussian components, assuming
that the measured signals are a combination of independent
source signals described mathematically by the ICA model
(Karhunen, 1996; Hyvärinen and Oja, 1997; Hyvarinen and Oja,
2000; Černošek et al., 2000; Mohylova et al., 2001):

x = As, (3)
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FIGURE 2 | Block diagram of fECG signal extraction using the ICA method.

FIGURE 3 | Principle of the ICA method: linear mixture of the unobserved

independent source signals - s1(t), s2(t): source signals; and x1(t), x2(t):

recorded signals.

where again x = [x1, x2, · · · , xn, ]
T is the observed multivariate

signal, s = [s1, s2, · · · , sm, ]
T is the original unknownmultivariate

source signal, m is the number of observed signals, n is the
number of sources and A is the mixing matrix. The values of
the signals are considered samples (instantiations) of the random
variables, not functions of time. The aim of ICA is to return
the linear unmixing matrix W in order to acquire the estimated
independent components y such that:

y = Wx. (4)

We assumed here that the number of independent components s
is equal to the number of observed variables; this is a simplifying
assumption that is not completely necessary. If the unknown
mixingmatrixA is square and non-singular, thenW is the inverse
matrix W = A−1. Otherwise, the best unmixing matrix, that
separates sources as independent as possible, is given by the
generalized inverse Penrose-Moore matrix:

W = A+ and
∥

∥y− s
∥

∥ = min. (5)

3.1.2. Preprocessing for ICA
The primary reasons for pre-processing are:

• simplification of algorithms,

• reduction of dimensionality of the problem,
• reduction of number of parameters to be estimated,
• highlighting features of the data set not readily explained by

the mean and covariance.

There are two main pre-processing strategies in ICA, namely
centering and whitening/sphering.

a) Centering Centered vectors have zero mean. Centering is
a very simple operation and simply refers to subtracting the
mean E {x}:

xc = x− E {x} . (6)

b) Whitening Whitened vectors have unit variance.
Whitening can be performed by using the eigenvalue
decomposition of the covariance matrix:

E
{

xcx
T
c

}

= VDVT, (7)

where V is the orthogonal matrix of eigenvectors and D is the
diagonal matrix of its eigenvalues. A new whitened vector is
created as follows:

xw = VD−1/2VTxc. (8)

3.1.3. Limitations of ICA
There are four basic limitations of the ICA method Lee et al.
(1998):

1. Only one original independent component can have Gaussian
distribution. If multiple Gaussian sources exist, the ICA
method is not able to extract these sources (independent
components) from the data (x).

2. If we have an n-dimensional data vector, then we can find
a maximum of n-independent components using the ICA
method.

3. Some (or all) calculated y components can be multiplied by -1
with respect to the original components.

4. The order of the original independent components cannot be
determined by the ICA method.

Frontiers in Physiology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 648

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Martinek et al. ICA and PCA in Extraction of Fetal ECG

3.2. Principal Component Analysis (PCA)
The PCA (Soong and Koles, 1995; Diamantaras and Kung, 1996;
Jolliffe, 2002; Lhotská et al., 2009) is a useful statistical technique
for finding patterns in data of high dimensionality. It is a way of
identifying patterns in data, and expressing the data in such a way
as to highlight their similarities and differences. Since patterns
can be hard to find in data of high dimension, where the luxury of
graphical representation is not available, PCA is a powerful tool
for analyzing data.

Figure 4 shows the block diagram for the PCA method.
Similarly to the ICAmethod (see Figure 2), this diagram includes
a pre-processing stage, fECG signal estimation as well as the
evaluation of the results by comparing it with the data recorded
by means of the FSE. The time shift between the estimated
aECG∗ and mECG∗ components and amplitude difference was
compensated using the same adaptive algorithm as in the
previous case. Additionally, further morphological analysis (MA)
is provided for both reference and estimated data.

The other main advantage of the PCA method is that we
can find patterns in the data and then we can compress the
data, i.e., by reducing the number of dimensions, without much
loss of information. The input data vector is represented by the
column vector x = [x1, x2, · · · , xn]

T, with dimension n. We
have a set of data that consists of m input vectors. The entire
ensemble is compactly represented by the n × m data matrix
X = [x1, x2, · · · , xm]. The purpose of PCA is to find those
m (m < n) components of the elements of X, which reduce
the dimensionality of the input vector in a mean squared error
sense. One of the approaches to this solving problem is the
projection of the data along orthogonal basis vectors through
eigen decomposition of the covariance estimate of the input.

If we let x vector have a zero mean value, E {x} = 0, then the
transformation of vector x can be defined as:

s = xTU = UTx. (9)

Or also

si = xTui = UT
i x, (10)

where matrix U = [u1, u2, · · · , un] is the transformation matrix
with the condition:

‖ui‖ =

√

uTi ui = 1. (11)

That means that the module of the base vector ui is equal to one.
Equation (12) is also called the PCA data model. The value si is
the projection of the input data x to the orthogonal base vectors
ui. The vector s = [s1, s2, · · · , sn]

T is the principal component
vector and the values si are the principal components.

We can also do the opposite approach. After PCA’s main
components si (i.e., U-matrix coefficients,) have been found, the
data vector x can be reconstructed as follows:

x = Us =

n
∑

i = 1

siui. (12)

The aim of the PCA method is to find a linear orthogonal
transformation represented by the U matrix so that the variance
of si projection is maximum. The variance can be defined as:

σ 2
s = E

{

s2
}

= E
{(

uTx
) (

xTu
)}

= uTCui, (13)

where C = E
{

xxT
}

= CT is a symmetric covariance matrix of
random vector x. From equation (14) it follows that the variance
of the s projection is a function of the unit vector ui.

ψ(u) = σ 2
s = uTCu, (14)

where ψ(u) is the variance probe.
The aim of the PCA method is to find the base vectors ui for

which the variation probe ψ(u) is maximal under the condition
expressed in Equation (12).

3.3. Principal Components Estimation
The problem about estimating the base vectors ui is based on
solving equation (16):

Cui = λiui; i = 1, 2, · · · , n. (15)

The solution of the equation is to find the actual numbers λi (the
numbers of the covariance
matrix C) and the vectors of the covariance matrix C.

The C matrix’s eigenvalues are ordered from the largest value
to the smallest value λ1 > λ2 > · · · > λn; λ1 = λmax

and by the ordered vectors ui it is possible to create the matrix
U = [u1, u2, · · · , un], then the equation (15) can be expressed as:

C · U = U ·3, (16)

where 3 denotes the diagonal matrix with the eigenvalues
λ1, · · · , λn. Respective column vectors ui satisfy the
orthogonality condition:

uTi · uj =

{

1, i = j,

0, i 6= j.
(17)

That means thatU is an identity matrix (15) and can be expressed
as:

UT · C · U = U3. (18)

By comparing equations (14) and (19) we can assume that:

ψ(ui) = λi; i = 1, 2, · · · , n. (19)

This means that the variance probes ψ(ui) seek the maximum
variance and the matrix’s eigenvalues are identical.

The PCA principle is illustrated in Figure 5 for the two-
dimensional set of input data, depicted as points marked with the
letter ‘A’. The data is expressed by the matrix X, X = [x1i, x2i]

T,
i = 1, 2, · · · , p; where p is the number of points and xji is
the i-th value of the j-random variable. On the horizontal axis,
the values x1 are plotted, whereas x2 values are plotted on the
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FIGURE 4 | Block diagram for fECG signal extraction using the PCA method.

FIGURE 5 | The principle of PCA method.

vertical axis. The PCA method caused the rotation of the axes
from the original position x1 and x2 to a position that is denoted
by the letters s1 and s2. The axes rotated in the direction of the
vectors of the covariance matrix. The rotation is represented by
a dotted arrow in Figure 5. By projecting the dataset on an axis
that is in the direction of the first vector, we capture the exact
data structure that represents 2 clusters in this structure (“B”).
The variation of this projection is the maximum of all possible
directions (rotations). When projection is made to the s2 (“C”)
axis, the information about 2 clusters is hidden.

4. DATASET

The research material consisted of multichannel fetal
electrocardiograms obtained from 12 different women at
ITAM in Zabrze, Poland during established labors, between 38
and 41 weeks of gestation and saved in 12 different recordings.

Five of these recordings constitute the Abdominal and Direct
Fetal Electrocardiogram Database (AD FECG) available to the
public on the PhysioNet website (Matonia et al., 2006; Jezewski
et al., 2012).

In all cases the additional scalp electrode was placed for a
clinical indication and all patients consented to participate in this
study. The signals were recorded using a system for acquisition
and analysis of fetal electrocardiogram KOMPOREL (ITAM
Institute, Zabrze, Poland), in the Department of Obstetrics at
the Medical University of Silesia. Each individual recording was
comprised of signals acquired from four differential channels
using electrodes placed on a maternal abdomen, and a direct
electrocardiogram was registered from a fetal head as a reference
signal (please see Figure 6).

The abdominal electrodes configuration was comprised of
four electrodes placed around the navel, a reference electrode
positioned above the pubic symphysis and a common mode
reference electrode (with active-ground signal) placed on the left
leg. To reduce the skin impedance, the areas under the Ag-AgCl
electrodes (3M Red Dot 2271) were abraded (3M Red Dot Trace
Prep 2236). It is important to emphasize that the acquisition
of abdominal fECG signals during labor presents additional
challenges we had to be aware of. Firstly, during labor the
strongest signal was observed when the fetus was fully developed.
On the other hand, the quality of abdominal signals acquired
during labor was contaminated by considerable muscular activity
of the uterus. Moreover, during signal acquisition the scalp
electrode very often lost contact with the fetal head, causing
temporary signal loss. Some fragments of the direct fECG
signals were also distorted by interferences caused by maternal
movements. Consequently, we had to select only those short
fragments of the recordings for which there were no signal loss
periods in the direct (reference) fECG signal. The acquisition
of direct fetal electrocardiogram was carried out with a typical
spiral electrode, commonly used in the direct fECG channel of
popular bedside fetal monitors. The R-wave peaks were then
automatically determined from the direct fECG signals by means
of an on-line analysis algorithm applied in the KOMPOREL
system. The accurate occurrence of these peaks was then verified
(off-line) by a group of cardiologists, resulting in a set of reference
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FIGURE 6 | Left: Electrode placement system for recording and analysis of bioelectric signals acquired from the maternal abdominal wall, the direct electrode

attached to the fetus head (sampling rate of 1 kHz, bandwidth 1 Hz–150 Hz and resolution of 16 bits). Right: Plots for 4 differential signals acquired from the maternal

abdomen and the reference direct fECG signal (M, maternal QRS complexes; F, fetal QRS complexes).

markers precisely indicating the location of the R-waves. These
markers were then stored together with the direct and indirect
fECG signals. In 12 5-min recordings, a total of 5,165 maternal
QRS complexes as well as 7,863 fetal QRS complexes were
detected. Assuming the maximum width of the maternal QRS
complex as 100 ms and that of the fetal as 40 ms, the number of
complexes without feto-maternal coincidence was 2,415maternal
and 5,142 fetal.

4.1. Performance Evaluation Measures
We used quantitative measures (dedicated evaluation indices)
related to the Signal-to-Noise Ratio (SNR) to evaluate the
sufficiency and diversity of the research data to clearly distinguish
between useful signal components and contaminating
interferences in the abdominal signals. These indices allow
the evaluation of the mutual amplitude dependencies of
maternal and fetal components on each other and their relation
to other noise components in the aECG signals (Figure 7).

Assuming that the signal powers of P and T waves in the
fetal and maternal complexes are negligible, the average power

of interferences PN in the abdominal signal can be presented as
an average signal power outside the QRS complex locations given
by:

PN =

L
∑

k = 1

x2
(

k
)

L
, (20)

where L is the number of samples in the abdominal signal x(k)
that are not associated with any QRS complex.

Additionally, assuming that there is no correlation between
the useful signal and the noise component, the average power of
the maternal signal PM is given by:

PM =

J
∑

i = 1

FPM(i)+SM/2
∑

k=FPM(i)−SM/2

x2
(

k
)

J (SM + 1)
− PN, (21)

where J is the number of detected maternal QRSs that do not
overlap the fetal QRSs; SM is the width of the maternal QRS
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FIGURE 7 | Calculation of an average power for particular components of the abdominal ECG signal: the average power of interference N is calculated from

segments: N1 + N2 + N3 + N4 + N5 + N6 + N7, the maternal signal power M from M1 + M3, and fetal from: F1 + F2 + F4.

(100 ms); and FPM (i) is the timing of the i-th maternal QRS
occurrence.

Similarly, the average power of the fetal signal PF is:

PF =

J
∑

i = 1

FPF(i)+SF/2
∑

k=FPF(i)−SF/2

x2
(

k
)

I (SF + 1)
− PN, (22)

where I is the number of detected fetal QRSs that do not overlap
the maternal ones, SF is the fetal QRS width (40 ms), and FPF (i)
is the timing of the i-th fetal QRS occurrence.

Based on these values, the WMF index relating the maternal
and fetal components can be defined as follows:

WMF = 10 log
PM

PF
, (23)

and similarly, the WM and WF indices describing the mECG
signal and fECG signal powers in relation to the power of the
interfering components, can be respectively defined as follows:

WM = SNRMECG = 10 log
PM

PN
, (24)

WF = SNRFECG = 10 log
PF

PN
. (25)

From the analysis of these indices based on the results obtained
from the four abdominal signal channels, it could clearly be
seen that for the research data used, the dominant signal was
the mECG, whose amplitude was always more than three times
higher than that of the noise component signal (mean WM is
10.9 dB, with a range from 5 to 12.6 dB). Similarly, its relation to
the fetal signal, as indicated by theWMF index, exceeded 7 dB on
average (range from 1.8 to 11.9 dB). TheWF indicator, informing
the relationship between fetal QRSs and the noise component,
varied very considerably. Its average value was 3.9 dB, but there

were cases where the WF oscillated within almost 7 dB (the fetal
QRS amplitude was more than twice as high as that of the noise
component), and in cases when WF was close to only 0.5 dB the
fetal QRS level was comparable to the amplitude of interferences.

5. RESULTS

5.1. Fetal Heart Rate Determination
In this section, we present our evaluation results of the fECG
signals extracted from aECG signals acquired by using 4
abdominal electrodes. The fECG signals acquired bymeans of the
Fetal Scalp Electrode (FSE) were used as reference. This direct
signal was used for the verification of the extracted signal by
comparing the fHR values determined from each of them.

In the reference and extracted fECG signals, the R waves
were detected and the intervals between subsequent peaks (RR
intervals) were determined. Fetal HR was then calculated as the
number of the RR intervals in 1 min.

Figure 8 presents an overview of the dataset used in fHR
determination. It includes the mean fHR waveform calculated
for all of the available data. This figure shows that 60 min of
ECG data (i.e., around 8,000 R waves) in total were available
for our experiments. This dataset covers different gestation ages,
fetal positions, maternal body mass indexes (BMI), etc. Such a
unique heterogeneous dataset with sufficient length combining
continuous FSE and abdominal ECG recordings allows for robust
testing of the applied ICA and PCA methods.

In this study, we used two types of moving average filters
(MAF). For the dataset overview depicted in Figure 8, the most
suitable values for the MAF window size was 30 as it produced
the best visual results and enhanced the fHR waveform trend.
However, for the rest of the determined fHR waveforms, we used
a MAF window size of 10 since the data length was significantly
lower (5 min). The following figures (Figures 9–14) show the
details of the fHR waveforms shown in Figures 8, 9–11, which
reveal good agreement between the fHR values determined from
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FIGURE 8 | Dataset overview of real01 to real12 fHR determination.

FIGURE 9 | Comparison of the fHR values determined from the fECG signals extracted from recording real01 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.

FIGURE 10 | Comparison of the fHR values determined from the fECG signals extracted from recording real05 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.
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FIGURE 11 | Comparison of the fHR values determined from the fECG signals extracted from recording real08 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.

FIGURE 12 | Comparison of the fHR values determined from the fECG signals extracted from recording real09 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.

FIGURE 13 | Comparison of the fHR values determined from the fECG signals extracted from recording real10 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.
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FIGURE 14 | Comparison of the fHR values determined from the fECG signals extracted from recording real11 by using the ICA and PCA methods with the reference

fECG signal recorded by means of the FSE.

the reference fECG signals and those calculated by applying the
ICA and PCA methods to the aECG signals (recordings real01,
real05, real08) to extract fECG signals, whereas Figures 12–
14 show fragments with sufficient quality for fHR detection
(recording real09, real10, real11), however, these fragments were
insufficient for advanced morphological fECG signal analysis.

Figures 9–11 show the comparison of the fHR values (in bpm)
determined from the fECG signals extracted from recordings
real01 and real05, real08, respectively, as well as those calculated
from the direct or reference fECG signals. We can observe that
the fHR values determined from the extracted signals (especially
those by the PCA method) were comparable to those calculated
from the reference signal (acquired by means of the FSE).

For other recordings, however, the results were different. In
the case of the real09, real10, and real11 recordings (Figures 12–
14, respectively), the fHR values determined from the fECG
signals extracted by the ICA method significantly differed from
those fHR values calculated by using the reference fECG signals.
It was observed that the fHR values determined by the PCA
method were significantly more accurate than those determined
by the ICA method. This could be caused by several factors that
will be discussed in more detail (see section 6.4).

5.2. Statistical Analysis
In this section, we present the statistical evaluation of the
accuracy of the ICA and PCA methods in the extraction of
fECG signals compared to the reference fECG signal measured
by means of the FSE. We use the following metrics and equations
(26–29) to achieve this task: Sensitivity (Se), Positive Predictive
Value (PPV), Accuracy (ACC), and F1 (the overall probability
that the fQRS complex is correctly detected) (Samuel et al.,
2017). In these equations, TP represents True Positive (correct
detection of fQRS complexes when they are present in the fECG
signals), FN stands for False Negative (incorrect detection of
fQRS complexes when they are not present in the fECG signal),
FP symbolizes False Positive (incorrectly indicates the presence of
fQRS complexes in the fECG signals), and TN (true detection of

the absence of fQRS complexes in the fECG signals). Tables 1, 2
show the calculated values of these parameters for the analyzed
records. For the detection of the fQRS complexes, we used an
extended version of the Pan and Tompkins algorithm (Pan and
Tompkins, 1985); and the accuracy of the fECG estimation was
evaluated by a beat-to-beat comparison of the extracted fQRS
complexes by means of the ICA or PCA methods and the
reference fQRS complexes detected in the reference fECG signal
acquired by the FSE (Zhang et al., 2017).

Se =
TP

TP+ FN
· 100. (26)

PPV =
TP

TP+ FP
· 100. (27)

ACC =
TP

TP+ FP+ FN
· 100. (28)

F1 = 2 ·
PPV · Se

PPV+ Se
=

2 · TP

2 · TP+ FP+ FN
· 100. (29)

5.3. Bland-Altman Statistical Analysis
For further evaluation of the accuracy of the determined fHR
values, the Bland-Altman method was utilized. This method is
based on calculating themean difference between twomethods of
measurement (so-called bias), and 95% of the limits of agreement
as the mean difference (2 SD), or more precisely, (1.96 SD). It
is expected that the chosen limit of 95 % contains 95 % of the
variances between the two tested methods: the reference and
estimated fHR values in our case. Therefore, the fHR values
determined from the extracted fECG signals are assumed to be
accurate, such that 95% of all of them fall in the range of ± 1.96
SD (Myles and Cui, 2007).

Figures 15–17 show the plots based on the Bland-Altman
statistical analysis technique for both methods with 12 different
data recordings. In these plots, there are 3 lines: 2 of them
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TABLE 1 | Statistical evaluation of fQRS detection by ICA method.

Recordings TP FP FN ± 1.96 SD Se (%) PPV (%) ACC (%) F1 (%)

real01 644 2 3 98.33 99.54 99.69 99.23 99.61

real02 663 9 5 95.33 99.25 98.66 97.93 98.96

real03 686 14 7 93.00 98.99 98.00 97.03 98.49

real04 643 11 19 90.00 97.13 98.32 95.54 97.72

real05 645 5 7 96.00 98.93 99.23 98.17 99.08

real06 676 12 15 91.00 97.83 98.26 96.16 98.04

real07 626 6 24 90.00 96.31 99.05 95.43 97.66

real08 651 4 3 97.67 99.54 99.39 98.94 99.47

real09 657 5 4 97.00 99.39 99.24 98.65 99.32

real10 635 3 24 91.00 96.36 99.53 95.92 97.92

real11 719 10 17 91.00 97.69 98.63 96.38 98.16

real12 688 10 15 91.67 97.87 98.57 96.49 98.22

Total 7,933 91 143 93.50 98.23 98.87 97.13 98.55

TABLE 2 | Statistical evaluation of fQRS detection by PCA method.

Recordings TP FP FN ± 1.96 SD Se (%) PPV (%) ACC (%) F1 (%)

real01 644 1 2 99.00 99.69 99.84 99.54 99.77

real02 663 14 13 91.00 98.08 97.93 96.09 98.00

real03 686 14 9 92.33 98.71 98.00 96.76 98.35

real04 643 12 17 90.33 97.42 98.17 95.68 97.79

real05 645 3 8 96.33 98.77 99.54 98.32 99.15

real06 676 9 16 91.67 97.69 98.69 96.43 98.18

real07 626 10 17 91.00 97.36 98.43 95.87 97.89

real08 651 2 2 98.67 99.69 99.69 99.39 99.69

real09 657 13 6 93.67 99.10 98.06 97.19 98.57

real10 635 6 14 93.33 97.84 99.06 96.95 98.45

real11 719 3 21 92.00 97.16 99.58 96.77 98.36

real12 688 5 16 93.00 97.73 99.28 97.04 98.50

Total 7,933 92 141 93.53 98.27 98.86 97.17 98.56

indicate the chosen limit of 95%, whereas the 3rd one is
bold and denotes the state when the signals match. The
closer to zero the results are, the better correlation between
the fHR determined from the reference signal and the one
determined from the signals extracted by the PCA or ICA
methods.

Figure 15 shows the Bland-Altman plot of whole dataset
depicted in Figure 8. The results show that these methods are
effective for recordings real01, real05, and real08 as only for these
recordings the value of SD exceeded 95% (see Tables 1, 2). Most
of the data are thus highly uncorrelated in the Bland-Altman plot.
That is caused by the unsatisfactory results achieved by some of
the recordings as discussed above.

The results in Figure 16 show a good correlation in case of
recordings real01, real05, and real08, whereas recordings real09,
real10, and real11 are highly uncorrelated (see Figure 17). This
further confirms the results included in Tables 1, 2.

5.4. Challenge 2013 Results Comparison
To present a better implementation of the aforementioned
techniques, we compared the performance of our approach

TABLE 3 | Performance of the tested algorithms on set a.

Method ± 1.96 SD Se (%) PPV (%) ACC (%) F1 (%)

ICA 79.71 84.45 99.71 84.26 91.16

PCA 75.98 82.05 99.45 81.68 89.63

to competitive algorithms available in literature. We tested
the algorithms on the open source Fetal ECG database on
Physionet.org (set A, see phy, 2014 ), and compared the
performance in fECG extraction with the results that were
presented at the Computing in Cardiology Conference in
2013, summarizing the competition “Noninvasive Fetal
ECG Challenge.” Since HRMSE and RRRMSE Scoring
parameters for the effectiveness evaluation proposed in
the competition turned out to be too controversial, we
primarily focused on the comparison of PPV, Se, ACC, and F1
index (see Table 3).

Behar et al. presented the possibility of using ICA and
PCA (with various combinations of these methods) for the
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FIGURE 15 | Bland-Altman plot for the entire dataset using (A) the ICA and (B) the PCA methods.

FIGURE 16 | Bland-Altman plot for recordings real01, real05, and real08 using (A) the ICA and (B) the PCA methods.

FIGURE 17 | Bland-Altman plot for recordings real09, real10, and real11 using (A) the ICA and (B) the PCA methods.

extraction of the fECG signal (Behar et al., 2013, 2014).
The results showed that the algorithms used in combination
with other algorithms perform significantly better than if

used separately. Our adaptive algorithm was able to enhance
the quality of the fECG extraction compared to the results
of ICA and PCA being used separately (improvement of
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approximately 27 and 38% in terms of F1 for ICA and PCA,
respectively).

5.5. Graphical Interpretation of the Results
To keep our paper to a reasonable length, in this part, we
provide the graphical interpretation of the some of the output
signals as examples to facilitate their visual evaluation and
discuss the unsatisfactory results achieved for some of the
recordings. Figure 18 includes the reference signal recorded by
means of the FSE (Figure 18A), and the fECG signals extracted
by the ICA (Figure 18B) and PCA (Figure 18C) methods.
These results show that the maternal R waves were successfully
suppressed while fetal R waves remained unchanged. This is a
vital requirement for accurate fHR detection. In terms of the
estimated fECG signal morphology, the shape and the duration
of P waves were unchanged. However, S and Q waves were
deformed (lowered) by the applied signal processing methods. It
is important to note that these satisfactory results were mainly
achieved due to the high quality of the input ECG signal
recordings (see Figure 19).

On the contrary, in some records, the determined fHR
was lower than the fHR calculated from the reference signal.
Figure 20 (input data on Figure 21) presents some examples of
the signals that produced unsatisfactory results. It is noticeable
that some of the fetal R peaks were suppressed, which could
subsequently lead into missed R-peak detection and thus a
decreased value of the fHR.

In some time intervals, the fHR waveforms determined from
the signals estimated by PCA and ICA methods exceeded the
waveform of the fHR determined from the reference signal
recorded by means of FSE (see Figure 12). An analysis of the
estimated signals in these particular fragments reveals maternal
residues (see Figure 22). These artifacts produce false positively
detected fetal peaks and thus increase themean fHR value. One of
the reasons that the PCA and ICA methods performed worst can
be noticed in Figure 23, which includes the input data in the same
time intervals. The quality of the recordings is significantly lower
than in the case of the signals depicted in Figure 19, especially in
the case of abdominal signals called record 2 where the motion
artifacts distorted the signal.

5.6. Non-invasive ST-Analysis
In addition to fHR determination and its variability (HRV),
we focused on the morphological analysis of the estimated
fECG signals extracted from the abdominal records, with
primary emphasis on ST segment Analysis (STAN) and T/QRS
determination. These capabilities have the potential to improve
the diagnosis of fetal hypoxia (sensitivity, specificity) and
decrease the number of unnecessary surgical terminations of
pregnancy (cesarean sections). Besides, as currently there are no
gold standards available for STAN, we are unfortunately unable
to perform the quantitative verification and evaluation of the
efficacy of our results. Consequently, our initial tests in this article
include only the results for the T/QRS determination without
deeper statistical analysis. The ST segment is considered to be the
most variable part of the fECG signal. The changes in its duration
and morphology may indicate pathological states. In particular,

the elevation of the ST segment and the T-wave amplitude
increase occur when the cardiovascular adaptation to hypoxia
is no longer sufficient. STAN automatically detects and alerts
changes that are related to the risk of fetal hypoxia (Rosen et al.,
1992). In most cases, the method is used in combination with
Cardiotocography (CTG) during labor and the interpretations
follow the FIGO guidelines and recommendations (Ayres-De-
Campos et al., 2015). It is based on calculating the ratio between
T-waves and QRS complexes (T/QRS). The analysis of T/QRS in
this paper was carried out in the fECG diagnostic tool that we
have developed in our laboratory. Figure 24 shows the Graphical
User Interface (GUI) of the application with some examples
of the fECG signal analysis results. In our system, the STAN
involved three different steps:

1. Localization of the R and S waves in the fECG signals followed
by QRS complex detection and amplitude determination;

2. Detection of the R-peaks in the entire fECG signals by using
the Continuous Wavelet Transform (CWT) based method;

3. Detection of the T-waves and their amplitude calculations. It
is important to emphasize that due to the very low T-wave
amplitudes, the mean of 30 Heartbeats (Cardiac Cycles) was
used to calculate the T/QRS ratios.

Figure 24 shows the Graphical User Interface (GUI) of our
application. It includes the part to load the File (data channel)
to be analyzed as well as the sampling frequency. The user is
able to load any file in the ∗.edf or ∗.mat formats. The panel
Heart rate detection allows the user the R-peak detection and
HRV calculation on previously loaded fECG data. The user can
select between 6 available algorithms based on, for example, the
Non-adaptive and Adaptive threshold for heartbeat detection,
Discrete and Continuous WT, Neural network, and so on. There
is a special panel to visualize the T/QRS analysis since it is a
more advancedmethod for ECG feature analysis. To run a T/QRS
ratio analysis (or STAN) the user must select one of the graphs
to be analyzed. The details for samples from different recordings
used for the experiments carried out in this paper are shown in
Figure 26.

The graphs in Figure 25 include 3 types of graphs for 2
recordings (real01 and real09): the fECG estimated by the ICA
and PCA methods and the reference signal sensed by FSE. All of
the graphs include details needed for STAN: the amplitudes of the
T wave and QRS complex and the corresponding T/QRS ratio.
The graphs prove that the morphological analysis is achievable
in the case of high quality input data. Although the amplitudes
of detected T waves and QRS complexes are lower than in the
case of the signal from FSE (since the fECG signal is decreased
while spreading toward the maternal abdomen) the T/QRS ratios
remained unchanged. That means that improving the quality
of fECG extraction techniques would allow a unique chance to
provide STAN non-invasively in the future.

6. DISCUSSION

The results presented in section 6 prove that the extracted
fECG signals fom aECG signals could serve as a valuable
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FIGURE 18 | Examples of the signals from recording real10 used for comparison: (A) Reference (ideal) fECG signal recorded by means of the FSE, (B) fECG signal

extracted by the ICA method,(C)fECGsignal extracted by the PCA method.

FIGURE 19 | Example of a high quality input recordings (real01) (A) abdominal record1; (B) abdominal record2; (C) abdominal record3; (D) abdominal record4.

source of information and that using advanced signal processing
methods, such as ICA and PCA, could enable the utility of this
type of monitoring in clinical practice as an alternative to the
conventional Doppler-based technique. Our statistical analysis
results revealed that these non-adaptivemethods did not perform
very well for some of the recordings (real04, real06, real07,
real10, and real11). The results of some unsatisfactory examples
(recordings real04 and real10) are depicted in Figure 26.
A possible explanation for such inferior results is that the
magnitude of the fetal component in the abdominal signals is

very low in comparison with the maternal one, especially in the
case of the abdominal signal denoted as Abdomen_4, shown
in the bottom of the figure. Here we are of the opinion that
the gestation age was too low for accurate fHR determination.
On the contrary, the results for recordings real01 and real08
were satisfactory. Note that the ratio between maternal and
fetal components was significantly lower than those in other
recordings. An interesting fact that can be observed in recording
real10 is that the polarity of the maternal component is the
inverse of the polarity in the rest of the recordings. This may
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FIGURE 20 | Examples of the signals producing unsatisfactory results in fHR determinantion from recording realX: (A) Reference (ideal) fECG signal recorded by

means of the FSE, (B) fECG signal extracted by the ICA method, (C) fECG signal extracted by the PCA method.

FIGURE 21 | Examples of input signals for the fHR waveform interval with values lower than the reference: (A) abdominal record1; (B) abdominal record2; (C)

abdominal record3; (D) abdominal record4.

be due to a different electrode placement, which could in turn
negatively influence the performance of the tested algorithms.
Nevertheless, the quality of the estimated signals is high enough
to follow the trend of the fHR waveform, which is a key factor
for accessing the fetal condition according to FIGO guidelines
(Ayres-De-Campos et al., 2015).

We also need to emphasize that for reliable Morphological
Analysis (for example, STAN), the quality of the analyzed fECG
signal is of paramount importance and must be adequately high.
For this reason STAN is currently performed exclusively on the

fECG signals acquired invasively. Such recordings have higher
Signal-to-Noise Ratios and therefore the amplitude and shape
of the essential components of the fECG signals (T-waves and
QRS complexes) are not distorted by contaminating signals.
Considering these facts, the only records that could be used for
NI-STAN in our work were real01, real02, real05, real08, and
real09.

There are two main options for achieving sufficient signal
quality of fECGs that is sufficient for NI-STAN: (1) by improving
the quality of the input recordings (as discussed in chapter 6.4), or
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FIGURE 22 | Examples of the signals producing unsatisfactory results in fHR determinantion from recording realX: (A) Reference (ideal) fECG signal recorded by

means of the FSE, (B) fECG signal extracted by the ICA method, (C) fECG signal extracted by the PCA method.

FIGURE 23 | Examples of input signals for the fHR waveform interval with values exceeding the reference: (A) abdominal record1; (B) abdominal record2; (C)

abdominal record3; (D) abdominal record4.

(2) utilizing more robust techniques, such as the aforementioned
hybrid methods leveraging the combined capabilities and
advantages of non-adaptive and adaptive methods. For NI-
STAN, the key to success is the standardization (optimization)
of the electrode placements that has to accommodate varying
circumstances, especially gestation age and fetal position in the
uterus.

This article is focused on two popular non-adaptive signal
processing methods, even though the adaptive techniques have
proven to be effective tools for fECG signal extraction from
aECG signals. The adaptive methods are theoretically more
suitable but have their drawbacks, mainly the need for the
additional thoracic electrodes and leads (which restrict the
pregnant woman’s movements) and thus limit the utility of
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FIGURE 24 | The Graphical User Interface (GUI) of our FECG-ECG Analyzer.

FIGURE 25 | Examples of the morphological analysis of estimated and the reference fECG signals. (A,D) estimated signals using PCA method; (B,E) estimated

signals using ICA method; (C,F) reference signals recorded by means of FSE.
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FIGURE 26 | Quality assessment of the recordings used for our comparisons.

such methods in clinical practice. Furthermore, the efficiency
of the adaptive methods is closely dependent on the adaptive
filter’s settings. The optimal filter settings vary with gestational
age, fetal position in the uterus, etc. (Kahankova et al., 2017c).
Adaptive methods have already been tested by our research
group (Martinek and Zidek, 2012; Martinek et al., 2016a, 2017a,b;
Fajkus et al., 2017) and others (Kam and Cohen, 1999; Reaz
and Wei, 2004; Al-Zaben and Al-Smadi, 2006; Poularikas and
Zayed, 2006; Assaleh, 2007; Czabanski et al., 2008; Shadaydeh
et al., 2008; Jia et al., 2010; Swarnalatha and Prasad, 2010; Talha
et al., 2010; Amin et al., 2011; Niknazar et al., 2013; Wei et al.,
2013; Martinek et al., 2016c; Kahankova et al., 2017d, 2018).
We need to emphasize that to achieve Morphological Analysis
of fECG signals, adaptive methods appear to be more suitable.
However, for clinical applications, non-adaptive methods offer
the advantage of solely using abdominal electrodes without the
need for thoracic electrodes and leads. In addition, there is a
trend in SMART technologies in medicine to use a multisource
system, where the electrodes are embedded within a garment
(one electrode grid/strip for the abdominal area). Such a system
seems to be very promising for the future of fetal monitoring.
In this kind of system, the ICA and PCA methods applied and
tested in our research could prove to be the most suitable for
implementation. Nevertheless, our aim here was not only to
determine fHR values but also to achieveMorphological Analysis
of the fECG waveforms. Our experimental results proved that
using advanced signal processing techniques could enable further
Morphological Analysis (for example, STAN), see section 6.5.

In our future research, we will focus on leveraging the utility
of the combined adaptive and non-adaptive (hybrid) methods.
With this approach we would benefit from the advantages offered
by both methods. The hybrid methods would be more accurate
for detailed Morphological Analysis while making use of the
abdominal recordings alone. Our approach would be based on
extracting the reference fECG signals from the aECG signals
using the ICA and PCA methods. However, we needed to test

adaptive and non-adaptive methods separately at first before
reaching that goal.

The evaluation of our results was based on comparing the
estimated signals with the reference fECG signals recorded
by means of the FSE. Five of the recordings used in our
experimentation are currently available from the Abdominal and
Direct Fetal Electrocardiogram Database Jezewski et al. (2012).
The other 7 are new and are not publicly available yet. It is
important to emphasize that for the acquisition of data recorded
in the entire Database, the type of measurements, sampling
frequency, and other details changed. For this reason, we thought
it would be beneficial to our readers to describe the details of these
measurements. Professor Jezewski, a member of our team and
our co-author, intends to make the rest of the Database acquired
at ITAM in Poland available to the public by means of PhysioNet.

We obtained the reference fECG signals from raw data in
the Database and subsequently processed and annotated them in
cooperation with a team of experts including both engineers and
clinicians. The R-wave peak detection was semi-automatic. First,
we used the Continuous Wavelength Transform to detect the
R-waves. Subsequently, we went through all the recordings and
visually inspected the detection of the RR intervals to eliminate
any automatic errors, see Figure 26. This visual quality-assurance
step was important for the initial phase of our research not
only to ensure the accurate detection of any errors (due to
fetal movements in the uterus, incorrect electrode placement,
and others); but to find solutions for eliminating them (see
Supplementary Material for all figures and tables).

7. CONCLUSION AND FUTURE WORK

In this paper, we compared the effectiveness of two popular
non-adaptive signal separation techniques, the ICA and
PCA methods, to extract fECG signals from aECG signals
noninvasively. The performance of these conventionally
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used methods was improved by an adaptive algorithm,
compensating amplitude difference and time shift between the
estimated components. Currently, the non-adaptive methods
are successfully used for fHR determination. However, there are
still great research opportunities and scope for improvements,
especially in terms of further Morphological Analysis. We
provided the performance evaluation results on real data based
on comparing the extracted signals with the reference fECG
signals recorded by means of the FSE. The novelty in our work is
centered around obtaining the reference signals from raw data
that were subsequently processed and annotated by a team of
experts. Thus, in contrast to the other results reported in the
field (see Kahankova et al., 2017c; Martinek et al., 2017a), we
were not limited by the lack of gold standards (fQRS annotations
in the abdominal signals) as we could use our own reference
data for further investigation. We have developed a software
tool for Morphological Analysis (for example STAN) of the
fECG waveforms. Since we have both reference and estimated
fECG signals available, we are able to apply more sophisticated
analysis by means of our software tool. For this reason, we could
evaluate the robustness of the extraction algorithms for fHR
determination and further Morphological Analysis.

The results demonstrated the effectiveness of the improved
conventional methods, ICA and PCA, for fHR determination and
furtherMorphological Analysis. The performance of themethods
was influenced by several factors. The inferior performance of the
methods may be attributable to the impact of the fetal position
in the uterus or fetal and maternal movements. Moreover, the
electrode placement varies during pregnancy and it is influenced
by the Gestation Age (GA). The ICA and PCA methods have the
potential to be utilized as early as the 20th week of pregnancy
since the signals are too weak for the extraction before that
period. As a fundamental limitation in the utility of the ICA and
PCA methods for extracting fECG signals, the case of multiple
pregnancy must be mentioned since these non-adaptive methods
may have problems in extracting the components with same
frequencies (fHRs of each fetus in the uterus). Similarly, problems
could arise in pathological cases when the maternal and fetal
heart rates increase/decrease by the same amount. Generally,
the fetal beating frequency is about 2 times greater than the
maternal rate. However, in case of fetal bradycardia or maternal
tachycardia, these frequencies might have almost the same value.

At present, a great deal of attention is being paid to single-
channel methods. It is obvious that for more non-invasive STAN,

multichannel recordings are needed. A Single-channel signal is
likely to be of low quality due to several factors such as changes
in the fetal position and others. Single-channel methods are
sufficient to determine the fHR, but for deeper Morphological
Analysis they are rather inadequate.

We envision that a multichannel system is essential
for the advanced analysis of non-invasively acquired
fECG signals. In our future research, we aim to explore
the combined utility of non-adaptive and adaptive
signal processing methods in order to achieve better
results. This approach could lead to the development
of a new diagnostic method: non-invasive STAN
(NI-STAN).
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