
METHODS
published: 19 June 2018

doi: 10.3389/fphys.2018.00680

Frontiers in Physiology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 680

Edited by:

Pierre De Meyts,

de Duve Institute, Belgium

Reviewed by:

Oksana Sorokina,

University of Edinburgh,

United Kingdom

Kyle B. Gustafson,

Naval Surface Warfare Center

Carderock Division (NSWCCD),

United States

*Correspondence:

Denis Thieffry

thieffry@ens.fr

Loïc Paulevé

loic.pauleve@lri.fr

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Physiology

Received: 05 April 2018

Accepted: 15 May 2018

Published: 19 June 2018

Citation:

Naldi A, Hernandez C, Levy N, Stoll G,

Monteiro PT, Chaouiya C, Helikar T,

Zinovyev A, Calzone L,

Cohen-Boulakia S, Thieffry D and

Paulevé L (2018) The CoLoMoTo

Interactive Notebook: Accessible and

Reproducible Computational Analyses

for Qualitative Biological Networks.

Front. Physiol. 9:680.

doi: 10.3389/fphys.2018.00680

The CoLoMoTo Interactive Notebook:
Accessible and Reproducible
Computational Analyses for
Qualitative Biological Networks

Aurélien Naldi 1, Céline Hernandez 1, Nicolas Levy 2,3, Gautier Stoll 4,5,6,7,8,

Pedro T. Monteiro 9, Claudine Chaouiya 10, Tomáš Helikar 11, Andrei Zinovyev 12,13,14,15,

Laurence Calzone 12,13,14, Sarah Cohen-Boulakia 2, Denis Thieffry 1* and Loïc Paulevé 2*

1Computational Systems Biology Team, Institut de Biologie de I’Ecole Normale Supérieure, Centre National de la Recherche

Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale U1024, École Normale Supérieure, PSL

Université, Paris, France, 2 Laboratoire de Recherche en Informatique UMR8623, Université Paris-Sud, Centre National de la

Recherche Scientifique, Université Paris-Saclay, Orsay, France, 3 École Normale Supérieure de Lyon, Lyon, France,
4Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France, 5 Équipe 11 Labellisée Ligue Nationale Contre le

Cancer, Centre de Recherche des Cordeliers, Paris, France, 6 Institut National de la Santé et de la Recherche Médicale,

U1138, Paris, France, 7Université Pierre et Marie Curie, Paris, France, 8Metabolomics and Cell Biology Platforms, Gustave

Roussy Cancer, Villejuif, France, 9 INESC-ID/Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, 10 Instituto

Gulbenkian de Ciência, Oeiras, Portugal, 11Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United

States, 12 Institut Curie, PSL Research University, Paris, France, 13 Institut National de la Santé et de la Recherche Médicale,

U900, Paris, France, 14MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France,
15 Lobachevsky University, Nizhni Novgorod, Russia

Analysing models of biological networks typically relies on workflows in which different

software tools with sensitive parameters are chained together, many times with additional

manual steps. The accessibility and reproducibility of such workflows is challenging,

as publications often overlook analysis details, and because some of these tools may

be difficult to install, and/or have a steep learning curve. The CoLoMoTo Interactive

Notebook provides a unified environment to edit, execute, share, and reproduce analyses

of qualitative models of biological networks. This framework combines the power of

different technologies to ensure repeatability and to reduce users’ learning curve of these

technologies. The framework is distributed as a Docker image with the tools ready to be

run without any installation step besides Docker, and is available on Linux, macOS, and

Microsoft Windows. The embedded computational workflows are edited with a Jupyter

web interface, enabling the inclusion of textual annotations, along with the explicit code

to execute, as well as the visualization of the results. The resulting notebook files can then

be shared and re-executed in the same environment. To date, the CoLoMoTo Interactive

Notebook provides access to the software tools GINsim, BioLQM, Pint, MaBoSS, and

Cell Collective, for themodeling and analysis of Boolean andmulti-valued networks. More

tools will be included in the future. We developed a Python interface for each of these

tools to offer a seamless integration in the Jupyter web interface and ease the chaining

of complementary analyses.

Keywords: computational systems biology, reproducibility, model analysis, Boolean networks, Python

programming language

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00680
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00680&domain=pdf&date_stamp=2018-06-19
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thieffry@ens.fr
mailto:loic.pauleve@lri.fr
https://doi.org/10.3389/fphys.2018.00680
https://www.frontiersin.org/articles/10.3389/fphys.2018.00680/full
http://loop.frontiersin.org/people/201686/overview
http://loop.frontiersin.org/people/547648/overview
http://loop.frontiersin.org/people/53926/overview
http://loop.frontiersin.org/people/164629/overview
http://loop.frontiersin.org/people/106366/overview
http://loop.frontiersin.org/people/106132/overview
http://loop.frontiersin.org/people/366843/overview
http://loop.frontiersin.org/people/131666/overview
http://loop.frontiersin.org/people/470785/overview

Naldi et al. The CoLoMoTo Interactive Notebook

1. INTRODUCTION

Recently, the scientific community has been increasingly
concerned about difficulties in reproducing already published
results. In the context of preclinical studies, observed difficulties
to reproduce important findings have raised controversy (see
e.g., Richter et al., 2010; Begley and Ellis, 2012; Smith and
Houghton, 2013; Errington et al., 2014; and Begley and Ioannidis,
2015 for a review on this topic). Although not invalidating
the findings, these observations have shaken the community.
In 2016, a Nature survey pointed to the multi-factorial origin
of this “reproducibility crisis” (Baker, 2016). Factors related
to computational analyses were highlighted, in particular the
unavailability of code and methods, along with the technical
expertise required to reproduce the computations. The scientific
community is progressively addressing this problem. Prestigious
conferences (such as two major conferences from the database
community, namely, VLDB1 and SIGMOD2) and journals (such
as PNAS, Biostatistics (Peng, 2009), Nature (Santori, 2016), and
Science (Yaffe, 2015), to name only a few) now encourage or
even require published results to be accompanied by all the
information necessary to reproduce them.

While the reproducibility challenges have first been observed
in domains where deluge of data were quickly becoming
available (e.g., Next Generation Sequencing data analyses), the
problem is now present in many (if not all) communities
where computational analyses and simulations are performed.
In particular, the Systems Biology community is facing
a proliferation of approaches to perform a large variety
of tasks, including the development of dynamical models,
complex simulations, and multiple comparisons between varying
conditions of model variants. Consequently, reproducing results
from systems biology studies becomes increasingly difficult.
Furthermore, although the combination of different tools would
provide various new scientific opportunities, this is currently
hindered by technical issues.

Several initiatives have been launched by the community
to address reproducibility issues for computational modeling
of biochemical networks. These include guidelines for model
annotations (MIRIAM, Le Novère et al., 2005) and simulation
descriptions (MIASE, Waltemath et al., 2011a), as well as
standards for model exchange (SBML, Hucka et al., 2003) and
simulation parametrizations (SED-ML, Waltemath et al., 2011b).
This collective effort is coordinated by the COmputational
Modeling in BIology NEtwork (COMBINE3).

The Consortium for Logical Models and Tools (CoLoMoTo4)
has been organized to bring together computational modeling
researchers and address the aforementioned reproducibility and
reusability issues within the sub-domain of logical models and
software tools (Naldi et al., 2015). As a first outcome to foster
model exchange and software interoperability, the SBML L3
package qual was developed (Chaouiya et al., 2013, 2015). In

1International conference on Very Large Data Bases.
2ACM’s Special Interest Group on Management Of Data.
3http://co.mbine.org
4http://colomoto.org

this manuscript, we report the next phase of the CoLoMoTo
efforts in the area of reproducibility in computational systems
biology: The CoLoMoTo Interactive Notebook, which provides
an easy-to-use environment to edit, execute, share, and
reproduce analyses of qualitative models of biological networks
by seamlessly integrating various logical modeling software
tools.

The teams involved in CoLoMoTo, gathering around 50
researchers within 20 groups and laboratories, have produced
various software tools for the qualitative modeling and analysis of
biological networks. They are also involved in the development
of novel computational methods and models. This method
article presents a collective effort to provide the community
with a reproducibility-oriented framework combining software
tools related to logical modeling. This framework combines the
power of different approaches to ensure repeatability and to
reduce the requirement of technical knowledge from users. The
provided Docker image facilitates the stability of a contained
environment needed for repeatable computational modeling and
analyses. The framework includes a set of pre-installed tools
from the CoLoMoTo community. On the other hand, specific
binding and interfaces integrated in a Jupyter environment
reduce the learning curve and improve accessibility. The use of
this framework is demonstrated by a case study in a companion
protocol article, which consists in a thoroughly annotated Jupiter
notebook (Levy et al., 2018)5.

The method article is structured as follows. Section 2
provides a brief introduction to qualitative models of biological
networks and to their analyses. Section 3 describes the main
components (Docker image, Python programming interface,
Jupyter interactive web interface) of our framework to facilitate
the access to CoLoMoTo software tools, a prime prerequisite
for the reproducibility of the computational analyses. Section 4
illustrates how our framework can address several challenges
related to the reproducibility of computational analyses, ranging
from the repeat of a sequence of analyses in the exact same
software environment, to the use of alternate methods to
reproduce a result. Finally, section 5 provides an introductory
guide on how to use the new framework, and section 6 discusses
possible extensions.

2. BACKGROUND ON QUALITATIVE
DYNAMICAL MODELS AND THEIR
COMPUTATIONAL ANALYSIS

Since the pioneering work of Kauffman (1969), Thomas (1973),
and others, logical (e.g., Boolean) models have emerged as a
framework of choice to model complex biological networks,
focusing for example on the roles of transcriptional regulatory
circuits in cell differentiation and development, of signaling
pathways in cell fate decisions, etc. (for a review, see e.g., Abou-
Jaoudé et al., 2016).

5The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-

%20Mutations%20enabling%20tumour%20invasion.ipynb

Frontiers in Physiology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 680

http://co.mbine.org
http://colomoto.org
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

2.1. Qualitative Modeling
The definition of a qualitative logical model, such as a Boolean
model usually relies first on the delineation of a regulatory
graph, where each node denotes a regulatory component (e.g.,
a protein or a gene), while (positive or negative) arcs represent
interactions (activation or inhibition) between their source and
target nodes. Each node is modeled as a discrete variable, having
a finite number of possible values, typically Boolean, i.e., only
two values, 0 or 1, denoting e.g., protein absence/inactivity or
presence/activity. A Boolean function or rule is then defined for
each node to specify how its value may change depending on the
values of its regulators.

The state of a network is modeled as a vector encompassing
the (Boolean or multi-valued) values of all the nodes of the
regulatory graph, with a prescribed ordering. The state of the
network can be updated according to the logical functions
defined for each node, triggering a transition toward a successor
state.When at a given state, several nodes are called for an update,
different updating modes can be considered. The synchronous
updating mode updates all nodes simultaneously, thus leading
to a unique successor state. Hence, the dynamical behavior
is fully deterministic. In contrast, the asynchronous updating
mode updates only one node, choosen non-deterministically,
thus leading to different possible successor states. Several variants
and extensions of these updating modes have been defined,
for instance assigning pre-determined priorities or assigning
probabilities to node updates, or considering simultaneous
updates of sub-groups of nodes.

2.2. Dynamical Analysis
The dynamical behavior of themodel can be represented as a state
transition graph, where vertices correspond to different states of
the network, and directed edges represent transitions between
states, following a selected updating mode. Dynamical analyses
consist then in characterizing different properties of this state
transition graph.

Attractors are one of the most prominent features studied
in Boolean and multi-valued networks. Attractors model the
asymptotic behaviors of the system, and correspond to the
terminal strongly connected components of the state transition
graph. Attractors can be of different nature, either reduced
to a single stable state (or fixed point), from which no
transition is possible, or cyclic sequences of states, modeling
sustained oscillations. From a biological point of view, computing
attractors is generally particularly relevant. The presence of
multiple attractors can represent alternative cell fates (such as cell
differentiation states), while cyclic attractors further represent
periodic behaviors (such as cell cycle or circadian rhythms).
The computation of attractors is addressed by different software
tools, such as BIOLQM (Naldi, in review6), GINSIM (Naldi
et al., 2018), PINT (Paulevé, 2017), BOOLSIM (Garg et al., 2008),
BOOLEANNET (Albert et al., 2008), PYBOOLNET (Klarner et al.,
2017), and BOOLNET (Müssel et al., 2010).

Simulations allow capturing the states reachable from a given
(set of) initial state(s). They can consist of random walks in
the complete state transition graph, take into account updating

6Preprint on bioRxiv https://doi.org/10.1101/287011

priority schemes to distinguish fast versus slow processes and
thereby obtain a simpler state transition graph (Fauré et al.,
2006), as implemented in the software tool BIOLQM, or rely on
user-defined transition probabilities and timing, as implemented
into the software tools MABOSS (Stoll et al., 2012, 2017) and
CELLCOLLECTIVE (Helikar et al., 2012; Todd and Helikar, 2012).

Model checking techniques developed for software verification
in computer science allow verifying formally dynamical
properties on state transition graphs and are regularly employed
for analysing biological systems (Batt et al., 2005; Abou-
Jaoudé et al., 2015; Bartocci and Lió, 2016; Traynard et al.,
2016). The properties are specified using so-called temporal
logics, which enable the formulation of queries regarding
asymptotic or transient dynamical properties, taking into
account all the state transitions of the model. The accordance of
a Boolean/multi-valued model with such properties is verified
using a general purpose model checker such as NUSMV (Cimatti
et al., 2002) to which GINSIM and PINT provide
access.

It is worth noticing that the number of states of a Boolean
or multi-valued network grows exponentially with the number
of nodes. The above mentioned methods typically suffer from
this complexity, and hence face limitations regarding network
size (currently, this limit is of the order of fifty to a hundred
of nodes, depending on the analysis and the complexity of
the dynamics). Nevertheless, different approaches enable the
analysis of large scale qualitative networks by means of structural
analyses, model reductions or abstractions. The CoLoMoTo
Interactive Notebook provides access to methods for model
reductions, such as by Naldi et al. (2011), implemented in
BIOLQM, which preserves stable states, while cyclic attractors
and reachability can be affected in predictable ways, or by
using formal approximations of the dynamical behavior, as
implemented in PINT, which allow tackling networks with several
thousands of nodes (Paulevé, 2017, in press). Other approaches
include, for instance, Petri net model reduction for trajectories
in signaling pathways (Talcott and Dill, 2006), subnetwork
analysis (Siebert, 2009), computational algebra (Veliz-Cuba
et al., 2014), and motif-based abstractions for attractors
(Gan and Albert, 2018).

Figure 1 gives an overview of a range of software tools for
the analysis of qualitative models, specifying their main features
along with the main underlying technologies.

3. ACCESSIBILITY OF COLOMOTO
SOFTWARE TOOLS

The CoLoMoTo Interactive Notebook aims at offering a unified
environment for accessing a range of complementary software
tools for the analysis of qualitative models of biological
networks. To achieve such a goal, our framework relies on three
complementary technologies.

First, we use the Docker system to provide images of pre-
installed selected CoLoMoTo software tools, thus reducing
significantly the burden of installing individually each software
tool. The software installed within Docker images can be
executed on GNU/Linux, macOS, and Microsoft Windows,

Frontiers in Physiology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 680

https://doi.org/10.1101/287011
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

FIGURE 1 | Feature matrix and characteristics of a range of software tools devoted to the qualitative modeling and analysis of biological networks: CELLCOLLECTIVE

(Helikar et al., 2012); GINSIM (Naldi et al., 2018); BIOLQM (Naldi, in review6); MABOSS (Stoll et al., 2017); PINT (Paulevé, 2017); NUSMV (Cimatti et al., 2002); BOOLSIM (Garg

et al., 2008); BOOLEANNET (Albert et al., 2008); PYBOOLNET (Klarner et al., 2017); BOOLNET (Müssel et al., 2010); CELLNOPT (Terfve et al., 2012); CASPOTS (Ostrowski

et al., 2016). The current CoLoMoTo Docker (2018-03-31) ships the software indicated with a bold font and a light blue background. “Model repository” refers to

searchable databases of models; “Model edition” refers to the features related to creating and modifying a qualitative model, where “ab initio” refers to the interactive

model building from scratch, and “transformations” refers to operations such as mutations, Booleanization, model reduction, etc. “Topological analysis” refers to the

extraction of features from the regulatory graph, such as the different feedback cycles, graph theory measures, etc. “Dynamical analysis” refers to properties related to

the state transition graph of Boolean/multi-valued networks, where “Attractor analysis” refers to the identification of stable states, cyclic attractors, and related

features; “Simulation” refers to the sampling of trajectories within the state transition graph, possibly parameterized with stochastic rates and mutations; “Formal

verification and control” refers to exhaustive analyses for assessing strictly temporal properties, such as reachability, and deducing mutations for controlling the

system. Finally, “Model inference” refers to the derivation of Boolean/multi-valued network which are compatible with given properties and observation data.

and can be accessed by standard workflow systems, such as
SNAKEMAKE (Köster and Rahmann, 2012).

Then, we developed a collection of Pythonmodules to provide
a unified interface to the features of the selected software tools.
The Python modules allow to parameterize and execute the
different analyses, and fetch their results, which can then be
further processed, including by a different tool through its
respective Python module. This uniform Python interface is
particularly relevant in the Jupyter web interface (Ragan-Kelley
et al., 2014), where it allows editing executable notebooks on
qualitative biological networks by seamlessly combining different
software tools.

3.1. The CoLoMoTo Docker Image
Overall, we witness a growing ecosystem of software tools
based on different technologies and offering a wide range
of complementary features. Noteworthy, these tools typically

rely on tailored formalisms and settings, which enable specific
methods but at the same time affect the results. One obvious
example is the consideration of a specific updating mode, as
synchronous and asynchronous dynamics may differ extensively.
Furthermore, to address increasingly large networks, many
tools rely on advanced data-structures and resolution methods,
which are implemented in dedicated software libraries. The
distribution of these tools then become challenging, as they
rely on numerous dependencies, often difficult to install or
available only for a specific operating systems (most of the time
GNU/Linux).

The Docker container technology allows to circumvent
such distribution issues by providing a mean to supply
pre-installed and fully configured software environments in
so-called Docker images. On GNU/Linux, the execution of
a Docker image consists mainly in executing the software
in an isolated environment, requiring no operating system

Frontiers in Physiology | www.frontiersin.org 4 June 2018 | Volume 9 | Article 680

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

virtualization. Therefore, the overhead of using Docker on
GNU/Linux is close to zero. A Docker image can also be executed
on macOS or Microsoft Windows without any modification.
On these operating systems, Docker relies on virtualization
technologies, which are relatatively lightweight and result in
limited performance loss on recent hardware.

The current CoLoMoTo Docker image
colomoto/colomoto-docker:2018-03-31 contains
the following pre-installed software for the logical modeling
and analsyis of biological networks: GINSIM (Naldi et al.,
2018), BIOLQM (Naldi, in review)6, CELLCOLLECTIVE (Helikar
et al., 2012), MABOSS (Stoll et al., 2017), PINT (Paulevé, 2017),
and NUSMV (Cimatti et al., 2002). The CoLoMoTo Docker
image then provides access to these tools without requiring
any installation step beside installing Docker7. For instance,
the Docker image can be used in association with a workflow
manager to chain and run a series of software functionalities.
Supplementary File “SnakeMake” provides an example of
SNAKEMAKE workflow relying on GINSIM and NUSMV.

An important challenge is the maintenance and extendibility
of such Docker images to reduce the complexity of upgrading
or adding software tools with their respective dependencies. To
that aim, we require that each software tool is independently
packaged for GNU/Linux using theConda packagemanager8.We
then rely on the dependency management system of Conda to
ensure that the correct pre-requisites are installed in the Docker
image9. A beneficial side effect of this technical choice is that the
aforementioned software tools can be installed on GNU/Linux
platforms using Conda, without using Docker.

3.2. A Unified Interface for Calling and
Chaining Tools With Python
The software tools considered for the CoLoMoTo Docker
image present different interfaces: CELLCOLLECTIVE is a web
application, GINSIM has a graphical user interface along with
a scripting interface, BIOLQM has a command line and a
scripting interface, PINT has a command line and a Python
interface, MABOSS has a command line interface. GINSIM,
CELLCOLLECTIVE and BIOLQM support the SBML-qual format,
while BIOLQM provides the conversion of a standard SBML-qual
model into PINT or MABOSS model formats, thereby enabling
the exchange of models between all these tools.

The recourse to different interfaces complicates the design
of a model analysis combining multiple tools. To address this
issue, we have developed a Python interface for each of the tools
embedded in the CoLoMoTo Docker image, which greatly ease
the execution of different tool functionalities, fetch the results,
and use these as input for other executions.

Each tool comes with a dedicated Python module, providing
a set of functions to invoke the underlying software tool
appropriately. Therefore, from a single Python shell, one can
invoke and chain analyses performed by different tools. This can

7See https://docker.com for installation instructions.
8https://conda.io
9CoLoMoTo-related conda packages are available in the colomoto conda channel.

See https://anaconda.org/colomoto

TABLE 1 | Model input formats for the software tools included in the CoLoMoTo

Docker image.

Software tool Supported input formats

bioLQM SBML-qual (.sbml), raw logical functions, truth table

GINsim GINML (.ginml, .zginml)

Pint Automata network (.an)

MaBoSS Dedicated network/configuration files (.bnd/.cfg)

NuSMV SMV file (.smv)

be seen as an improved command line interface, greatly enhanced
by the use of intermediate Python objects. Such an approach
also promotes the use of standard Python data-structures to
store objects such as model states or graphs, which can then
be processed by common Python libraries, e.g., PANDAS10 or
NETWORKX11.

Hereafter, we give an overview of the resulting Python
programming interface, focusing on the general model input
mechanism and the main features implemented for each of the
software tools.

3.2.1. Model Input and Tool Conversions
Despite their very different features, all the tools considered here
take as input a logical model, in an adequate format. All the
related Python modules provide a load function, which takes
as input the location of the model, being a local file, for instance:

m = biolqm.load("path/to/localfile.sbml")

a web link to a file, as obtained on GINSIM repository12 for
instance:

m = biolqm.load("http://ginsim.org/sites/default/

files/Traynard_Boolean_MamCC_Apr2016.sbml")

or a web link to the model on CELLCOLLECTIVE, for instance:

m = biolqm.load("https://cellcollective.org/

#5128/lac-operon")

In each case, the returned object (identified by m in the above
examples) is a Python object representing the loaded model and
defined specifically for the corresponding tool (Python module).
Table 1 lists the supported input format for each software tool.

When possible, Python modules provide functions to
convert a model for a compatible tool. These functions
are of the form moduleA.to_moduleB(modelA).
Figure 2 lists the currently supported model conversions.
The following Python code shows an example of usage:

lrg = ginsim.load(“http://ginsim.org/sites/default/

files/Traynard_Boolean_MamCC_Apr2016.sbml”)

lqm = ginsim.to_biolqm(lrg)

an = biolqm.to_pint(lqm)

Here, lrg is a Python object representing a GINSIM model, lqm
is a Python object representing a BIOLQM model, and an is a
Python object representing a PINT model.

10https://pandas.pydata.org
11http://networkx.github.io
12http://ginsim.org/models_repository

Frontiers in Physiology | www.frontiersin.org 5 June 2018 | Volume 9 | Article 680

https://docker.com
https://conda.io
https://anaconda.org/colomoto
http://ginsim.org/sites/default/files/Traynard_Boolean_MamCC_Apr2016.sbml
http://ginsim.org/sites/default/files/Traynard_Boolean_MamCC_Apr2016.sbml
https://cellcollective.org/#5128/lac-operon
https://cellcollective.org/#5128/lac-operon
http://ginsim.org/sites/default/files/Traynard_Boolean_MamCC_Apr2016.sbml
https://pandas.pydata.org
http://networkx.github.io
http://ginsim.org/models_repository
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

FIGURE 2 | Supported model conversions between Python modules.

3.2.2. CELLCOLLECTIVE – Modeling Platform,

Repository, and Knowledge Base
The cellcollective Python module allows connecting to
the CELLCOLLECTIVE (Helikar et al., 2012) web application
(https://www.cellcollective.org), in order to download themodels
in SBML-qual format and extract network node meta-data (e.g.,
UnitProt identifiers) when available. The Supplementary File
“Notebooks/demo-cellcollective”13 provides a brief demonstration
of the Python module usage.

3.2.3. GINSIM – Regulatory Network Modeling
The ginsim Python module provides direct access to the
Java programming interface of GINSIM (Naldi et al., 2018).
GINSIM is available and documented at http://www.ginsim.org.
In particular, besides the export of a GINsim model into various
file formats, the Python module allows to visualize the network
regulatory graph, with the activation and inhibition relationships
between the nodes. The visualization function (ginsim.show)
optionally takes as argument a Python dictionary associating a
level with each node; then, the nodes of the network are colored
according to these levels. This is illustrated in the Supplementary
File “Notebooks/demo-ginsim”14.

3.2.4. BIOLQM – Qualitative Model Toolbox
The biolqm Python module provides direct access to the Java
programming interface of BIOLQM (Naldi, in review6). BIOLQM
is available and documented at http://colomoto.org/biolqm.
BIOLQM supports the conversion of SBML-qual files, GINML
files, as well as simple textual files specifying the raw logical
functions into the formats associated with the different software
tools. Besides the file format features, BIOLQM implements
model modifications, such as mutations forcing the value of given
nodes, iterative model reduction (see above), model reversal, the

13The notebook can be previewed and downloaded at https://nbviewer.

jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/

CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
14The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/

GINsim%20-%20visualization.ipynb

conversion of multi-valued model into Boolean ones, as well as
the computation of stable states, trap spaces, and simulations.
Part of these features are illustrated in the Supplementary File
“Notebooks/demo-biolqm”15.

3.2.5. PINT – Formal Predictions for Controlling

Trajectories
The pypint Python module provides complete access to
features documented at https://loicpauleve.name/pint. The
software PINT is devoted to the analysis of trajectories in very
large-scale asynchronous Boolean and multi-valued networks
(Paulevé, 2017). Its main features include the verification of the
existence of a trajectory reaching a state of interest (reachability),
the identification of common points between all the trajectories
leading to a state of interest (cut sets), and the formal prediction
of mutations preventing the existence of any trajectory to the
given state. These features are illustrated in the Supplementary
File “Notebooks/demo-pint”16.

3.2.6. NuSMV – Model Verification
The nusmv Python module provides a simple interface to the
NUSMV model checker for verifying LTL (trace) and CTL
(computation tree) temporal logic properties (Cimatti et al.,
2002) . The specification of LTL and CTL properties can be
facilitated using the colomoto.temporal_logics Python
module, which takes advantage of Python objects for the different
logical operators and ease their combination.

Let us consider the following example using the CTL operators
from the aforementioned Python module:

p1 = AG (S(a=1))

p2 = EF (p1)

15The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/

bioLQM_tutorial.ipynb
16The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-

tutorial.ipynb

Frontiers in Physiology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 680

https://www.cellcollective.org
http://www.ginsim.org
http://colomoto.org/biolqm
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://loicpauleve.name/pint
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

Here, the variable p1 is a CTL formula specifying that the node
a is active (S(a=1)) in all the reachable states (AG operator).
The variable p2 is a CTL formula specifying that there exists
a trajectory leading to a state (EF operator) from which the
property p1 is verified.

In the above example, S specifies a property on a state, by
giving the values of some nodes of the network. The conversion
of a network model into NUSMV format depends on the tool
used, sometimes introducing different variable names for the
nodes of the original biological network. But this technical point
is transparent for the user: the nusmv Python module will
automatically translate the node names into the correct NUSMV
variable names.

The Supplementary File “Notebooks/demo-nusmv”17 gives a
simple example of usage of the nusmv Python module to verify
properties of a GINSIM model.

3.2.7. MaBoSS – Stochastic Simulations
The maboss Python module provides an interface to MABOSS,
available at https://maboss.curie.fr, as well as basic plotting
functionalities (Stoll et al., 2017). The purpose of MABOSS
is to perform stochastic simulations of a Boolean network,
where the propensity of transitions (probabilistic rates) are
explicitly specified. The Python module allows to fully define
and parameterize a model, as well as to parse an existing
MaBoSS model and modify it programmatically. The object
returned after the simulations can then be used to plot the
probability of node activation over time, and the proportion of
states in which the simulations ended, in order to estimate the
probability of reaching different attractors. The Supplementary
File “Notebooks/demo-maboss”18 provides a brief tutorial to the
main features of the maboss Python module.

3.2.8. Advanced Combinations of Tools
These Python modules provide a unified interface to chain
different tools and process their results. The small tutorials
referenced above show simple chaining of tools, most of the time
using a tool to import a model (e.g., from CELLCOLLECTIVE or
GINSIM) and convert it (using BIOLQM) for specific analysis by
another tool. As the Python functions of the different modules
rely on standard Python data-structures, such as lists and
dictionaries, it is possible to easily re-use the result from a tool
function as input to the function of a different tool. A simple
example is provided in Supplementary File “Notebooks/demo-
ginsim”19, where we use BIOLQM to compute the stable states of
a GINSIM model, and then give one of the resulting state as input
to GINSIM show function to display it over the regulatory graph.

Moreover, one can use the programmatic features of Python to
implement advanced algorithms for executing multiple analyses

17The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/

NuSMV%20with%20GINsim.ipynb
18The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/

MaBoSS%20-%20Quick%20tutorial.ipynb
19The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/

GINsim%20-%20visualization.ipynb

and process their results. For instance, one can program loops
to iterate over a list of results of a preceding analysis from
one tool to perform a subsequent analysis on each result
with another tool. This is illustrated in the Supplementary
File “Notebooks/demo-pint+maboss”20, where we use PINT to
formally predict combinations of mutations controlling the
existence of trajectories toward a specified state; then, we
quantify with MABOSS the efficiency of applying only partially
the predicted combinations, by evaluating each related double-
mutants. The example involves Python for loops and a function
to enumerate all possible subsets provided by the standard
Python library. The notebook also relies on CELLCOLLECTIVE to
fetch the model, and on BIOLQM to perform the adequate model
conversions.

3.3. CoLoMoTo Jupyter Interactive
Notebook
Jupyter21 is a software providing an interactive web interface for
creating documents, called notebooks, mixing code, equations,
and formatted texts. A notebook typically describes a full analysis
workflow, combining textual explanations, the code itself, along
with parameters to reproduce the results. A notebook is a single
file, which can be easily modified, shared, re-executed, and
visualized online. The short tutorials of the previous section
provided in the Supplementary File “Notebooks” are actually
Jupyter notebooks (files with the extension .ipynb) and can be
re-executed using Jupyter.

A Jupyter notebook is made of a sequence of so-called cells,
which can contain formatted text, including sections, links,
images, tables, etc., or which can contain code in a specified
programming language, typically Python. A code cell can be
executed (by pressing Shift-Enter) and the value returned by the
code is displayed below the cell. The display format is selected
according to the type of the returned value (image, graph, list,
table, . . .) to offer an adequate visualization.

Having a unified Python interface to invoke the CoLoMoTo
software tools, one can directly create Jupyter notebooks for the
analysis of qualitative biological networks using these tools, as
shown in Supplementary File “Notebooks” and in the companion
publication providing a complete model analysis workflow (Levy
et al., 2018).

We added several features in the CoLoMoTo Python modules
to increase interactivity and improve the user experience for
editing Jupyter notebooks. First, menus provide pre-defined
Python code for accessing to the main features of the tools.
Figure 3 shows a screenshot during the edition of a Jupyter
notebook with its graphical interface. Next, we added the
possibility to interactively upload a model file. This feature is
particularly useful when used in combination with Docker, or
on a remote server with no direct access to the user file system.
Finally, some Python modules, in particular the maboss Python

20The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/

Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
21http://jupyter.org

Frontiers in Physiology | www.frontiersin.org 7 June 2018 | Volume 9 | Article 680

https://maboss.curie.fr
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
http://jupyter.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

FIGURE 3 | Screenshot during a Jupyter notebook edition showing the menu of the BIOLQM tool.

module, provide JavaScript widgets to generate Python code
interactively.

The Jupyter notebook server is included in the CoLoMoTo
Docker image (see the Discussion section for a quick usage
guide), while a public demonstration web instance is available at
http://tmpnb.colomoto.org.

4. REPRODUCIBILITY OF
COMPUTATIONAL ANALYSES

4.1. From Repeatability to Reproducibility
The literature provides a range of definitions for the
reproducibility of in silico experiments by analogy to wet
lab experiments (Drummond, 2009; Freire et al., 2012; Stodden
et al., 2013; Freire et al., 2016; Goodman et al., 2016; Lewis et al.,
2016; Cohen-Boulakia et al., 2017). Four levels of reproducibility
are commonly distinguished.

An in silico experiment is said to be repeated when it is
performed using the same computational set-up as the original
experiment. The major goal of the repeat task is to check
whether the initial experimental result was correct and can
be obtained again. The difficulty lies in recording as much
information as possible to repeat the experiment so that the
same conclusion can be drawn. Interestingly, Freire et al. (2012)
discusses the granularity at which information (experiments, data
sets, parameters, environment) should or could be recorded, and
underlines the fact that the key point is to determine the right
balance between the effort required to record information and
the capability of obtaining identical results.

An in silico experiment is said to be replicated when it is
performed in a new setting and computational environment,
although similar to the original ones. When it can be successfully
replicated, a result has a high level of robustness: it remained valid
when using a similar (although different) protocol. A continuum
of situations can be considered between repeated and replicated
experiments.

A result is then defined as reproduced, in the broadest
possible sense of the term, by denoting the situation where an
experiment is performed within a different environment, with
the aim to validate the same scientific hypothesis. In other
words, what matters here is the conclusion obtained and not
the methodology considered reaching it. Completely different
approaches can be designed, different data sets can be used, as
long as the experiments support the same scientific conclusion.
A reproducible result is thus a high-quality result, confirmed in
various ways.

A last important concept related to reproducibility is that
of reuse, which denotes the case where a different experiment
is performed, with similarities with an original experiment. A
specific kind of reuse occurs when a single experiment is reused
in a new context (and thus adapted to new needs), the experiment
is then said to be repurposed.

It is worth noticing that repeating and replicating may appear
to be technical challenges compared to reproducing and reusing,
which are the most important scientific objectives. However,
before investigating alternative ways of obtaining a result (to
reach reproducibility), or before reusing a given methodology
in a new context (to reach reuse), the original experiment
has to be carefully tested, especially by reviewers or any peer,
demonstrating its ability to be at least repeated and hopefully
replicated (Freire et al., 2012; Stodden et al., 2014).

4.2. Repeat Analysis in the Same Software
Environment
Ensuring that a sequence of computational analyses can be
repeated by other scientists several months or years after its
publication is difficult. Indeed, besides software availability,
the version of the tools can be crucial: a new version of
a tool can change the default parameters, and even some
features, so that the published instructions become obsolete.
Whereas a Docker image addresses efficiently the issue of making
software available, providing a safe way for repeating a notebook

Frontiers in Physiology | www.frontiersin.org 8 June 2018 | Volume 9 | Article 680

http://tmpnb.colomoto.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

content years after its creation requires additional technical
procedures.

First, CoLoMoTo Docker images are constructed by
specifying explicitly the version of each software. Furthermore,
an automatic validation procedure is performed by checking that
a set of notebooks still execute without error. Once validated,
the Docker image is then tagged with a time-stamp, typically
the date of the image validation (of the form YYYY-MM-DD,
e.g., 2018-03-31). These tagged images are then stored in the
public Docker image registry, and can be retrieved any time later.
The list of existing tags of colomoto/colomoto-docker
Docker images can be viewed at https://hub.docker.com/r/
colomoto/colomoto-docker/tags/.

When sharing a notebook, and notably when attaching it to
a publication, it is highly recommended to specify the time-
stamp of the Docker image in which the notebook has been
executed. Then, by downloading the image with this specific tag,
other users are ensured to repeat the execution in the exact same
software environment. To help following this recommendation,
we took two technical decisions. First, we do not use the
default non-persistent tag for Docker images (latest). It means
that the user has always to specify explicitly the time-stamp
of the CoLoMoTo Docker image. To remove the burden of
actively checking the list of existing time-stamps, we provide a
script which, by default, fetches the most recent Docker image
(see section 5). Second, when loading a CoLoMoTo-related
Python module within a Docker container, a textual message
indicating the time-stamp of the Docker image is displayed.
Therefore, when created within a CoLoMoTo Docker image,
notebooks always contain the required information to repeat
their execution.

Because a Jupyter notebook is a single file containing
everything to execute it, one can easily check if it can be
replicated in a different software environment, e.g., using a
more recent CoLoMoTo Docker image. Moreover, a notebook
can be easily repurposed by modifying some arguments of the
Python function calls, for instance changing the input model or
analysis parameters. One can even define interactive notebooks
describing a common model analysis, so that the user only needs
to provide the input model and execute the Jupyter code cells, as
shown in the Supplementary File “Notebooks/demo-interactive-
fixpoints”22 for the computation and visualization of the stable
states of a bioLQMmodel.

4.3. Reproduce Analysis With a Different
Method
Reproducing the same analysis with two different methods is a
good mean to increase confidence in the results, as it reduces the
chance of software misuse or that the results are affected by a
software bug.

The subset of software tools selected for this first CoLoMoTo
Docker image presentation already provides redundant
implementations of equivalent model analyses, in particular

22The notebook can be previewed and downloaded at https://nbviewer.jupyter.

org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/

Fixpoints%20(interactive).ipynb

for the identification of stable states and for the verification of
temporal properties with NUSMV. To help switch between two
tools for performing the same task, we harmonized the usage of
Python module functions to ensure that the same functions with
the same arguments generate equivalent results with different
tools.

4.3.1. Stable States
There exists several methods to compute the full set of stable
states (or fixed points) of a logical model, relying on different
data-structures and different algorithms. The software BIOLQM
implements the computation of stable states for Boolean and
multi-valued logical models using a Java implementation of
decision diagrams. In contrast, the software PINT implements
the computation of stable states of Automata networks (a
generalization of logical networks) using Boolean satisfaction
constraints. As BIOLQMprovides a conversion of Boolean/multi-
valued network into equivalent Automata networks, it is possible
to compute the stable states of a model with both software
tools.

Both biolqm and pypint Python modules provide a
fixpoint function taking as input the model instance of the
corresponding tool and returning a list of Python dictionaries
describing the stable states. Provided lqm is a BIOLQM model,
the following Python code compute its stable states with both
tools:

fps_biolqm = biolqm.fixpoints(lqm)

fps_pint = pypint.fixpoints(biolqm.to_pint(lqm))

The Supplementary File “Notebooks/demo-reproducibility-
fixpoints”23 shows a complete example of reproduction of stable
state computation using BIOLQM and PINT.

4.3.2. Temporal Property Verification

(Model-Checking)
Both GINSIM and PINT allow to export their respective model
into NUSMV format, where temporal properties can be specified
using LTL or CTL (see section 2.2). However, the generated
NUSMV models have different features as the input formalisms
of these tools rely on different paradigms: the specification
is centered on logical rules in the case of Boolean/multi-
valued networks in GINSIM, and on transitions (à la Petri
nets) in the case of Automata networks in PINT. Nevertheless,
in the appropriate settings, the verification of an equivalent
CTL or LTL property should give the same result. Hence, the
functions ginsim.to_nusmv and pypint.to_nusmv are
implemented in such ways that, when using their default options,
the resulting NUSMV models, albeit different, should produce
identical results for identical temporal logic properties. Note,
however, that each tool provides specific options for the NUSMV
export, which can lead to incomparable results.

The following Python code uses operators defined in the
Python module colomoto.temporal_logics to specify a

23The notebook can be previewed and downloaded at https://nbviewer.

jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/

Reproducibility%20-%20fixpoints.ipynb

Frontiers in Physiology | www.frontiersin.org 9 June 2018 | Volume 9 | Article 680

https://hub.docker.com/r/colomoto/colomoto-docker/tags/
https://hub.docker.com/r/colomoto/colomoto-docker/tags/
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

property p, meaning that from any state, there always exists a
trajectory leading to a cyclic attractor where the level of node a
can always oscillate. Then, assuming lrg is a GINSIM model, the
code uses GINSIM and PINT conversions to NUSMV to perform
model verification.

p = EF (AG (EF (S(a=0)) & EF (S(a=1))))

nusmv_ginsim = ginsim.to_nusmv(lrg)

nusmv_ginsim.add_ctl(p)

nusmv_ginsim.verify()

nusmv_pint = pypint.to_nusmv(ginsim.to_pint(lrg))

nusmv_pint.add_ctl(p)

nusmv_pint.verify()

Note that the Python object p represents the CTL property to be
tested, whatever the origin of the model (GINSIM or PINT).

The Supplementary File “Notebooks/demo-reproducibility-
modelchecking”24 provides a more detailed example of the
reproduction of model-checking results using GINSIM and PINT.

5. QUICK-USAGE GUIDE

On GNU/Linux, macOS, or Microsoft Windows, provided that
Docker and Python are installed, a helper script to run the
CoLoMoTo Docker image and the embedded Jupyter notebook
can be installed and upgraded from a terminal using the following
command25:

pip install -U colomoto-docker

The Docker image and the Jupyter notebook interface can be
started by executing the following command in a terminal26:

colomoto-docker

Without any argument, the command will use the most
recent CoLoMoTo Docker image. To use the image with a
specific tag, append the -V option (e.g., colomoto-docker
-V 2018-03-31).

The execution of this command will open a web page with
the Jupyter notebook interface, enabling loading and execution
of notebooks. A new notebook can be created by using the
“New/Python3”menu. In this environment, the user has access to
all CoLoMoTo Pythonmodules. A code cell is executed by typing
“Shift+Enter.” The menu and tool bar allow quick access to the
main Jupyter functionalities.

Warning: by default, the files within the Docker container are
isolated from the running host computer, and are deleted when
stopping the container. To have access to the files of the current
directory of the host computer, the option --bind can be used:

colomoto-docker --bind .

24The notebook can be previewed and downloaded at https://nbviewer.

jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/

Reproducibility%20-%20model%20checking.ipynb
25You may have to use pip3 instead of pip depending on your configuration.
26If using Docker Toolbox, the command should be executed within the Docker

Terminal.

The container can later be stopped by pressing Ctrl+C keys
in the terminal. See colomoto-docker --help for other
options. Additional documentation for running the CoLoMoto
Docker image can be found at http://colomoto.org/notebook.

6. DISCUSSION

6.1. Academic Use Cases
The prime aim of the CoLoMoTo Interactive Notebook
is to foster the production of accessible and reproducible
computational analysis of biological models, with a focus
on qualitative models, including Boolean and multi-valued
networks. As demonstrated in the Supplementary File
“SnakeMake”, the CoLoMoTo Docker image can also be
used in standard workflow systems, such as SnakeMake, to
lighten the burden of installing the different software tools and
make them accessible on different operating systems.

A notebook issued from the CoLoMoTo Docker image
gives some guarantees of repeatability, as it contains references
to the persistent Docker image to re-execute code in the
same software environment. Therefore, the notebook file (with
.ipynb extension) can be distributed as a Supplementary
File of the related scientific article, along with instruction
to run the Docker image. The Jupyter interface further
allows to export the notebook in a static HTML file, which
could also be joined as a Supplementary File to provide
a quick visualization. A notebook can also be distributed
independently, for instance by publishing it on Gist27 or
myExperiment28 (Goble et al., 2010), to follow download and
potential updates. For instance, the tutorial notebook presented
by Levy et al. (2018) is hosted at https://gist.github.com/pauleve/
a86717b0ae8750440dd589f778db428f. Services like Zenodo29

further provide persistent DOI links to notebook files.
The CoLoMoTo Interactive Notebook is also relevant for

teaching purposes. With Jupyter, students can straightforwardly
execute, modify, and extend a template notebook to learn
methods for analysing models of biological networks. Docker
is a standard technology often supported by local cloud
infrastructures, which can therefore provide dedicated resources
to execute remotely and privately the CoLoMoTo Jupyter web
interface.

6.2. Extending the CoLoMoTo Interactive
Notebook
The CoLoMoTo Docker image can be easily extended to include
additional tools. The Docker architecture allows inheriting
from an existing container, adding a new layer with additional
executables. Contributions are welcome through GitHub30. Each
software tool must be usable from the Jupyter interface and
should be able to connect with at least one other tool already
included. Furthermore, a demonstration notebook should be

27https://gist.github.com
28https://www.myexperiment.org
29https://zenodo.org
30Guidelines available at https://github.com/colomoto/colomoto-docker/blob/

master/CONTRIBUTING.md

Frontiers in Physiology | www.frontiersin.org 10 June 2018 | Volume 9 | Article 680

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
http://colomoto.org/notebook
https://gist.github.com/pauleve/a86717b0ae8750440dd589f778db428f
https://gist.github.com/pauleve/a86717b0ae8750440dd589f778db428f
https://gist.github.com
https://www.myexperiment.org
https://zenodo.org
https://github.com/colomoto/colomoto-docker/blob/master/CONTRIBUTING.md
https://github.com/colomoto/colomoto-docker/blob/master/CONTRIBUTING.md
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

TABLE 2 | List of notebook files in supplemental data "Notebooks"

(Data Sheet 2) demonstrating some features of the CoLoMoTo Interactive

Notebook.

Notebook file name Software tools involved

demo-cellcollective CellCollective, bioLQM

demo-ginsim GINsim, bioLQM

demo-biolqm bioLQM

demo-interactive-fixpoints bioLQM

demo-pint Pint

demo-nusmv GINsim, NuSMV

demo-maboss MaBoSS

demo-pint+maboss CellCollective, bioLQM, Pint, MaBoSS

demo-reproducibility-fixpoints GINsim, bioLQM, Pint

demo-reproducibility-modelchecking GINsim, Pint

provided to illustrate the tool usage and how it can be combined
with other tools.

Currently, all the embedded tools require an already
defined model. Nevertheless, once loaded, a model can be
subsequently modified from the Python interface (see tool
feature matrix in Figure 1). We are currently considering
the development of a programmatic interface for model
definition ab initio. One of the main challenge is to provide a
decent visualization of the programmatically-created model. A
potential direction is to include a visual edition module in the
Jupyter interface, which represents a substantial development
effort.

The support for standard exchange formats is key to
enable reproducibility of analyses with different tools. In that
sense, BIOLQM plays an important role for the CoLoMoTo
Interactive Notebook as it provides bridges between SBML-
qual standard specifications and numerous software tools
(Figure 2). The Tellurium Notebook system by Sauro et al.
(in review)31 offers support for SED-ML to help reproduce
quantitative simulation of biological networks. Future work
should consider bringing this feature for qualitative models as
well, in order to better meet FAIR (Findability, Accessibility,
Interoperability, and Reusability) recommendations (Wittig
et al., 2017).

AUTHOR CONTRIBUTIONS

AN, CH, DT, and LP designed the main principles of the
CoLoMoTo Interactive notebook and its distribution. AN, CH,
NL, and LP implemented the necessary Python modules, their
integration in the Jupyter interface, and the Docker image. AN
and LP edited the notebook tutorials, while CH edited the
SnakeMake workflow example. All authors contributed to the
writing of the article under the supervision of DT and LP.

31Preprint on bioRxiv: https://doi.org/10.1101/239004

All authors reviewed the content of this article and agreed to
endorse it.

FUNDING

DT and CH acknowledge support from the French Plan
Cancer, in the context of the projects CoMET (2014–
2017) and SYSTAIM (2015–2019). DT and AN acknowledge
support from the French Agence Nationale pour la Recherche
(ANR), in the context of the project SCAPIN [ANR-15-
CE15-0006-01]. CC and PM acknowledge support from the
Fundação para a Ciência e a Tecnologia, through grants
PTDC/BEX-BCB/0772/2014 and PTDC/EEI-CTP/2914/2014.
TH acknowledges support from the National Institutes of
Health (#5R35GM119770-02). SC-B acknowledges support from
CNRS (défi Mastodons). AZ and LC acknowledge support
from COLOSYS project in EU ERACoSysMed programme.
AZ acknowledges support by the Ministry of education and
science of Russia (Project No. 14.Y26.31.0022). AZ, LC, and
LP acknowledge support from ANR in the context of the
project ANR-FNR project AlgoReCell [ANR-16-CE12-0034].
LP and SC-B acknowledge support from Paris Ile-de-France
Region (DIM RFSI) and Labex DigiCosme [ANR-11-LABEX-
0045-DIGICOSME] operated by ANR as part of the program
Investissement d’Avenir Idex Paris-Saclay [ANR-11-IDEX-
0003-02].

ACKNOWLEDGMENTS

The authors thank the attendees of the fourth CoLoMoTo
meeting in Paris, July 2017, for the insightful discussions
which led to designing the CoLoMoTo Interactive notebook.
The authors thank Laurent Darré and the technical staff at
LRI, Université Paris-Sud, France, for providing the computing
resources for hosting http://tmpnb.colomoto.org.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00680/full#supplementary-material

Data Sheet 1 | The supplemental file “SnakeMake” contains an example of

SnakeMake workflow that uses the CoLoMoTo Docker image to execute

complementary analyses.

Data Sheet 2 | The supplemental data “Notebooks” contains several short

Jupyter notebooks which demonstrate different usage of the CoLoMoTo

interactive notebook, listed in Table 2. The .ipynb files can be imported and

executed within the Jupyter interface of the CoLoMoTo notebook, using the

Docker image colomoto/colomoto-docker:2018-03-31. For each of these

notebooks, a static HTML file previews the Jupyter rendering of the notebook,

without any requirement. These notebooks can also be previewed and

downloaded at https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/

tree/2018-03-31/tutorials.

Frontiers in Physiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 680

https://doi.org/10.1101/239004
http://tmpnb.colomoto.org
https://www.frontiersin.org/articles/10.3389/fphys.2018.00680/full#supplementary-material
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/tree/2018-03-31/tutorials
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/tree/2018-03-31/tutorials
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

REFERENCES

Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V.,

Chaouiya, C., et al. (2015). Model checking to assess t-helper cell plasticity.

Front. Bioeng. Biotechnol. 2:86. doi: 10.3389/fbioe.2014.00086

Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T.,

Thieffry, D., et al. (2016). Logical modeling and dynamical analysis of cellular

networks. Front. Genet. 7:94. doi: 10.3389/fgene.2016.00094

Albert, I., Thakar, J., Li, S., Zhang, R., and Albert, R. (2008). Boolean

network simulations for life scientists. Source Code Biol. Med. 3:16.

doi: 10.1186/1751-0473-3-16

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nat. News 533:452.

doi: 10.1038/533452a

Bartocci, E. and Lió, P. (2016). Computational modeling, formal analysis,

and tools for systems biology. PLOS Comput. Biol. 12:e1004591.

doi: 10.1371/journal.pcbi.1004591

Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., et al.

(2005). Validation of qualitative models of genetic regulatory networks by

model checking: analysis of the nutritional stress response in Escherichia

coli. Bioinformatics 21(Suppl. 1), i19–i28. doi: 10.1093/bioinformatics/

bti1048

Begley, C. G., and Ellis, L. M. (2012). Drug development: raise standards for

preclinical cancer research. Nature 483, 531–533. doi: 10.1038/483531a

Begley, C. G., and Ioannidis, J. P. (2015). Reproducibility in science improving

the standard for basic and preclinical research. Circ. Res. 116, 116–126.

doi: 10.1161/CIRCRESAHA.114.303819

Chaouiya, C., Bérenguier, D., Keating, S. M., Naldi, A., van Iersel, M. P., Rodriguez,

N., et al. (2013). SBML qualitative models: a model representation format and

infrastructure to foster interactions between qualitative modelling formalisms

and tools. BMC Syst. Biol. 7:135. doi: 10.1186/1752-0509-7-135

Chaouiya, C., Keating, S. M., Berenguier, D., Naldi, A., Thieffry, D., van Iersel,

M. P., et al. (2015). The Systems Biology Markup Language (SBML) level 3

package: qualitative models, version 1, release 1. J. Integr. Bioinform. 12:270.

doi: 10.1515/jib-2015-270

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,

M., et al. (2002). “NuSMV Version 2: an OpenSource Tool for Symbolic

Model Checking,” in Proceedings of International Conference on Computer-

Aided Verification (CAV 2002), Vol. 2404 of LNCS (Copenhagen: Springer).

doi: 10.1007/3-540-45657-0_29

Cohen-Boulakia, S., Belhajjame, K., Collin, O., Chopard, J., Froidevaux,

C., Gaignard, A., et al. (2017). Scientific workflows for computational

reproducibility in the life sciences: status, challenges and opportunities. Fut.

Gen. Comput. Syst. 75, 284–298. doi: 10.1016/j.future.2017.01.012

Drummond, C. (2009). “Replicability is not reproducibility: nor is it good science,”

in Proceedings of the Evaluation Methods for Machine Learning Workshop at the

26th ICML (Montreal, QC).

Errington, T.M., Iorns, E., Gunn,W., Tan, F. E., Lomax, J., andNosek, B. A. (2014).

An open investigation of the reproducibility of cancer biology research. Elife

3:e04333. doi: 10.7554/eLife.04333

Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis

of a generic boolean model for the control of the mammalian cell cycle.

Bioinformatics 22, 124–31. doi: 10.1093/bioinformatics/btl210

Freire, J., Bonnet, P., and Shasha, D. (2012). “Computational reproducibility: state-

of-the-art, challenges, and database research opportunities,” in Proceedings of

the 2012 ACM SIGMOD International Conference on Management of Data

(Scottsdale, AZ), 593–596. doi: 10.4230/DagRep.6.1.108

Freire, J., Fuhr, N., and Rauber, A. (2016). “Reproducibility of data-oriented

experiments in e-science,” in Dagstuhl Seminar 16041 (Dagstuhl), 108–159.

Gan, X., and Albert, R. (2018). General method to find the attractors of

discrete dynamic models of biological systems. Phys. Rev. E 97:042308.

doi: 10.1103/PhysRevE.97.042308

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008).

Synchronous versus asynchronous modeling of gene regulatory networks.

Bioinformatics 24, 1917–1925. doi: 10.1093/bioinformatics/btn336

Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,

D., et al. (2010). myExperiment: a repository and social network for the sharing

of bioinformatics workflows. Nucleic Acids Res. 38(Suppl. 2), W677–W682.

doi: 10.1093/nar/gkq429

Goodman, S. N., Fanelli, D., and Ioannidis, J. P. (2016). What

does research reproducibility mean? Sci. Transl. Med. 8:341ps12.

doi: 10.1126/scitranslmed.aaf5027

Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A.,

et al. (2012). The Cell Collective: toward an open and collaborative approach to

systems biology. BMC Syst. Biol. 6:96. doi: 10.1186/1752-0509-6-96

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The Systems Biology Markup Language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed

genetic nets. J. Theor. Biol. 22, 437–467. doi: 10.1016/0022-5193(69)9001

Klarner, H., Streck, A., and Siebert, H. (2017). PyBoolNet: a python package for the

generation, analysis and visualization of Boolean networks. Bioinformatics 33,

770–772. doi: 10.1093/bioinformatics/btw682

Köster, J., and Rahmann, S. (2012). Snakemake - a scalable bioinformatics

workflow engine. Bioinformatics 28, 2520–2522. doi: 10.1093/

bioinformatics/bts480

Le Novère, N., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F.,

Collado-Vides, J., et al. (2005). Minimum information requested in the

annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23, 1509–1515.

doi: 10.1038/nbt1156

Levy, N., Naldi, A., Hernandez, C., Stoll, G., Thieffry, D., Zinovyev, A., et al.

(2018). Prediction of mutations to control pathways enabling tumour cell

invasion with the CoLoMoTo interactive notebook (tutorial). Front. Physiol.

9:787. doi: 10.3389/fphys.2018.00787

Lewis, J., Breeze, C. E., Charlesworth, J., MacLaren, O. J., and Cooper, J. (2016).

Where next for the reproducibility agenda in computational biology? BMC Syst.

Biol. 10:52. doi: 10.1186/s12918-016-0288-x

Müssel, C., Hopfensitz, M., and Kestler, H. (2010). BoolNet–an R package for

generation, reconstruction and analysis of Boolean networks. Bioinformatics 26,

1378–1380. doi: 10.1093/bioinformatics/btq124

Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., and

Thieffry, D. (2018). Logical modelling and analysis of cellular regulatory

networks with GINsim 3.0. Front. Physiol. 9:646. doi: 10.3389/fphys.2018.00646

Naldi, A., Monteiro, P. T., Müssel, C., Consortium for Logical Models and Tools,

Kestler, H. A., Thieffry, D., Xenarios, I., et al. (2015). Cooperative development

of logical modelling standards and tools with CoLoMoTo. Bioinformatics 31,

1154–1159. doi: 10.1093/bioinformatics/btv013

Naldi, A., Remy, E., Thieffry, D., and Chaouiya, C. (2011). Dynamically consistent

reduction of logical regulatory graphs. Theor. Comput. Sci. 412, 2207–2218.

doi: 10.1016/j.tcs.2010.10.021

Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., and Guziolowski, C. (2016).

Boolean network identification from perturbation time series data combining

dynamics abstraction and logic programming. Biosystems 149, 139–153.

doi: 10.1016/j.biosystems.2016.07.009

Paulevé, L. (2017). “Pint: a static analyzer for transient dynamics of

qualitative networks with IPython interface,” in CMSB 2017 - 15th

Conference on Computational Methods for Systems Biology Volume 10545

of Lecture Notes in Computer Science (Darmstadt: Springer), 370–316.

doi: 10.1007/978-3-319-67471-1_20

Paulevé, L. (in press). Reduction of qualitative models of biological networks

for transient dynamics analysis. IEEE/ACM Trans. Comput. Biol. Bioinform.

doi: 10.1109/TCBB.2017.2749225

Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics 10, 405–

408. doi: 10.1093/biostatistics/kxp014

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., et

al. (2014). “The Jupyter/IPython architecture: a unified view of computational

research, from interactive exploration to communication and publication,” in

AGU Fall Meeting Abstracts (San Francisco, CA).

Richter, S. H., Garner, J. P., Auer, C., Kunert, J., and Würbel, H. (2010). Systematic

variation improves reproducibility of animal experiments. Nat. Methods 7,

167–168. doi: 10.1038/nmeth0310-167

Santori, G. (2016). Journals should drive data reproducibility.Nature 535, 355–355.

doi: 10.1038/535355b

Siebert, H. (2009). Deriving behavior of boolean bioregulatory networks

from subnetwork dynamics. Math. Comput. Sci. 2, 421–442.

doi: 10.1007/s11786-008-0064-4

Frontiers in Physiology | www.frontiersin.org 12 June 2018 | Volume 9 | Article 680

https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1186/1751-0473-3-16
https://doi.org/10.1038/533452a
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1093/bioinformatics/bti1048
https://doi.org/10.1038/483531a
https://doi.org/10.1161/CIRCRESAHA.114.303819
https://doi.org/10.1186/1752-0509-7-135
https://doi.org/10.1515/jib-2015-270
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.7554/eLife.04333
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.4230/DagRep.6.1.108
https://doi.org/10.1103/PhysRevE.97.042308
https://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1093/nar/gkq429
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1186/1752-0509-6-96
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1016/0022-5193(69)9001
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1038/nbt1156
https://doi.org/10.3389/fphys.2018.00787
https://doi.org/10.1186/s12918-016-0288-x
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.3389/fphys.2018.00646
https://doi.org/10.1093/bioinformatics/btv013
https://doi.org/10.1016/j.tcs.2010.10.021
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.1007/978-3-319-67471-1_20
https://doi.org/10.1109/TCBB.2017.2749225
https://doi.org/10.1093/biostatistics/kxp014
https://doi.org/10.1038/nmeth0310-167
https://doi.org/10.1038/535355b
https://doi.org/10.1007/s11786-008-0064-4
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Naldi et al. The CoLoMoTo Interactive Notebook

Smith, M. A., and Houghton, P. (2013). A proposal regarding

reporting of in vitro testing results. Clin. Cancer Res. 19, 2828–2833.

doi: 10.1158/1078-0432.CCR-13-0043

Stodden, V., Guo, P., and Ma, Z. (2013). Toward reproducible computational

research: an empirical analysis of data and code policy adoption by journals.

PLoS ONE 8:e67111. doi: 10.1371/journal.pone.0067111

Stodden, V., Leisch, F., and Peng, R. D. (2014). Implementing Reproducible

Research. CRC Press.

Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., et al. (2017).

MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics

33, 2226–2228. doi: 10.1093/bioinformatics/btx123

Stoll, G., Viara, E., Barillot, E., and Calzone, L. (2012). Continuous time boolean

modeling for biological signaling: application of gillespie algorithm. BMC

Systems Biology 6:116. doi: 10.1186/1752-0509-6-116

Talcott, C., and Dill, D. L. (2006). “Multiple representations of biological

processes,” in Transactions on Computational Systems Biology VI, eds C. Priami

and G. Plotkin (Berlin; Heidelberg: Springer Science Business Media), 221–245.

doi: 10.1007/11880646_10

Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris,

M. K., et al. (2012). CellNOptR: a flexible toolkit to train protein signaling

networks to data using multiple logic formalisms. BMC Syst. Biol. 6:133.

doi: 10.1186/1752-0509-6-133

Thomas, R. (1973). Boolean formalization of genetic control circuits. J. Theor. Biol.

42, 563–585. doi: 10.1016/0022-5193(73)90247-6

Todd, R. G., and Helikar, T. (2012). Ergodic sets as cell phenotype of budding yeast

cell cycle. PLoS ONE 7:e45780. doi: 10.1371/journal.pone.0045780

Traynard, P., Fauré, A., Fages, F., and Thieffry, D. (2016). Logical model

specification aided by model-checking techniques: application to

the mammalian cell cycle regulation. Bioinformatics 32, i772–i780.

doi: 10.1093/bioinformatics/btw457

Veliz-Cuba, A., Aguilar, B., Hinkelmann, F., and Laubenbacher, R. (2014).

Steady state analysis of boolean molecular network models via model

reduction and computational algebra. BMC Bioinformatics 15:221.

doi: 10.1186/1471-2105-15-221

Waltemath, D., Adams, R., Beard, D. A., Bergmann, F. T., Bhalla, U. S., Britten,

R., et al. (2011a). Minimum Information About a Simulation Experiment

(MIASE). PLoS Comput. Biol. 7:e1001122. doi: 10.1371/journal.pcbi.10

01122

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,

et al. (2011b). Reproducible computational biology experiments with SED-ML

– the Simulation Experiment Description Markup Language. BMC Syst. Biol.

5:198. doi: 10.1186/1752-0509-5-198

Wittig, U., Rey, M., Weidemann, A., and Müller, W. (2017). Data management

and data enrichment for systems biology projects. J. Biotechnol. 261, 229–237.

doi: 10.1016/j.jbiotec.2017.06.007

Yaffe, M. B. (2015). Reproducibility in science. Sci. Signal. 8:eg5.

doi: 10.1126/scisignal.aaa5764

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Naldi, Hernandez, Levy, Stoll, Monteiro, Chaouiya, Helikar,

Zinovyev, Calzone, Cohen-Boulakia, Thieffry and Paulevé. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 13 June 2018 | Volume 9 | Article 680

https://doi.org/10.1158/1078-0432.CCR-13-0043
https://doi.org/10.1371/journal.pone.0067111
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.1186/1752-0509-6-116
https://doi.org/10.1007/11880646_10
https://doi.org/10.1186/1752-0509-6-133
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1371/journal.pone.0045780
https://doi.org/10.1093/bioinformatics/btw457
https://doi.org/10.1186/1471-2105-15-221
https://doi.org/10.1371/journal.pcbi.1001122
https://doi.org/10.1186/1752-0509-5-198
https://doi.org/10.1016/j.jbiotec.2017.06.007
https://doi.org/10.1126/scisignal.aaa5764
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks
	1. Introduction
	2. Background on Qualitative Dynamical Models and Their Computational Analysis
	2.1. Qualitative Modeling
	2.2. Dynamical Analysis

	3. Accessibility of CoLoMoTo Software Tools
	3.1. The CoLoMoTo Docker Image
	3.2. A Unified Interface for Calling and Chaining Tools With Python
	3.2.1. Model Input and Tool Conversions
	3.2.2. CellCollective – Modeling Platform, Repository, and Knowledge Base
	3.2.3. GINsim – Regulatory Network Modeling
	3.2.4. bioLQM – Qualitative Model Toolbox
	3.2.5. Pint – Formal Predictions for Controlling Trajectories
	3.2.6. NuSMV – Model Verification
	3.2.7. MaBoSS – Stochastic Simulations
	3.2.8. Advanced Combinations of Tools

	3.3. CoLoMoTo Jupyter Interactive Notebook

	4. Reproducibility of Computational Analyses
	4.1. From Repeatability to Reproducibility
	4.2. Repeat Analysis in the Same Software Environment
	4.3. Reproduce Analysis With a Different Method
	4.3.1. Stable States
	4.3.2. Temporal Property Verification (Model-Checking)

	5. Quick-Usage Guide
	6. Discussion
	6.1. Academic Use Cases
	6.2. Extending the CoLoMoTo Interactive Notebook

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

