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Accurate detection and classification of life-threatening ventricular arrhythmia episodes

such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from

electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation

therapy. This paper introduces a novel method for detection and classification of

life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into

various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude

feature and a novel phase feature namely the phase difference (PD) are evaluated from the

mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine

(LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for

detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF

arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using

the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification

of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art

features demonstrate the advantages of the proposition.

Keywords: life threatening arrhythmia, Taylor-Fourier transform, magnitude and phase features, LSSVM, radial

basis function kernel, classifier performance

1. INTRODUCTION

The life threatening ventricular arrhythmias which require immediate defibrillation therapy are
rapid ventricular tachycardia (VT) and ventricular fibrillation (VF) (Hunt et al., 2005; Acharya
et al., 2018). The electrical activity of heart is no longer originated from sino-atrial node during
these arrhythmias, rather it is started in the ventricular muscles which is shown in Figure 1

(Goldberger and Gold-berger, 1981). The pacemaker activity of heart is initiated from both left and
right ventricles of the heart and due to this, the abnormal episodes other than the normal quasi-
periodic PQRST components are observed in ECG signal (Goldberger and Gold-berger, 1981). The
lower chambers of the heart such as the left and right ventricles are also ineffective to pump the
blood to lungs and arteries. The defibrillation shock therapy is given to the patient affected with life
threatening ventricular arrhythmia for recovering the normal heart rhythm (Tripathy et al., 2016).
The detection and classification of shockable ventricular arrhythmia (VA) and non-shockbale
episodes are the important and challenging problems in defibrillation therapy.
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FIGURE 1 | Firing of multiple pacemaker cells inside the lower chambers of

the Heart during Ventricular Fibrillation (VF) as those from the normal

pacemakers activity as (Sino atrial node- Atrio ventricular node-bundle of HIS-

purkinje fibers.

In literature, various methods have been reported for the
detection and classification of life-threatening VA episodes using
ECG (Jekova, 2000; Li et al., 2012; Acharya et al., 2018). One of
the important step in the state of the art methods is the extraction
of features from ECG signal for detection of VT/VF episodes.
The most common features used for detection of VT and VF
detection are based on complexity measure (CPLX) (Zhang
et al., 1999), threshold crossing intervals (TCI) (Thakor et al.,
1990), VF filter leakage measure (VFF) (), spectral algorithm
(SPEC) (Barro et al., 1989), phase space representation (PSR)
(Amann et al., 2007), autocorrelation function (ACF) (Chen
et al., 1987), band-pass filter and count (Jekova and Krasteva,
2004), covariance, area and frequency bins of binary signal
(Jekova, 2007), time-frequency analysis (Millet-Roig et al., 1999),
and wavelet transforms (Addison et al., 2000; Balasundaram
et al., 2013). The performance of five different VF detection
algorithm has been compared in (Jekova, 2000). From their
work, it has been found that the VF filter leakage measure has
higher performance than other features. The combinations of
aforementioned features of ECG have been used by Li et al.
(2014) and Atienza et al. (Alonso-Atienza et al., 2014) for
the detection of life-threatening VA episodes. In recent years,
variational mode decomposition (VMD) and empirical mode
decomposition (EMD) based analysis and extraction of features
from ECG have been reported for detection of life threatening
VA (Abdullah Arafat et al., 2009; Tripathy et al., 2016; Nguyen
et al., 2017). Though, the VMD and EMD based techniques have
better performance for detection, the real-time implementation
of these algorithms require very higher computations. Therefore,
a method which is computationally feasible and gives better
performance for detection of life threatening VA is required.

The DTFT is one of the effective signal processing technique
to decompose the non-stationary signal into oscillatory modes
and it has been used for analysis of blood pressure and power
signals (de la O Serna, 2007, 2013). Since, the characteristics
of ECG signal varies during VF case as compare to normal
heart rhythm, therefore, the DTFT can be used to capture
these pathological changes in different oscillatory modes. The
features extracted from the oscillatory modes of DTFT will
be helpful for detection and classification of life-threatening
episodes. The major contributions of this paper are highlighted
as (i) Decomposition of ECG signal into oscillatory modes using
DTFT. (ii) Evaluation of magnitude and phase features from the
DTFT coefficients of each mode. (iii) The use of LSSVM classifier
for detection and classification of shock vs. non-shock, VT vs.
VF, and VF vs. non-VF episodes. The remainder of this paper
is arranged as follows. The proposed method for detection of
life threatening arrhythmia episodes is presented in section 2.
The results and the discussion of the results are written in the
sections 3, 4, respectively. The conclusion of this paper is drawn
in section 5.

2. METHOD

The proposed method consists of four major steps such as (i)
ECG data collection, (ii) Preprocessing of ECG data, (iii) DTFT
based feature extraction, and (iv) LSSVM based classification
of life threatening arrhythmia episodes. The preprocessing and
feature extraction step of the proposed method is shown in
Figure 2.

2.1. ECG Data Collection From Database
The ECG data are collected from two public databases namely
the creighton university ventricular tachy-arrhythmia database
(CUDB)1 and MIT-BIH malignant ventricular arrhythmia
database (VFDB)2 (Goldberger et al., 2000). The CUDB database
has 35 number of 8 min duration ECG signals with annotations
as VT, VF, and other rhythms. Similarly, the VFDB database
has 22 number of 35 min duration two lead ECG signals
with annotations as NSR, VF, VT, ventricular flutter, and other
rhythm. The sampling frequency of each ECG signal for both
the databases is 250 Hz. In this study, three classification
methodologies are considered namely shock vs. non-shock, VF
vs. VT and VF vs. Non-VF. Under shock class, the ventricular
flutter, VT and VF episodes are considered. Similarly, rhythms
other than VF, VT, and ventricular flutter are taken under
non-shock class. For non-VF class, the rhythms other than
VF are considered. The purpose of selecting VF, VT, and
ventricular flutter under shockable catagory is given as follows.
The defibrillation has demonstrated to improve the outcome
of patients suffering from cardiorespiratory arrest (CRA) due
to VF, VT, or ventricular flutter (Wathen et al., 2004; Epstein
et al., 2008). There are different rhythms of arrest, classified as
defibrillable rhythms (such as VF) and no defibrillable rhythms
(such as pulseless ventricular tachycardia). The main objective

1https://physionet.org/physiobank/database/cudb/
2https://physionet.org/physiobank/database/vfdb/
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FIGURE 2 | Block diagram of the proposed method for evaluation of

Taylor-Fourier magnitude and phase features from ECG.

of the defibrillation therapy is to restore the spontaneous
circulation, since the ventricular emptying is very compromised,
enabling generate a hemodynamic collapse (Epstein et al., 2008).
A common initial rhythm in the sudden cardiac arrest is VF,
whose treatment consists of defibrillation. In this way, VT,
VF, and ventricular flutter are defibrillable rhythms because
they degenerate or lead to circulatory collapse. Thus they
must be reversed promptly through defibrillation. In turn, this
hemodynamic collapse produces a reduction in the transport
of oxygen to the cell. Consequently an anaerobic metabolism
(without oxygen) occurs (Wathen et al., 2004). In literature, for
classification of shock vs. non-shock, authors have used VT, VF,
and ventricular flutter as shock category and other ECG episodes
as non-shockable rhythm (Alonso-Atienza et al., 2014; Acharya
et al., 2018).

2.2. Preprocessing
This step involves the filtering of various noises from the ECG
signals from CUDB and VFDB databases. A Zero-phase Butter-
worth band-pass filter with cutoff frequencies as 0.5 and 45 Hz
is used (Tripathy et al., 2016). The filtered ECG data is then
divided into frames using three different rectangular windows
(Li et al., 2014). The window sizes are 4, 5, and 8 s, respectively.
As the sampling frequency of each ECG signal is 250 Hz, so the
number of samples contained in the 4, 5, and 8 s windows are
1,000, 1,250, and 2,000, respectively. In this work, 5, 186, 4, 144,
and 2, 582 number of 4, 5, and 8 s ECG frames are evaluated
for the classification shockable VA and non-shockable episodes.

Similarly, for the classification of VF and non-VF episodes, a total
of 3432, 2744 and 1712 number of 4, 5, and 8 s ECG frames are
computed. Likewise, 2, 593, 2, 072, and 1, 291 number of ECG
frames are extracted for the classification of VT and VF episodes.
This means that each ECG signal x(n) is partitioned into different
frames of signals like s1, s2, · · · , sm, which will be processed by
DTFT in the following.

2.3. DTFT Based Feature Extraction
From the phasor statement for the Taylor-Fourier Transform
made in (de la O Serna, 2007) and the multivariate approach for
low-frequency oscillations introduced in (Zamora et al., 2017),
the DTFT technique has exhibited its reliability for extracting
dynamic features in power systems. Here, we propose a Taylor-
Fourier approach for capturing frequency information from
biomedical signals like ECG signals. Our proposal also conceives
the capability of the Taylor-Fourier filters for processing
multiple frames, that is, a multiframes approach, allowing it
to simultaneously deal with multiple frames stemming from

first ECG lead, and render the estimated coefficients (ξ̂ ) at the
same time. To analyze the ECG signals using the Taylor-Fourier
transform’s multiframes approach, the synthesis and analysis
equations, (1) and (2), respectively, are like in Zamora et al.
(2017) for a set ofM frames as follows:

[ŝ1 ŝ2 · · · ŝm] = B[ξ̂ 1 ξ̂ 2 · · · ξ̂m], (1)

[ξ̂ 1 ξ̂ 2 · · · ξ̂m] = B†[s1 s2 · · · sm], (2)

where it is assumed that the ECG frames sm(n), m = 1, . . . ,M
contain 10 frequency components, as depicted in Figure 3. Each
filter has a central frequency spaced 5 Hz, from 0 to 45 Hz. B
stands for the Taylor-Fourier matrix in (de la O Serna, 2013) and
B† its pseudoinverse, i.e., the filter bank is assumed equal for all
signals, covering all the spectral range for VF. These filters are
employed for decomposing ECG frames signals into modes. B is
shaped using Taylor and Fourier contributions as,

B =
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(3)

where C = K+ 1 is the number of cycles andWN corresponds to
the Fourier matrix as ωN = [ej2πnk/N] with n, k = 0, . . . ,N − 1.
tn = −(K + 1)Ts(ns/2) to (K + 1)Ts(ns/2), ns corresponding
to each sample of the Taylor’s interpolating polynomial at each
sampling time (Ts). Thus, the dimension for tKnC in (3) is
NxN, so that the dimension for the Taylor contribution is
CNxCN; likewise the dimension for the Fourier contribution is
CNxCN. That is, the vectors of the Fourier matrix are harmonic
modulators of the Taylor terms included in a K − th Taylor
polynomial, K > 0.

The parameters such as the magnitude and phase for j-th
frequency component or mode are evaluated using Equation (2)
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FIGURE 3 | Frequency response of Taylor-Fourier filters exhibiting maximum flat differentiators and flat bands in harmonic frequencies for extracting 10 frequency

components (Modes 0–9) from f0 (0.5 Hz) up to f9 (45 Hz).

and these are given by

âj = |ξ̂j| (4)

φ̂j = 6 ξ̂j. (5)

The 10-mode decompositions (Mode 0 toMode 9) of ECG signals
for normal sinus rhythm (NSR), VT and VF cases are depicted
in Figures 4, 5, 6, respectively. These modes are reconstructed
from the Taylor-Fourier coefficients using Equation (1). As
it is evident from these three figures that the characteristics
of each mode is different for NSR, VT, and VF cases. From
Figure 4, it has been observed that, the information of QRS-
complex can be grossly captured using Mode 1 to Mode 6;
moreover, it can be distinguished a sinus rhythm and regular
with PR impresses normal, a narrow QRS, and an iso-level ST.
Whereas the abnormal patterns other than the grossly segregated
QRS-patterns are observed in each mode of VT and VF ECG
signal (Figures 5, 6), among them, it is observable that the
electrocardiographic tracing presents a wide QRS tachycardia,
with atrio-ventricular dissociation, compatible with sustained
polymorphous VT of approximately 105 beats perminute (BPM),
which implies that in 8 s there are 14 beats (Goldberger and Gold-
berger, 1981). Thus, the features extracted from these modes can
be helpful for detection of life threatening ventricular arrhythmia.
In this work, the magnitude feature such as the L2-Norm of
the Taylor-Fourier coefficients and a novel phase feature such
as phase difference (PD) are extracted from each mode of ECG
signal. The magnitude feature of the j-th mode (j = 1, 2, ...,M) is
given by

MFj =
∥

∥âj
∥

∥

2
(6)

where âj = [âj(1), âj(2), ..., âj(N)]. The PD feature for of
the j-th frequency component or mode is evaluated in two
steps as (i) the evaluation of phase delay vectors as d1j =

[φ̂j(1), φ̂j(2), ..., φ̂j(K-1)] and d2j = [φ̂j(2), φ̂j(3), ..., φ̂j(K)],
respectively. The PD is defined by

PDj =
1

K − 1

K−1
∑

l=1

∣

∣d1j(l)− d2j(l)
∣

∣ (7)

For all the 10 modes of ECG, the magnitude and the PD
features are evaluated. Thus, a 20 dimensional Taylor-Fourier
feature vector is constructed by appending themagnitude and PD
features.

Once the ECG signals are processed, their reconstructions
may carry out synthesizing all the modes by Equation (1), such
that a suitable performance and matching are attained with
respect to the actual signals for NSR, VT and VF signals, as
illustrated in Figures 7, 8, 9. NSR case in Figure 7 presents
a sinus rhythm, regular, normal PR, narrow QRS, and iso-
level ST. In the VT case in Figure 8, a sustained monomorphic
ventricular tachycardia with a wideQRS, andmore than 100 BPM
is illustrated. Whereas VF case exhibits a shockable behavior (see
Figure 9), in which an electrocardiographic tracing is observed
with a wide-QRS tachycardia with sustained polymorphic VT
with a very high rate. This result demonstrates the ability of the
Taylor-Fourier filters for extracting frequency components and
reconstructing the oscillatory signals still under hemodynamic
unstability.

2.4. LSSVM Classifier
In this work, the effectiveness of the magnitude and phase
features from the mode Taylor-Fourier coefficients of ECG is
assessed using LSSVM classifier for detection and classification
of life threatening arrhythmia episodes. The objective of LSSVM
is to evaluate the optimal weights and the bias value by
formulating a least square problem (Suykens and Vandewalle,
1999). It has been used for various bio-medical applications
such as detection of epileptic seizure, detection of breast
cancer and detection of various cardiac arrhythmia episodes
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FIGURE 4 | Decomposition of normal sinus rhytm (NSR) ECG signal into modes using Taylor-Fourier filter bank and first 10 modes (Mode 0 to Mode 9) of NSR ECG

signal.

FIGURE 5 | Decomposition of ventricular tachycardia (VT) ECG signal into modes using Taylor-Fourier filter bank and first 10 modes (Mode 0 to Mode 9) of VT ECG

signal.

(Polat et al., 2008; Bajaj and Pachori, 2012; Tripathy et al., 2014).
The classification of life threatening VA is performed using the
20 dimensional Taylor-Fourier feature vector. The feature matrix
and the respective class labels are denoted as Z = [zi]

m
i=1 with

each zi ∈ Rp and y = [yi]
m
i=1 with each yi = (0, 1). Here,m is the

total number of instances and 0 and 1 are the notations for Non-
VF and VF ECG feature instances in the classification of VF vs.
Non-VF. Similarly, for the classification of VT vs. VF, 0 and 1 are
the class labels for VT and VF classes. Likewise, the 0 and 1 are

also termed as the class labels for non-shock and shock classes
for the classification of shock vs. non-shock. The optimization
problem in LSSVM is given by (Suykens and Vandewalle, 1999)

Minimize J(w, b, ǫ) =
1

2
wTw+

γ

2

p
∑

i=1

ǫ2i (8)

subjected to the equality constraint as yi(w
T f (zi) + b) = 1 −

ǫi. where w and b are the q-dimensional weight vector and
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FIGURE 6 | Decomposition of ventricular fibrillation (VF) ECG signal into modes using Taylor-Fourier filter bank and first 10 modes (Mode 0 to Mode 9) of VF ECG

signal.

FIGURE 7 | Reconstruction of NSR ECG signal from the Taylor-Fourier coefficients.

bias value, respectively. The function f (zi) maps the input p-
dimensional feature vector into a q-dimensional space. The above
equation can be solved using Lagrangian as

L(w, b, ǫ;β) = J(w, b, ǫ)−

m
∑

i=1

βi[yi(w
T f (zi)+ b)− 1+ ǫi] (9)

The solution of Equation (9) will give rise to the corresponding
Lagrange multipliers as β = (β1,β2, .....,βm)

T . Thus, the output
of LSSVM classifier for a given test ECG Taylor-Fourier feature

vector zt can be written as

f (zt) = sign[

m
∑

i=1

βiyiK(z, zi)+ b] (10)

where the term K(z, zi) is denoted as the kernel function.
Here, the linear and RBF kernel functions are used and the
classification performance of LSSVM with these two kernel
functions are compared. The training and testing Taylor-Fourier
feature vectors of ECG frames are chosen using both hold-out
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FIGURE 8 | Reconstruction of VT ECG signal from the Taylor-Fourier coefficients.

FIGURE 9 | Reconstruction of VF ECG signal from the Taylor-Fourier coefficients.

and 5-fold cross-validation approaches (Martis et al., 2013). In
hold-out approach, 65% of Taylor-Fourier feature vectors from
the feature matrix Z is used for training and the rest of the Taylor-
Fourier feature vectors are considered for testing of LSSVM. The
performance of LSSVM is evaluated using the measures such as
the accuracy, sensitivity and specificity (Tripathy et al., 2016).

3. RESULTS

This section presents the statistical analysis results of Taylor-
Fourier magnitude and phase features of ECG signal and the
performance of LSSVM classifier. The within-class variations
of selected Taylor-Fourier magnitude features are shown in
boxplots as in Figures 10A,C, respectively. From Figure 10A, it
is evident that the mean value of magnitude feature of mode1
is higher for non-VF class as compared to VF class. From

the modal decomposition of Non-VF and VF ECG signals in
Figures 4, 6, it has been observed that there are the significant
variations in the characteristics of mode1. Due to this reason,
the mean values are different for both Non-VF and VF classes.
It is also seen that, for shockable class the magnitude feature
of mode1 has higher mean value than that of non-shockable
class. Similar variations in the mean values has been observed
for magnitude features of selected modes. The ECG signal for
non-shockable class (NSR) contains the normal clinical patterns
such as the P-wave, QRS-complex, and T-wave for each beat
(Goldberger and Gold-berger, 1981). The pathological patterns
with a very high rate are observed in ECG during VF and rapid
VT cases. Also, the amplitudes and shapes of these patterns
are different as those of the normal clinical patterns in non-
shockable cases (Clifford et al., 2006). From Figures 4, 6, it can
also be observed that the information about the pathological
patterns due to VF is captured in the modes which are captured
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FIGURE 10 | (A) Within-class variations of magnitude feature (MF) of mode1

for VF and non-VF classes. (B) Within-class variations of phase feature (PF) of

mode 2 for VF and non-VF classes. (C) Within-class variations of magnitude

feature (MF) of mode 1 for shockable VA and non-shockable classes.

(D) Within-class variations of phase feature (PF) of mode 2 for shockable VA

and non-shockable classes.

using different resolutions for the Taylor-Fourier coefficients. As
the Taylor-Fourier magnitude features are evaluated from these
coefficients, these features have different mean values for both
shockable and non-shockable classes. The variations of phase
features of mode2 for non-shock vs. shock and non-VF vs. VF
classes are depicted in Figures 10B,D, respectively. For shockable
class, the phase feature has higher mean value as compared to
non-shock class. Similar variation in the mean values is also
seen for non-VF and VF classes. The sub-band phase features
evaluated using the complex wavelet transform of ECG have
been used for quantifying physiological changes into ECG signal
during myocardial infarction and other pathologies (Tripathy
and Dandapat, 2017). In this work, the temporal information
of ECG is captured using the Taylor-Fourier phase features of
different modes. In VF and rapid VT pathologies, the temporal
variations in ECG signal are higher as compared to the normal
heart rhythm (Goldberger and Gold-berger, 1981). Since this
reason, the phase features have higher mean value for VF
class. The statistical significance of all Taylor-Fourier magnitude
and phase features are evaluated using t-test approach. It is
observed that for the classification of VF and non-VF, only
17, 17, and 14 features have p-values less than 0.001 out of
20 dimensional feature vectors of 4, 5, and 8 s ECG frames.
Similarly, 16, 12, and 15 features out of the 20 dimensional
feature vectors of each 4, 5, and 8 s ECG frames are statistically
significant for the classification of shock and non-shock episodes.
From the statistical analysis, it can be inferred that the Taylor-
Fourier magnitude and phase features of ECG correctly capture
the diagnostic information of ECG signal for detection of life
threatening VA.

The performance of LSSVM for the classification of non-
shock vs. shock, Non-VF vs. VF and VF vs. VT using the

Taylor-Fourier magnitude and phase features of all databases,
only VFDB database and only CUDB database are shown in
Tables 1, 2, 3, respectively. It is evident that the accuracy,
sensitivity, and specificity values of LSSVM for the classification
of non-VF and VF episodes are 89.91, 86.38, and 93.97% using
Taylor-Fourier magnitude and phase features of 8 s frames
of ECG signals from VFDB database. The accuracy value of
LSSVM classifier is higher using 8 s frame based ECG features as
compared to 5 and 4 s frame basedmagnitude and phase features.
The Taylor-Fourier magnitude and phase features of 8 s ECG
frames in VFDB database effectively captures the pathological
changes of ECG during VF. For CUDB database, the accuracy
of LSSVM with Taylor-Fourier magnitude and phase features
of 4 s frames of ECG signals is higher than those of the 5
and 8 s ECG frames. The performance of RBF kernel based
LSSVM is higher than linear kernel by using the features of
4, 5, and 8 s frames of ECG signals of the combination of
VFDB and CUDB databases. For the classification of VF vs. VT,
the performance of proposed method using the ECG signals of
CUDB database is higher than the VFDB database. The proposed
method has the advantage that it can detect and classify life
threatening VA episodes. The sensitivity and specificity values
for the classification of VT and VF episodes using LSSVM
classifier and the features of 4 s ECG frames are 82.41 and
95.44%, respectively. The ECG signal is widely used to quantify
the pathological similarities and differences between ventricular
tachycardia and ventricular fibrillation (Goldberger and Gold-
berger, 1981). The electrocardiographic diagnosis of VT is carried
out in the presence of three or more complex QRS, presenting
an aberrant configuration and a ventricular origin (3 or more
EV), whose cardiac frequency is 120 beats per minute or greater.
Tachycardia may become regular or irregular, whereas the atrial
activity can be independent of the ventricular-atrial dissociation,
or it can be linked to VT by a reverse conduction 1 : 1 or a
variable-degree heart block (Goldberger and Gold-berger, 1981).
According to their electrocardiographic configuration, VTs are
divided into uniform, biform or multiform. With respect to
the ventricular fibrillation, this is characterized by a chaotic
activation of myocardium. According to the mechanism for VF
there exist different clinical conditions with the potential to
yield it, such as: ischemia, acute myocardial infarction, drugs,
electrolyte imbalances, tachyarrhythmias (Hunt et al., 2005).
However, the common denominator for them it is that they create
the metabolic and electrical conditions of the myocardium that
are conducive to this type of arrhythmia takes place (Goldberger
and Gold-berger, 1981). Finally, VF does not necessarily respond
to the same electrophysiological mechanisms that cause VT,
although as a general rule, a VF is always preceded by a VT.
Electrocardiographic characteristics of potential malignancy in a
VT preceding a VF, are: Polymorphism, R/T phenomenon (R on
T) and a very high heart rate. If the VT is sustained, then it may be
converted to VF which results fast and irregular episodes in ECG
(Goldberger and Gold-berger, 1981; Hunt et al., 2005). In this
way, CUDB database has the mixed rhythm annotations as both
VT and VF in an ECG frame. Due to this reason, the specificity
value is higher than sensitivity for the classification of VT and VF
episodes.

Frontiers in Physiology | www.frontiersin.org 8 June 2018 | Volume 9 | Article 722

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Tripathy et al. Detection of Ventricular Arrhythmia

TABLE 1 | Performance of LSSVM classifier using DTFT features of ECG signals of all databases.

4 s 5 s 8 s

VT vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

Linear 73.94 69.16 75.17 Linear 72.17 64.86 74.02 Linear 72.54 65.15 74.43

RBF 82.36 81.38 82.82 RBF 84.30 82.02 85.26 RBF 83.41 82.19 83.88

NON-VF vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

Linear 74.58 74.59 74.58 Linear 74.06 74.89 73.32 Linear 75.44 75.40 75.54

RBF 83.75 85.20 82.46 RBF 82.66 83.74 81.73 RBF 82.84 83.82 82.05

NON-SHOCK vs. SHOCK

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

Linear 69.04 69.29 68.35 Linear 67.12 67.92 66.41 Linear 70.30 70.92 69.75

RBF 80.61 82.51 78.98 RBF 80.99 82.61 79.57 RBF 80.15 82.12 78.54

TABLE 2 | Performance of RBF kernel LSSVM classifier using DTFT features of ECG signals of VFDB database.

4 s 5 s 8 s

VT vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 79.19 80.98 78.05 RBF 77.22 79.72 76.00 RBF 82.83 79.64 84.27

NON-VF vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 89.05 85.81 92.97 RBF 89.44 86.58 92.81 RBF 89.81 86.38 93.97

NON-SHOCK vs. SHOCK

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 83.52 82.84 86.26 RBF 83.63 81.87 85.67 RBF 84.26 83.38 85.25

TABLE 3 | Performance of RBF kernel LSSVM classifier using DTFT features of ECG signals of CUDB database.

4 s 5 s 8 s

VT vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 94.80 82.41 95.44 RBF 94.68 81.08 95.28 RBF 94.32 72.48 95.53

NON-VF vs. VF

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 81.35 87.33 77.23 RBF 78.84 81.47 76.65 RBF 79.30 81.05 77.77

NON-SHOCK vs. SHOCK

Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%) Kernels Acc (%) Sen (%) Spe (%)

RBF 81.55 92.24 75.30 RBF 81.72 87.02 77.89 RBF 80.27 84.15 77.22

4. DISCUSSION

The present work is based on the use of DTFT for extraction
of ECG features. The performance of Taylor-Fourier features
is compared with some of the existing features for detection
of life threatening VA and the comparison result is shown in
Table 4. In this work, the comparison of the performance of
proposed method with existing approaches using the 8 s ECG
features from CUDB database is shown. Here, for comparison,
the performance of TCI, VFF, SPEC, CPLX, PSR features are

also evaluated using CUDB database. Thakor et al. (1990) have
proposed TCI features and threshold-based sequential detection
algorithm for the classification of VT and VF. They have used 85
VF and 85 polymorphic and monomorphic VT episodes. They
have evaluated the performance TCI features from 1 to 7 s ECG
segments using threshold-based sequential detection algorithm.
From their study, they have reported higher sensitivity, and
specificity values for TCI feature from 6 and 7 s ECG segments.
Similarly, Zhang et al. (1999) have evaluated the complexity
measure from the ECG segments of different length for the
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classification of NSR, VT, and VF episodes. It has been reported
that the complexity measure features of 5, 6, and 7 s ECG
episodes have higher performance for the detection of VT and
VF episodes. (Amann et al., 2007) have evaluated time delay
features based on the PSR of ECG signal. The performance of
the PSR based features of ECG signals from CUDB database and
other databases is assessed using a threshold based classification
approach for the detection of VF. They have also compared
the performance of TCI, VFF, SPEC, CPLX, and PSR features
from 8 s ECG episodes. It is evident from Table 4 that the
existing algorithms for classification of VF and non-VF based
on the analysis of 8 s ECG segments have less sensitivity value.
However, the proposed Taylor-Fourier magnitude and phase
features with LSSVM classifier has sensitivity value of 84.15%
which is higher than the existing approaches. Similarly, by using
VFDB database, the sensitivity and specificity values are 86.38
and 93.97%, which are higher as compared to the performance of
Taylor-Fourier features of CUDB database. The specificity value
of the proposed method is higher than those of the performance
of few existing features such as the TCI, the CPLX and PSR
based features. On the other hand, Alonso-Atienza et al. (2014)
have compared the performance of TCI, VFF, SPEC, CPLX,
and PSR features of 8 s ECG episodes with SVM classifier
for the classification of VF vs. Non-VF and shock vs. Non-
shock. They have reported (sensitivity, specificity) values of (49,
68%), (73, 89%), (74, 85%), and (23, 47%) using TCI, VFF,
PSR, and CPLX features for the classification of VF vs. Non-VF
episodes. Moreover, for the classification of shock vs. non-shock,
the (sensitivity, specificity) values of (25, 37%), (65, 76%), (82,
93%) and (85, 92%) using CPLX, TCI, VFF, and PSR features
of ECG signals from VFDB, CUDB databases. In the proposed
method, the (sensitivity, specificity) values of LSSVM classifier
using Taylor-Fourier magnitude and phase features from 4, 5, and
8 s ECG episodes are (85.81, 92.97%), (86.58, 92.81%), and (86.38,
93.97%), respectively. It has been observed that the accuracy
value is improved with an increase in the duration of ECG
segments. The CUDBdatabase hasmixed rhythm annotations for
VT and VF cases. Therefore the performance of Taylor-Fourier
features is less by using 8 s ECG segments.

We have also compared the performance of proposed
method with wavelet-based techniques for the detection of

TABLE 4 | Comparison result for the classification of non-VF and VF.

Features used Sen (%) Spe (%)

Threshold Crossing Interval (TCI) (Thakor et al.,

1990)

71.00 70.50

VF-Filter Algorithm (VFF) () 30.00 99.50

Spectral Algorithm (SPEC) (Barro et al., 1989) 29.00 99.30

Complexity Measure Algorithm (CPLX) (Zhang

et al., 1999)

56.40 86.60

Phase Space Representation (PSR) (Amann

et al., 2007)

70.20 89.30

Taylor-Fourier Magnitude and phase (TFMP)

(VFDB database)

86.38 93.97

Taylor-Fourier Magnitude and phase (TFMP)

(CUDB database)

84.15 77.22

life-threatening ventricular arrhythmia episodes. Namarvar and
Shahidi (2004) have used wavelet-singular value decomposition
(SVD) based analysis of ECG and SVM classifier for the
classification of VT and VF. They have tested their algorithm
using cleaned and noisy ECG signals and reported a sensitivity
and specificity values of 92 and 75% for the classification of VT
and VF using features of cleaned ECG signal. In another study,
Balasundaram et al. (2013) have applied Eigen decomposition
using SVD on the wavelet coefficients matrix of ECG to evaluate
features. They have considered linear discriminant analysis
(LDA) classifier for the classification of VT and non-VT episodes
and reported an overall accuracy of 97.10%. However, they have
only used 63 number of 4 s ECG segments from 24 subjects for
analysis. OH et al. (2017) have used discrete wavelet transform
of ECG and various non-linear analysis methods with K-nearest
neighbor (KNN) classifier for the classification of shock and
non-shock episodes. They have reported 94.79 and 98.74% using
features from 5 s ECG episodes. Our proposedmethod has higher
performance regarding sensitivity and specificity values as 81.08
and 95.28% for the classification of VT and VF episodes as
compared to the approach in Namarvar and Shahidi (2004). The
approach reported by Balasundaram et al. (2013) has used less
ECG instances as compared to the proposed method. Moreover,
OH et al. (2017) have considered only shock vs. non-shock
classification scheme and their approach have better performance
as compared to our method. However, they have not considered
VF vs. non-VF and VT vs. VF episodes. The wavelet-based
methods use predefined basis functions which are implemented
as finite impulse response (FIR) filters at different decomposition
levels for the evaluation of wavelet coefficients. However, the
proposed approach is simple, and it is based on themultiplication
of ECG signal with Taylor-Fourier basis matrix for the evaluation
of the Taylor-Fourier coefficients.

The advantages of the present work are written as follows.

(i) The method uses digital Taylor Fourier Transform of ECG
signal for the evaluation of new diagnostic features.

(ii) The method is evaluated using the Taylor Fourier
magnitude and phase features from 4, 5, and 8 s ECG
instances.

(iii) The classification tasks such as shock vs. non-shock, VF vs.
Non-VF and VT vs. VF are performed using the LSSVM
classifier.

(iv) Due to the presence of abnormal patterns with higher
temporal variability, the mean values of phase features are
high for VF class.

(v) The Taylor-Fourier features can be used for the detection of
other pathologies from ECG signals.

The proposed work is evaluated using the ECG signals from only
57 subjects. More number of subjects can be used for assessing
the performance of the proposed method. More features can be
evaluated based on the non-linear analysis of both magnitude
and phase parts of Taylor-Fourier coefficents of different modes
of ECG signal for the detection of life-threatening ventricular
arrhythmia. The complexity and burden for Taylor-Fourier
transform have been discussed and compared with Fast Fourier
Transform (FFT) in Zamora et al. (2017). Further computation
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reduction is achieved due to the fact that the Taylor-Fourier
matrix only contains the frequencies of concern (Zamora et al.,
2017). That is, matrices B and its pseudo inverse (B†) are
computed just once, only those columns corresponding to the
Taylor-Fourier filters with central frequencies between 0 and 45
Hz (varying each 5 Hz), are taken into account. This allows
reducing the size of B from CNxCN to CNxCfi , without affect
the feasibility of the Taylor-Fourier transform method.

5. CONCLUSIONS

This paper has demonstrated the use of Taylor-Fourier filters
for extracting the diagnostic features from ECG signal. The
combination of Taylor-Fourier magnitude and phase features
and LSSVM classifier has been used for detection of various
life threatening arrhythmia. The Taylor-Fourier magnitude and
phase feature have successfully quantify the pathological changes
in ECG during life threatening VA and these features have
different mean values for VF and non-VF class. The proposed

method has higher sensitivity than those of the existing approach
for detection of VF. More robust features from the magnitude
and phase of Taylor-Fourier coefficients can also be evaluated for
detection of life threatening VA and other heart ailments.
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