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In recent years, the altitude acclimatization responses elicited by short-term intermittent
exposure to hypoxia have been subject to renewed attention. Themain goal of short-term
intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic
capacity of athletes or to accelerate the altitude acclimatization response in alpinists,
since such programs induce an increase in erythrocyte mass. Several model programs
of intermittent exposure to hypoxia have presented efficiency with respect to this goal,
without any of the inconveniences or negative consequences associated with permanent
stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia
systems have seen a rapid rise in popularity among recreational and professional athletes,
not only due to their unbeatable cost/efficiency ratio, but also because they help prevent
common inconveniences associated with high-altitude stays such as social isolation,
nutritional limitations, and other minor health and comfort-related annoyances. Today,
intermittent exposure to hypobaric hypoxia is known to elicit other physiological response
types in several organs and body systems. These responses range from alterations in the
ventilatory pattern to modulation of the mitochondrial function. The central role played by
hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia
exposure is well known. Among these targets, several growth factors that upregulate
the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit
special attention. Applying intermittent hypobaric hypoxia to promote the action of some
molecules, such as angiogenic factors, could improve repair and recovery in many
tissue types. This article uses a comprehensive approach to examine data obtained in
recent years. We consider evidence collected from different tissues, including myocardial
capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00814
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00814&domain=pdf&date_stamp=2018-07-09
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gviscor@ub.edu
https://doi.org/10.3389/fphys.2018.00814
https://www.frontiersin.org/articles/10.3389/fphys.2018.00814/full
http://loop.frontiersin.org/people/290344/overview
http://loop.frontiersin.org/people/546792/overview
http://loop.frontiersin.org/people/577637/overview
http://loop.frontiersin.org/people/288671/overview
http://loop.frontiersin.org/people/523899/overview
http://loop.frontiersin.org/people/314961/overview


Viscor et al. Biomedical Applications of Intermittent Hypoxia

hypoxia exposure, and discuss the evidence that points to beneficial interventions in
applied fields such as sport science. Short-term intermittent hypoxia may not only be
useful for healthy people, but could also be considered a promising tool to be applied,
with due caution, to some pathophysiological states.

Keywords: intermittent hypoxia, erythropoiesis, angiogenesis, cardioprotection, bronchial asthma,

neuroprotection, circulating stem cells, regenerative medicine

INTERMITTENT HYPOXIA: CONCEPT AND
HISTORICAL BACKGROUND

The term “intermittent hypoxia” is widely used and applies to a
wide spectrum of situations that range from alpine expeditions
to obstructive sleep apnea (OSA). However, in physiological
terms, there are often few similarities between these conditions
(Viscor et al., 2014). Although the same physiological responses
are elicited by the same sensors and signaling pathways, the
varied intensity and duration of the hypoxia switches different
mechanisms on and off at different times, thus making the final
physiological changes induced in the whole organism highly
variable. In addition, a high variability in human tolerance
to hypoxia has been reported, and it is now known to vary
throughout the lives of individuals (Canouï-Poitrine et al., 2014;
Richalet and Lhuissier, 2015). As a consequence, specialists have
engaged in an interesting discussion about how to measure and
define hypoxic “dosage” (Serebrovskaya et al., 2008; Garvican-
Lewis et al., 2016). In general, three different types of intermittent
hypoxia can be considered:

a) Episodic intermittent hypoxia, which consists of successive
short episodes of hypoxia with variable intensity. This may
be present in permanent situations such as OSA, in transitory
situations such as surgical ischemia-reperfusion (to one or
several organs) and in some sporting activities such as
parachuting and extreme skiing, in which the subject may not
even notice the hypoxia.

b) Intervallic intermittent hypoxia, which is characterized by
long periods of normoxia interspersed with periods of
hypoxia, as seen in frequent alpine expeditions and trekking
at altitude, mountain rescue teams, regular intercontinental
commercial flight crews (when in flight, commercial airplane
cabins are usually regulated at pressures equivalent to a
moderate altitude of about 2,000m above sea level), and
even astronauts at the International Space Station or future
extraplanetary missions.

c) Chronic intermittent hypoxia, which affects individuals who
work under shift systems characterized by work at moderate
or high altitudes alternating with periods of rest at sea level.
This last model is common in the Andes region and in the
Central Asianmining industry, but is also found in contractors
for astronomical observatories, the military and customs, and
police and border control personnel in many high-elevation
countries.

The concept of “hypoxic training” was coined during the
1930s in the academic environment of the former Soviet Union,
and was considered a useful therapeutic tool after it was shown

to have beneficial effects on a number of different pathologies,
even though the mechanisms involved in these favorable effects
were unclear (Agadzhanyan and Torshin, 1986; Serebrovskaya,
2002). For instance, it was reported to have a beneficial effect on
hypertension and cardiovascular diseases (Aleshin et al., 1993).
Later, new experimental studies corroborated some of these
findings and provided a fresh insight through enhanced plasma
lipid profiles (Tin’kov and Aksenov, 2002). Nowadays in former
Soviet States, hypoxic training is systematically applied as a non-
pharmacological strategy for treating a wide range of alterations,
including chronic lung disease, bronchial asthma, hypertension,
diabetes mellitus, Parkinson’s disease, emotional disorders and
radiation toxicity, and for the prophylactic treatment of some
occupational diseases (Ge et al., 1994; Xi and Serebrovskaya,
2012). In Western countries, intermittent hypoxia exposure
programs were first applied in the field of sports medicine
to improve aerobic capacity and for pre-acclimatization to
altitude (Richalet et al., 1992; Levine and Stray-Gundersen, 1997;
Rodríguez et al., 1999; Stray-Gundersen and Levine, 1999; Casas
M. et al., 2000; Ricart et al., 2000).

Our group took an in-depth look at the physiological
responses to intermittent exposure to hypobaric hypoxia (IEHH)
in hypobaric (low barometric pressure) chambers. A detailed
study of the precise mechanisms that underlie these adaptive
responses (erythropoiesis, angiogenesis and the release of
circulating stem cells) in humans and in an experimental rodent
model encouraged us to explore the possibilities of applying
IEHH programs with biomedical and therapeutic purposes
(Panisello et al., 2007, 2008; Esteva et al., 2009; Viscor et al., 2009;
Corral et al., 2014b). Thus, we recently demonstrated the efficacy
of applying IEHH programs (passive exposure only or combined
with exercise protocols) in the recovery of a range of injuries
(Corral et al., 2014a; Núñez-Espinosa et al., 2014; Rizo-Roca et al.,
2017a,b). These results are consistent with the new paradigm that
proposes biphasic effects in the response to hypoxia (hormesis);
that is, its harmful or beneficial effects depend on the frequency
and severity of the hypoxic challenge to the organism or tissue in
question (Navarrete-Opazo and Mitchell, 2014).

BIOLOGICAL EFFECTS OF INTERMITTENT
HYPOXIA EXPOSURE

The molecular mechanisms involved in the response to hypoxia
at the cellular level are relatively well understood (Fábián et al.,
2016; Bhattarai et al., 2017; Koyasu et al., 2017). However, the
complexity of the interactions between the divergent signaling
pathways and the time frame of the various processes on different
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tissues and organs, together with the significant individual
variability in humans’ susceptibility to hypoxia (Rathat et al.,
1992), pose formidable challenges to researching the potential
benefits of regular programs involving exposure to real or
simulated altitudes. This paper presents a series of examples
of how intermittent exposure to hypoxia can benefit certain
patients, although it is not intended to be an exhaustive list.
Obviously, these programs must always be applied with due
caution and under rigorous clinical controls, as with any
pharmacological treatment.

Erythropoiesis
Table 1 lists several representative studies of the favorable effects
of intermittent hypoxia exposure by increasing erythropoiesis. A
detailed report on the rate of erythropoietin (EPO) formation
and plasma lifetime in humans in response to acute hypobaric
hypoxia exposure in a hypobaric chamber was first provided
by the group led by Christian Bauer in Zurich (Eckardt et al.,
1989). Later, the pivotal role of hypoxia-inducible factor 1 (HIF-
1) in the transcriptional response of EPO to hypoxia was also
described (Wang and Semenza, 1993). These seminal works and
many subsequent studies sparked an interest in applying IEHH
programs to increase erythrocyte mass as a way of improving the
aerobic capacity of athletes. Recombinant human erythropoietin
(rHuEPO) opened up a new chapter in the correction of uremic
anemia due to chronic renal failure (Egrie et al., 1986; London
et al., 1989; Najean et al., 1989), but also led to unethical use in
sports medicine. The celebration of the 1968 Summer Olympics
held in Mexico City (2,250m above sea level) aroused interest
in studying the effects of altitude on human performance. The
reduced performance in sporting events with a high aerobic
component was evident, while participants in competitions with
a clear anaerobic character saw no decline in their performance,
and some even beat their records (Di Prampero et al., 1970). As a
consequence, stays at high altitude and other artificial hypoxia
exposure strategies in athletes were subject to intense study; a
wide range of strategies, from permanent stays at moderate or
high geographic altitudes (Antezana et al., 1994; Richalet et al.,
1994) to different patterns of intermittent exposure (Levine and
Stray-Gundersen, 1997; Chapman et al., 1998; Rodríguez et al.,
1999; Casas M. et al., 2000; Karlsen et al., 2001; Stray-Gundersen
et al., 2001; Ge et al., 2002; Lundby et al., 2007; Richalet and Gore,
2008) were examined. Noticeable differences in protocols and
hypoxia exposuremethods led to intense debate on the usefulness
of intermittent hypoxia exposure for elite athletes, given that
hypoxic dose and interindividual variability represent two of the
main constraints (Chapman et al., 1998; Casas H. et al., 2000;
Julian et al., 2004; Gore et al., 2006; Wilber et al., 2007; Truijens
et al., 2008; Rodríguez et al., 2015). In parallel, there was rising
interest in understanding the non-erythropoietic effects of EPO.
The discovery of multi-tissue erythropoietin receptor expression
provided an insight into erythropoietin (EPO) activity that went
beyond its role in the regulation of red blood cell production,
including a key role in cardioprotection, brain development and
neuroprotection, through a coordinated response against tissue
oxygen shortage (Noguchi et al., 2007; Arcasoy, 2008; Burger
et al., 2009; Chateauvieux et al., 2011; Jia et al., 2012; Zhang Y.

et al., 2014b), thus contributing to ischemic preconditioning, an
interesting and important property of organ survival that could
also prove very useful for new biomedical applications.

Angiogenesis and Muscle Capillarization
In Table 2, some examples of the effects of intermittent
hypoxia exposure on angiogenesis, vascular remodeling, muscle
capillarization and hypertension are presented. In addition to its
erythropoietic role, HIF-1 is themainmediator of angiogenesis in
response to hypoxic conditions (Rey and Semenza, 2010) and has
been considered a potential therapeutic target in many diseases.
Two different strategies have been applied: HIF-1 upregulation
for ischemic diseases (Li et al., 2014) and HIF-1 inhibition for
cancer and endometriosis (Zhou et al., 2012; Bhattarai et al.,
2017). Multiple angiogenic factors have been tested in the past;
however, therapies that use only one proangiogenic agent to
elicit angiogenesis were shown to be insufficient (Hirota and
Semenza, 2006). Therefore, the addition of non-pharmacological
treatments based on hypoxia-induced angiogenesis may be a
successful strategy (Zimna and Kurpisz, 2015).

The physiological response elicited by hypoxia at moderate
altitude exposure (1,800–3,000m) is low, but increases when
combined with exercise, with additional specific responses that
are not observed when similar exercise levels are carried out
in normoxia (Bärtsch et al., 2008). Moreover, even greater
adaptations are obtained when the hypoxic intervention is
accompanied by high-intensity training (Faiss et al., 2013;
Sanchez and Borrani, 2018).

Although altitude is generally associated with increased health
risks in most patients and elderly individuals, several studies
have reported therapeutic benefits associated with exercising in
mild hypoxia in a variety of alterations (Bailey et al., 2001;
Burtscher et al., 2004; Wiesner et al., 2010). As exercising in
moderate hypoxia seems to play a valuable role as an additional
“therapeutic strategy,” albeit one with both benefits and risks,
new insights on this paradigm are now increasing. Some critical
analysis and guidelines for hypertensive, obese and elderly
individuals have recently been proposed (Millet et al., 2016).
These concluded that intermittent hypoxic training seems to
be well tolerated by most patients, in a similar way to healthy
individuals, and that hypoxia and exercise may have additive
or synergistic effects, probably mediated by several factors,
including nitric oxide, angiogenesis and “altitude anorexia,”
thereby paving the way for researchers to identify the optimal
individual combination of exercise and hypoxia.

Cardiac Remodeling
Aerobic exercise activities have traditionally been widely
recommended for preventing disease and promoting health.
Today, resistance training is usually included in physical activity
counseling, even for older adults and people with a range of
cardiac conditions (Haskell et al., 2007; Nelson et al., 2007;
Heuschmann et al., 2010), and there is solid evidence of different
echocardiographic repercussions (Kenney et al., 2012). The
cardioprotective effects of chronic intermittent hypoxia have
been extensively studied, and their positive effect has shown to be
related to preservation of mitochondrial function and inhibition
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TABLE 1 | Examples of the effects of intermittent hypoxia exposure on erythropoiesis.

Subjects Hypoxia time Hypoxia method Hypoxia dosage Outcome References

Healthy men (n = 6) 5.5 h HC 3,000–4,000m ↑EPO Eckardt et al., 1989

Alpinists (n = 10; 4w + 6m) 10 d Altitude 6,542m ↑Hct ↑[Hb] Richalet et al., 1994

Competitive (n = 13; 4w +

9m)
4 h TL/d for 4 wk Altitude (LH-TL)

Altitude (LH-TH)
1,250/2,500m ↑Hct ↑[Hb] ↑RBCmass Levine and

Stray-Gundersen, 1997

Competitive (n = 39; 12w +

27m)
30 h (14 d) Altitude (LH-TL)

Altitude (LH-TH)
1,200–1,400
m/2,500–3,000m

↑EPO Chapman et al., 1998

Alpinists (n = 17; 3w +

14m)
3–5 h/d for 9 d HC 4,000–5,500m ↑Hct ↑[Hb] ↑RBC Rodríguez et al., 1999

Elite alpinists (n = 6; 1w +

5m)
Alpinists (n = 17; 3w +

14m)
Novice men (n = 8)

3–5 h/d for 17 d

3–5 h/d for 9 d

1.5 h/d × 3 d/wk for 3 wk

HC 4,000–5,500m ↑Hct ↑[Hb] ↑RBC
(all protocols)

Casas H. et al., 2000

Elite runners (n = 26; 9w +

17m)
4 wk (4 h TL/d) Altitude LH-TL 1,225/2,500m ↑EPO ↑Hct ↑[Hb] Stray-Gundersen et al.,

2001

Healthy people (n = 48;
16w + 32m)

24 h HC 1,780m
2,085m
2,454m
2,800m

↑EPO (6 h) ↓EPO (24 h)
↑EPO (6 h) ↓EPO (24 h)
↑EPO (6 h) ↑EPO (24 h
↑EPO (6 h) ↑EPO (24 h)

Ge et al., 2002

Competitive (n = 17; 3w +

14m)
(IHT 5:5) 70 min/d (5 d/wk)
for 4 wk

NH FiO2 = 0.12 (≈4,400m)
FiO2 = 0.11 (≈5,200m)
FiO2 = 0.10 (≈5,800m)
FiO2 = 0.10 (≈5,800m)

No changes Julian et al., 2004

Competitive (n = 23; 12w +

11m)
3 h/d × 5 d/wk for 4 wk HC 4,000–5,500m ↑EPO (3 h after) Gore et al., 2006

Competitive (n = 87; 28w +

59m)
4 wk (≥22 h)
4 wk (12–16 h)

Altitude
HC

2,000–2,500m
2,500–3,000m

↑EPO Wilber et al., 2007

Elite athletes (n = 41)
XC Skiers (n = 11)
Swimmers (n = 18)
Runners (n = 12)

18 nights
13 nights
18 nights

NH and Altitude
(LH-TL)

1,200/
/2,500–3,500m
/2,500–3,000m
/2,500–3,000m

↑[Hb]
↑Hct ↑[Hb]
↑[Hb]

Richalet and Gore,
2008

Trained rats 4 h/d × 5 d/wk for 2 wk HC 4,000m ↑[Hb]↑Hct ↑RBC Núñez-Espinosa et al.,
2014

Male trained triathletes (n =

18)
-Normoxia (n = 9)
-Hypoxia (n = 9)

1 h/d × 2 d/wk for 7 wk NH FiO2 = 0.145-0.15
(≈2,800–2,500m)

↑[Hb] ↑RBC Ramos-Campo et al.,
2015

Elite swimmers
(n = 54; 30w+24m)

3 or 4 wk Altitude
LH-TH vs. LL-TL
vs. LH-TH+TL

690/2,320m ↑tHbmass for LH-TH and
LH-TH+TL

Rodríguez et al., 2015

Male well-trained triathletes
(n = 28)
-HH (n = 11)
-NH (n = 10)
-Normoxia (n = 7)

230 h for 18 d
238 h for 18 d

Altitude (LH-TL)
NH (LH-TL)

<1,200/2,250m
1,150 m/(≈2,250m)

↑Hbmass (similar in NH &
HH)

Hauser et al., 2016

Altitude, geographic altitude; EPO, serum or plasma erythropietin levels; FiO2, Fraction of inspired oxygen; [Hb], Blood hemoglobin concentration; Hbmass, whole body hemoglobin

mass; HC, Hypobaric Chamber; Hct, Hematocrit; IHT(5:5), intermittent hypoxic training, alternating 5min hypoxia with 5min normoxia along the session; LH-TH, Living High-Training

High; LH-TL, Living High-Training Low; NH, normobaric hypoxia; RBC, red blood cell count; RBCmass, whole body erythrocytic mass.

of potassium channels sensitive to ATP (mitoKATP) present in
the sarcoplasmic and mitochondrial membranes (Ostádal et al.,
1989; Asemu et al., 1999, 2000; Chouabe et al., 2004; Ostadal
and Kolar, 2007). Additional myocardial remodeling data were
reported by our group using a model of IEHH (Panisello et al.,
2007). Both chronic and intermittent exposure models supported
the potential beneficial effects of acute exposure in coronary
patients reported in pioneering studies conducted by Peruvian

cardiologist EmilioMarticorena (Marticorena, 1993;Marticorena
et al., 2001; Reynafarje and Marticorena, 2002; Valle et al.,
2006). In rodents, it has been demonstrated that endurance
exercise training and IEHH modulate cardiac mitochondria to
a protective phenotype characterized by decreased induction
of mitochondrial permeability transition pore and apoptotic
signaling (Magalhães et al., 2013, 2014). However, there are
no studies on humans on cardiac remodeling that combine
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TABLE 2 | Examples of the effects of intermittent hypoxia exposure on angiogenesis, vascular remodeling, muscle capillarization, and hypertension.

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Healthy (n = 32m)
14 normoxic (SL)
18 hypoxic (≈2,500m)

3 cycling/wk for 4 wk NH FiO2 = 0.16 (≈2,500m) ↑Lipid peroxidation
during hipoxia

Bailey et al., 2001

Males (n = 16) Double blind
groups
8 healthy
8 prior myocardial infarction

IHT
3–4 × (3–5:3)
15 sessions in 3 wk

NH FiO2 = 0.14–0.10
(≈3,500–≈5,800m)

↑Aerobic capacity
↑exercise tolerance
(without differences in
patients)

Burtscher et al.,
2004

Sedentary male rats 4 h/d, 5 d/wk for 22 d HC 5,000m ↑Capillary density
↓Diffusion distances for
slow fibres

Panisello et al.,
2008

Overweight to obese
subjects group (n = 24)

4 wk training under hypoxia at
65% VO2max

NH FiO2 = 0.15 (≈2,760m) Better physical fitness,
metabolic risk markers,
and body composition

Wiesner et al.,
2010

Male Wistar rats
(hyperlipidemia induced by
8 wk high-fat diet)

3 × (10 s:10 s)
ischemia/reperfusion preceding
180min reperfusion

Ischemic
postconditioning

Ischemia: 30min LAD
occlusion followed by
180min of reperfusion

Up-regulation of HIF-1α

can be cardioprotective
Li et al., 2014

FiO2, Fraction of inspired oxygen; HC, Hypobaric Chamber; HIF, hypoxia inducible factor; NH, Normobaric hypoxia; IHT, Intermittent hypoxic training alternating hypoxia with normoxia

along the session; LAD, left anterior descending coronary artery; VO2max, maximal oxygen consumption capacity.

hypoxia and exercise, other than those dealing with OSAmodels.
There have been extensive studies on patients suffering from
this syndrome, and several pieces of evidence may be found
in the literature: the progression and reversibility of atrial
remodeling following stretch release may help prevent atrial
fibrillation (Thanigaimani et al., 2017), the important prognostic
information of right-sided heart dysfunction (Kusunose et al.,
2016) and the evidence that OSA is associated independently
with decreasing left ventricular systolic function and reduced
right ventricular function (Korcarz et al., 2016). Nevertheless, this
cardiac remodeling in OSA patients –individuals characterized
by sustained systemic acidosis, hypercapnia and cerebral
vasodilation– might not be present during intermittent hypoxia
exposure in healthy subjects, in which alkalosis and hypocapnia,
both induced by the hyperventilation caused by adrenergic drive,
are evident and probably lead to cerebral vascular constriction
and reduced effects of hypoxic insult (Viscor et al., 2014).
Consequently, some of the changes and/or adaptive responses
found in these pathological conditions must be interpreted with
caution. In conclusion, there is no solid evidence for pernicious
cardiac remodeling, but rather the opposite, after intermittent
hypoxia in healthy individuals, whether accompanied by physical
exercise or not. Table 3 contrasts the deteriorated cardiac
function in OSA patients in comparison to several studies
demonstrating, both in experimental animal models and human
coronary patients, the positive effects of intermittent hypoxia
exposure on cardiac function.

Treatment of Bronchial Asthma
Despite modern advances in the treatments, bronchial asthma
continues being a potentially severe illness. All treatments focus
on the improvement of bronchial obstruction, but nowadays we
do not have an etiological definitive treatment. Bronchial asthma
generates great dependence on a variety of medications and
therefore frequently submits the patient to derived complications

(Chiu et al., 1981; Fairfax et al., 1999; van der Woude et al., 2001;
Salpeter et al., 2006). The Experts Committee of the United States
Food & Drug Administration published a consensus document
about the risks of the antiasthma medications, some of them
potentially lethal (DeNoon, 2008).

For that reason, every procedure that could diminish
pharmacological dependence among asthmatic patients
should be considered a benefit. IEHH programs represent
a realistic possibility to apply a minimally aggressive non-
pharmacological approach that would reduce bronchial
obstruction and pharmacological dependence in these patients.

As early as the nineteenth century there was social wisdom
and medical knowledge that respiratory illnesses may improve
in the mountains. The sanatoriums for respiratory patients,
traditionally, were located at moderate altitude in the mountains.
Notable examples were the Dutch Asthma Center, Davos,
Clavadel, at 1,686m over the sea level (Switzerland) and the
Istituto Pio XII, Misurina, Auronzo at 1,756m (Italy) devoted
to childhood bronchial asthma. The first medical reference we
found about bronchial asthma and altitude is an inquiry between
the doctors of Davos referring that 133 among their 143 patients
with bronchial asthma that spent their holidays in this mountain
town, did not present any acute episode of asthma and that
81% reported persistent improvement of the illness (Turban and
Spengler, 1906).

Moreover, different epidemiological studies showed the
beneficial effects of living at moderate altitude in the
prevalence and severity of bronchial asthma (van Velzen
et al., 1996; Yangzong et al., 2006; Droma et al., 2007; Kiechl-
Kohlendorfer et al., 2007; Sy et al., 2007). However, acute
hypoxia exposure, as occurs with acute altitude exposure,
as in many other stress situations, can induce an asthmatic
episode of bronchoconstriction. On the other hand, when
the acclimatization process advances, the asthmatic illness
improved or even disappeared (Allegra et al., 1995; Christie
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TABLE 3 | Examples of the positive effects of intermittent hypoxia exposure on cardiac pathologies.

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Acclimatized rats (4 d−12 wk) 8 h/d × 5 d/wk (12 wk) HC Sea level – 7,000m ↑Pulmonary hypertension Ostádal et al., 1989

Coronary patients (n = 5) 8 walks (in 4 wk) Progressive
Altitude

900–5,200m ↑Cardiac function Marticorena, 1993

Rats 4 h/d (3 wk) HC 5,000m ↓Ischemia Asemu et al., 1999

Rats 4 or 8 h/d (3 or 6 wk) HC 5,000 or 7,000m “Dose dependent” opposite
effects

Asemu et al., 2000

Coronary patients (n = 8) 4 h/wk (13 wk) HC 4,000m ↑Cardiac function ↑NO Marticorena et al., 2001

Guinea pigs Chronic vs. sea-level Altitude 4,500m ↑Efficiency in generate ATP Reynafarje and
Marticorena, 2002

Rats 20 d HC 4,500m ↓Aging remodeling Chouabe et al., 2004

Coronary patients (n = 6) 4 h/wk (14 wk) HC 2,400–4,000m ↑Myocardial perfusion Valle et al., 2006

Rats 4 h/d × 5 d/wk (22 d) HC 5,000m ↑Myocardial capillaries Panisello et al., 2007

Rats 5 h/d (5 wk) HC + exercise 6,000m ↑Cardiac function Magalhães et al., 2013

Rats 5 h/d (5 wk) HC + exercise 6,000m ↑Heart mitochondrial
function after DOXO
treatment

Magalhães et al., 2014

OSA patients Chronic OSA OSA ↓Ventricular function Korcarz et al., 2016

OSA patients Chronic OSA OSA ↓Ventricular function Kusunose et al., 2016

Altitude, geographic altitude; DOXO, Doxorubicin treatment; HC, Hypobaric Chamber; NO, nitric oxide; OSA, Obstructive sleep apnea.

et al., 1995; Cogo et al., 1997, 2004; Gourgoulianis et al., 2001;
Karagiannidis et al., 2006; Schultze-Werninghaus, 2006, 2008).
Regrettably, this improvement vanished upon returning to the
sea level.

The triad altitude exposure-hypoxia-acclimatization produces
a number of physiological changes, some of which are accepted
as related to the improvement of bronchial asthma: (a) a different
breathing control pattern (Harrison et al., 2002; Serebrovskaya
et al., 2003), (b) mitochondrial changes that optimize oxygen
metabolism during the normal acclimatization process (Levett
et al., 2012), and (c) the decrease in free radicals and the
associated anti-inflammatory and immunosuppressive effects
(Meehan, 1987; Simon et al., 1994; Serebrovskaya et al., 2003;
Ohta et al., 2011; Oliver et al., 2013).

Since bronchial asthma improves with acclimatization to
altitude and IEHH stimulates the acclimatization process
(Rodríguez et al., 1999, 2000; Casas H. et al., 2000; Casas M.
et al., 2000; Ibáñez et al., 2000; Ricart et al., 2000), it could
be hypothesized that IEHH improves bronchial asthma. In fact,
some medical studies have shown the usefulness of intermittent
hypoxia exposure as a treatment for bronchial asthma (Harrison
et al., 2002; Serebrovskaya et al., 2003). However, due to the
different techniques and protocols used to produce the hypoxia
and the wide dispersion of data, further research is required
to design more effective protocols for intermittent hypoxia
exposure that could prove useful in treating this disease. The
ultimate objective of such treatments must be to reduce bronchial
obstruction and the dependence on potentially dangerous drugs.
Moreover, if protocols demonstrate a good response in bronchial
asthma mitigation, they could also be useful for treating other
illnesses with inflammatory backdrop. Table 4 summarizes some
of the results that demonstrate a favorable effect of exposure to
hypoxia on the symptoms of bronchial asthma.

Neurological Impact of Hypoxic Exposure
Hypobaric hypoxic exposure at altitude, usually long-term,
results in several pathophysiological and psychological
conditions associated with the nervous system. The term
high altitude deterioration (HAD) was first used by members of
early Mount Everest expeditions to denote the deterioration in
mental and physical condition due to prolonged time spent at
high altitudes (Ward, 1954). It is well known among climbers
that staying at extreme altitudes for long periods is deleterious
(Milledge, 2003). Manifestations vary depending on the altitude
reached and the individual’s hypoxia tolerance, but include acute
and chronic mountain sickness, memory loss and high-altitude
cerebral edema (Lieberman et al., 1994; Hornbein, 2001; West
et al., 2013). Acute mountain sickness generally occurs 6 to 12 h
after an unacclimatized person ascends to 2,500m or higher
(Bärtsch and Swenson, 2013). As a result, cognitive function may
be impaired under hypoxia (Virués-Ortega et al., 2006), although
the physiological changes that occur during acclimatization
prevent mountain sickness. Given the acclimatization-like
responses triggered by intermittent hypoxic exposure, it offers
protection against severe hypoxia exposure damage and has been
reported to produce beneficial effects (Kushwah et al., 2016).
Our group reported how short-term (3-h sessions on three
consecutive days) IEHH with surface muscle electrostimulation
increased the concentration of circulating progenitor cells in the
peripheral blood of humans (Viscor et al., 2009). However, we
were unable to reproduce these results later in healthy patients
and those with traumatic brain injuries (Corral et al., 2014a,b),
thus raising doubts about the potential role of hypoxia exposure
in the release of stem cells to circulation and its involvement in
the tissue regeneration process. In any case, the translation of the
physiological effects of IEHH to humans is not straightforward
in the field of neurology.
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TABLE 4 | Examples of the application of intermittent hypoxia exposure on bronchial asthma patients.

Subjects Time of hypoxia Hypoxia

method

Hypoxia dosage Outcome References

Asthmatic (n = 143) 1–3 mo (living at Davos) Altitude 1,686m Improvement in 133 patients Turban and Spengler,
1906

Asthmatic (n = 14) 5 weeks (living at
Davos)

Altitude 1,686m Improvement in patients with HDM
IgE-meditated allergy

Simon et al., 1994

Asthmatic (n = 11) Mt Rosa & near Mt
Everest BC (after 3–6 d
trekking)

Altitude 4,559 and 5,050m ↓Bronchial responsiveness to
hypoosmolar aerosol 72 h after arrival

Allegra et al., 1995

Asthmatic (n = 14) 1 mo (living at Davos) Altitude 1,686m ↑Airway responsiveness to histamine
after return to SL in children with
atopic asthma at altitude

Christie et al., 1995

Asthmatic (n = 16) 1 mo (living at Davos) Altitude 1,560m ↓Airways inflammation van Velzen et al., 1996

Asthmatic (n = 11) 3 d trekking from 2,800
to 5,050m

Altitude 5,050m ↓Bronchial response Cogo et al., 1997

Children (n = 874)
Epidemiologic study

Chronic Altitude SL – 1,200m ↓Prevalence ↓morbidity of bronchial
asthma in children at altitude

Gourgoulianis et al.,
2001

Athletes (n = 40; 20 asthmatic) IHT 6 × (5:5) 15
sessions in 3 wk

NH ≈6,800m Improvement in symptoms
↓Medication use

Harrison et al., 2002

Central Tibet epidemiologic
study

Permanent stay Altitude 3,000–4,500m ↓Prevalence
↑Risk due to western lifestyle

Yangzong et al., 2006

Asthmatics (n = 11) 3 wk (living at Davos) Altitude 1,686m ↓local airway inflammation Karagiannidis et al.,
2006

Asmathics (n = 296)
Retrospective review

2 wk−9 mo Altitude 1,500–1,800m Beneficial effect, in particular in
steroid-dependent patients

Schultze-Werninghaus,
2006

Epidemiologic ISAAC–HWO
study
13–14 y old children (n = 3,196)

Chronic (living in Lhasa) Altitude 3,658m ↓Prevalence (Asthma prevalence in
Lhasa was the lowest worldwide in
ISAAC study)

Droma et al., 2007

Epidemiologic study
Hospitalized asthmatic children
6–11 y old (n = 305)

Chronic Altitude 450–1,800m ↓Risk of hospitalization for atopic
asthma

Kiechl-Kohlendorfer
et al., 2007

Epidemiologic study (n = 9984) Chronic Altitude 1,500m ↓Prevalence
↓Asthma-like symptoms

Sy et al., 2007

Asthmatics (n = 428)
Retrospective review

3 wk−9 mo Altitude 1,500m Beneficial effects beyond the effects
of allergen avoidance

Schultze-Werninghaus,
2008

Mice (in vivo; lymphoid organs) 2 h NH FiO2 = 0.08
FiO2 = 0.21
FiO2 = 1

↓T cell activation
T cell activation in vivo is dependent
on localization and decrease with
hypoxia

Ohta et al., 2011

Mountaineers (n = 27) Alpine activities 11–18
d over 3,777m

Altitude 3,777m ↓Development of new immunity in
humans

Oliver et al., 2013

Altitude, geographic altitude; BC, Base camp; FiO2, Fraction of inspired oxygen; HC, Hypobaric Chamber; HDM, house dust mite; IHT, Intermittent hypoxic training alternating hypoxia

with normoxia along the session; ISSAC, International Study of Asthma and Allergies in Childhood; WHO, World Health Organization.

The brain’s protective mechanisms involved in intermittent
exposure to hypoxia have been widely studied using experimental
animal models, and numerous beneficial effects have been
reported. Intermittent hypoxia facilitates the proliferation of
neural stem cells in situ in the subventricular zone and dentate
gyrus of rat brains (Zhu et al., 2005; Ross et al., 2012). Xu
et al. (2007) described a time-dependent migration of neural
progenitor cells (NPC), promoted by hypoxia-induced astrocytes,
thereby suggesting a role for astrocytes in NPC replacement
therapy in the central nervous system. Intermittent hypoxia
stimulated hippocampal angiogenesis and neurogenesis and
improved short-term memory indices in control mice; and, in
brain-injured mice, it reduced injury size and prevented memory

impairments (Bouslama et al., 2015). It was recently reported
that activation of HIF-1 is involved in hyperglycemia-aggravated
blood-brain barrier disruption in an ischemic stroke model
(Zhang et al., 2016b). Moreover, glycemic control by insulin
abolished HIF-1α upregulation in diabetic animals and reduced
blood-brain barrier permeability and brain infarction (Zhang
et al., 2016b). Acute intermittent hypoxia can trigger spinal
plasticity associated with sustained increases in respiratory,
somatic and/or autonomic motor output (Streeter et al., 2017).

In rats, intermittent hypobaric hypoxia preconditioning
caused a reduction in the degree of brain injury following
ischemia-reperfusion by reducing hippocampal neuronal
apoptosis by local upregulation of neuroglobin and Bcl-2
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expression (Wu et al., 2015). Neuroglobin is an intracellular
monomer hemoprotein that was discovered by Burmester et al.
(2000) and is expressed in the central and peripheral nervous
system, cerebrospinal fluid, retina and some endocrine areas of
the brain (Burmester and Hankeln, 2004). It reversibly binds
oxygen with a higher affinity than normal adult hemoglobin, and
plays a critical role in brain tissue protection facing a possible
oxygen delivery shortage (Ascenzi et al., 2016). Bcl-2 is an
anti-apoptotic protein localized in the outer membrane of the
mitochondria; overexpression of Bcl-2 in neurons can inhibit
neuron apoptosis induced by ischemia-reperfusion injury by
maintaining the integrity of mitochondria (Xing et al., 2008;
Zhang et al., 2008).

Kushwah et al. (2016) also explored the ameliorating potential
of intermittent hypoxia against the detrimental effects of
unpredictable chronic mild stress (UCMS) on anxiety and
depression-like behavior in rats, through the enhancement of
neurogenesis in the hippocampus, a response mediated by
brain derived neurotrophic factor (BDNF). In the postischemic
rat brain, intermittent hypoxia intervention rescued ischemia-
induced spatial learning and memory impairment by inducing
hippocampal neurogenesis and functional synaptogenesis via
BDNF expression (Tsai et al., 2013).

Nowadays, intermittent hypoxia exposure is known
to enhance neurogenesis at multiple stages. Notch1 is a
transcription factor in the neuron’s membrane that regulates
several stages of neurogenesis and promotes differentiation of
progenitor cells into astroglia. Notch1 is activated by hypoxia
in vivo, and such activation has been shown to be required
for hypoxia-induced neurogenesis (Zhang K. et al., 2014a).
Chronic IEHH pretreatment can reduce cerebral ischemic
injury, which, as similarly reported for myocardium (see
above), is mediated through upregulation of the expression and
activity of mitochondrial membrane ATP-sensitive potassium
channel (mitoKATP) (Zhang et al., 2016a). As is well known,
hypoxia inducible factor-1 (HIF-1) is the key transcription
factor that controls early adaptive responses to the lack of
oxygen in mammalian cells. HIF-1α and HIF-1β expression was
measured during acclimatization to hypobaric hypoxia in the
rat cerebral cortex, and neurons, astrocytes, ependymal cells
and possibly endothelial cells were the cell types that expressed
HIF-1α (Chávez et al., 2000). Thus, the vascular remodeling
and metabolic changes triggered during prolonged hypoxia may
restore normal oxygen delivery levels to brain tissue (Agani et al.,
2002; Chavez and LaManna, 2002).

Finally, there is solid evidence of the beneficial effects of
intermittent hypoxia exposure on spinal cord neural tissue
repair. Complete or incomplete spinal cord injuries are
characterized by spared synaptic pathways below the level
of the injury. Intermittent hypoxia elicits plasticity in the
spinal cord and strengthens these spared synaptic pathways,
expressed as respiratory and somatic functional recovery in both
experimental animals and humans with traumatic spinal cord
injury (Navarrete-Opazo et al., 2015, 2017a,b; Dougherty et al.,
2017; Trumbower et al., 2017). Table 5 lists studies reporting
beneficial neurological impact after a wide range of intermittent
hypoxia exposure protocols.

Other Pathological Conditions Where the
Use of Intermittent Hypoxia Exposure Has
Potential Therapeutic Value
Since the altitude-hypoxia-acclimatization triad is known to have
some antioxidant, anti-inflammatory and immunosuppressive
effects (Meehan, 1987; Meehan et al., 1988; Ohta et al., 2011;
Oliver et al., 2013), a benefit in some other pathologies
related to immune response, such as psoriasis, atopy, arthritis
or autoimmune pneumonitis can be expected. This is still a
controversial field with no extensive clinical studies available,
although some medical descriptive studies point to potential
future research opportunities (Singh et al., 1977; Vocks et al.,
1999; Engst and Vocks, 2000; Steiner, 2009).

Intermittent exposure to both normobaric and hypobaric
hypoxia has been related to some protective effects (Cai et al.,
2003; Costa et al., 2013) and beneficial outcomes in several
pathological conditions, especially in those related to metabolic
syndrome (Marquez et al., 2013; Leone and Lalande, 2017;
Serebrovska et al., 2017). The possible role of intermittent
hypoxia on body weight control has also attracted considerable
attention. In addition to improving exercise performance and
diet control, intermittent exposure protocols to normobaric and
hypobaric hypoxia have been applied in an attempt to potentiate
weight loss, showing in some cases positive short-term results
(Haufe et al., 2008; Netzer et al., 2008; Lippl et al., 2010;
Wiesner et al., 2010; Cabrera-Aguilera et al., in press). However,
a long-term study failed to demonstrate permanent body weight
reduction after IEHH (Gatterer et al., 2015), suggesting that
additional research is needed to clarify the discrepancies reported
in this field.

In summary, recent reports call for increased attention to
the potential benefits of the application of intermittent hypoxia
protocols in several clinical areas (Dale et al., 2014; Mateika et al.,
2015). It is likely that future studies will yield important new
information regarding potential therapeutic uses of intermittent
hypoxia. Table 6 lists a non-exhaustive but representative sample
of studies reporting favorable impact of intermittent hypoxia
exposure in other pathological conditions.

INTERMITTENT HYPOXIA IN SPORT

The benefits of intermittent hypoxia programs in competitive
sport are still a subject of scientific debate. Table 7 shows
several examples of intermittent hypoxia exposure effect on
the improvement of human physical performance. A prior
consideration to bear in mind when dealing with this topic
is that two inherent factors justify the diversity of results in
the field of elite sport: (a) the narrow margin of improvement
detectable in elite athletes; and (b) the limitation in the
sample size when performing studies with this population. Both
factors contribute to reduced statistical power in most of these
studies.

Other sources of variability are the wide range of exposure
patterns, differing hypoxic doses (or altitude), and the kind of
hypoxia (hypobaric or normobaric), as is discussed below. The
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TABLE 5 | Examples of the effects of intermittent hypoxia exposure with favorable neurological impact.

Subjects Time of hypoxia Hypoxia

method

Hypoxia dosage Outcome References

Rats 6 h, 12 h, or 1, 4, 7, 14,
or 21 d

HC BP = 380 Torr
(≈5,500m)

↑Hct
↑GLUT-1 ↑VEGF
↑brain HIF-1α until 14 d
↓brain HIF-1α at 21 d

Chávez et al., 2000

Cell culture 4 h NH 1%O 2 + 5%CO2
+ N2

↑HIF-1α (NO interferes expression) Agani et al., 2002

Rats (male) 11–13min Ischemia Ischemia after
cardiac arrest

↑HIF-1α 12 h−7 d
↑IGF-1

Chavez and LaManna,
2002

Rats (male) (3 groups) 4 h/d for 2 wk HC 3,000m
5,000m
Control normoxic

↑BrdU-labeled cells in SVZ and DG
(NPC) in rat brain

Zhu et al., 2005

Astrocytes and NPC culture from
brain cortex of newborn rats

6, 12, 18, and 24 h NH 1%O2 + 5%CO2
+ N2 (astrocytes)

↑Migration of NPC by
hypoxia-induced astrocytes (maximal
at 18 h)

Xu et al., 2007

Neuronal cultures of 16–18 days
old fetuses of Sprague–Dawley
rats

6 h “ischemia”
48 h “reperfusion”

NH Anoxic
atmosphere
(5%CO2 +

95%N2)

Mitochondrial dysfunction & ER stress
⇒ neuronal apoptosis
↑Bcl-2 ⇒ ↓Apoptosis

Zhang et al., 2008

Rats (n = 122)
-Ischemia MCA n = 42
-Ischemia MCA + post-cond n =

42
-Control group n = 40

60min MCA ischemia
post-cond (60min after
reperfusion):
reperfusion for 30 s,
MCA occluded for 5
cycles × 30 s

Ischemia
(MCA
occlusion)

Unknown
(ischemia)

↑Bcl-2 ↑Hsp70 ↓Cytochrome c
↓Bax translocation to the
mitochondria ↓Caspase-3
↓Infarct volume ↓Oxidative stress
↑Neurologic scores

Xing et al., 2008

Neonatal mice: acute IH and
control group

40min 20 × (1:1) NH FiO2 = 0.10 (10%
O2)

↑SVZ derived NPC in vitro Ross et al., 2012

Rats (n = 55)
Groups: with or without MCAO
and/or IH, and/or zidovudine

4 h/d for 7 d NH FiO2 = 0.12 (12%
O2)

Post brain ischemia:
↑Synaptogenesis via BDNF
↑Neurogenesis
↑Spatial learning and memory

Tsai et al., 2013

TBI medical history human
males.
4 groups:
-Exercise and SES (n = 5)
-Cycling (n = 5)
-IHH and SES (n = 6)
-Control (n = 5)

2 h/d × 3 d/wk for 12
wk

HC 4,500m ↑CPC
No changes in psychological tests
↑Aerobic capacity or workload

Corral et al., 2014a

Mice (wildtype vs. Notch1 KO) 4 h/d during
consecutive 28 d

HC 2,000m ↑Notch1
↑Hypoxia induced neurogenesis

Zhang K. et al., 2014a

Newborn mice with brain injury
3 Groups (n = 373)
-Hypoxia separated from the
mother
-Normoxia separated from the
mother
Control with mother

20 events/h, 6 h/d from
postnatal day 6 (P6) to
P10

NH FiO2 = 0.08 (8%
O2)

Control mice:
↑Hippocampal angiogenesis
↑Neurogenesis
↑Short-term memory indices
Brain-injured mice:
↓Injury size
↓Memory impairments

Bouslama et al., 2015

Rats (n = 48) hypocampal CA1
region. 4 groups with or without
ischemia-reperfusion and IHH

Hypoxia for 4 d once a
day I/R 8min

In vivo

I/R
Unknown
(ischemia)

↑Surviving cells in the hippocampal
CA1 in IHH+IR
↑Bcl-2

Wu et al., 2015

Rats with C2 medular
hemisection (n = 32)

IHT 10 × (5:5) intervals
(total 95min) for 7 d

NH FiO2 = 0.105
(10.5% O2)

↑Breathing capacity
↑Contralateral diaphragm (adenosine
dependent)
−2◦ intercostal muscle (adenosine
independent)

Navarrete-Opazo et al.,
2015

Rats (male) with Chronic Mild
Stress induced depression (n =

60) and controls (n = 20)

4 h/d for 2 wk HC 5,000m Avoid neuronal loss
↑Neurogenesis
↑BDNF–TrkB signaling

Kushwah et al., 2016

(Continued)

Frontiers in Physiology | www.frontiersin.org 9 July 2018 | Volume 9 | Article 814

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Viscor et al. Biomedical Applications of Intermittent Hypoxia

TABLE 5 | Continued

Subjects Time of hypoxia Hypoxia

method

Hypoxia dosage Outcome References

Rats (n = 195) 6 groups with
chronic 5 wk stress and/or IHH
or IMIP or antagonist of
mitoKATP

6 h/d for 28 days HC 5,000m ↑Expression and activity of mitoKATP
↓Cerebral ischemia injury
↓UCMS

Zhang et al., 2016a

Rats with C2 medular
hemisection (n = 27) with or
without hypoxia + adenosine
inhibitor

8 wk post-lesion 5min
hypoxia, 5-min
normoxic 10 times
(95min) 7 d, AIH 3/wk
8 wk

NH FiO2 = 0.105
(10.5% O2)

↑Tidal volume and bilateral
diaphragm activity (enhanced by
adenosine receptor inhibitor) for 4 wk

Navarrete-Opazo et al.,
2017b

Rats with spinal C2 hemisection.
1) 7d after lesion
2) 7wk after lesion
+ serotonin receptor antagonist

IHT 10 × (5:5) intervals
(total 110min)

NH FiO2 = 0.105
(10.5% O2)

↑Breathing capacity
Serotonin independent in acute (2wk)
and serotonin dependent in chronic
(8wk)

Dougherty et al., 2017

Humans incomplete spinal cord
injured (n = 35):
IH + BWSTT (n = 18)
NX + BWSTT (n = 17)

IHT 15 × (1.5:1.5)
intervals for 5
consecutive d + 3
d/wk for 3 wk

NH FiO2 = 0.09 (9%
O2)

↑Walking recovery and endurance
(up to 5wk)

Navarrete-Opazo et al.,
2017a

Rats (n =12) IHT 3 × (5:5) NH FiO2 = 0.11 (11%
O2) alternating
with hyperoxia
FiO2 = 0.5 (O2
50%)

↑or↓in firing rate of midcervical
interneurons altering connectivity

Streeter et al., 2017

Men with chronic incomplete
spinal cord injury (n = 6)
(double-blind, crossover study)

IHT 15 × (1.5:1)
intervals for 5
consecutive d + hand
opening practice

NH FiO2 = 0.09 (9%
O2)

↑Hand dexterity, function, or opening
in all participants

Trumbower et al., 2017

In IHT protocols hypoxia was alternated with room air (FiO2 = 0.209) if nothing else is indicated. AIH, acute intermittent hypoxia; BDNF, brain derived neurotrophic factor; Bcl-2, B cell

lymphoma/leukemia-2; BP, barometric pressure; BrdU, 5-Bromo-2-deoxyuridine-5-monophosphate; BWSTT, body weight-supported treadmill training; CAO, carotid artery occlusion;

CIHH, chronic intermittent hypobaric hypoxia; CPC, circulating progenitor cells; DG, dentate gyrus; FiO2, Fraction of inspired oxygen; GLUT-1, glucose transporter-1; HC, Hypobaric

Chamber; Hct, hematocrit; HIF, Hypoxia inducible factor; Hsp70, heat shock protein70; IGF-1, insulin-like growth factor-1; IH, intermittent hypoxia; IHH, intermittent hypobaric hypoxia;

IHT, intervallic hypoxic training alternating hypoxia and normoxia along the session; IMIP, imipramine; I/R, ischemia-reperfusion; KO, knockout mutant; MCA, medium cerebral artery;

MCAO, middle cerebral artery occlusion; NH, normobaric hypoxia; NO, nitric oxide; NPC, neural progenitor cells; NX, normoxia (placebo); ER, endoplasmic reticulum; TBI, traumatic

brain injury; UCMS, Unpredictable Chronic Mild Stress; VEGF, vascular endothelial growth factor; SES, surface electrical stimulation; SVZ, subventricular zone.

living high-training low (LH-TL) pattern (Levine and Stray-
Gundersen, 1997) is the most widespread training schedule,
although sometimes the reverse model, living low-training-high
(LL-TH), is also applied, especially when artificial hypoxia is
used. Moreover, studies evaluating training at altitude during
permanent stays are also very usual.

In addition to other reports cited in precedent sections, a
high number of studies have consistently found positive effects
of IEHH programs to improve exercise performance. Thus,
4 weeks of LH-TL improved sea-level running performance
in trained runners (Levine and Stray-Gundersen, 1997).
Short-term intermittent hypobaric hypoxia (in a hypobaric
chamber) improved the aerobic performance capacity in
healthy subjects (Rodríguez et al., 1999). Intermittent hypobaric
hypoxia combined with low-intensity exercise induced altitude
acclimation, improved lactate threshold and ventilatory
anaerobic threshold in healthy subjects (Casas M. et al., 2000).
Normobaric hypoxia increased the growth hormone response
to maximal resistance exercise in trained men (Filopoulos et al.,
2017). Finally, a reduction in the severity of acute mountain
sickness was also reported after several intermittent normobaric

hypoxia protocols (Schommer et al., 2010; Wille et al., 2012;
Dehnert et al., 2014).

In contrast, other studies did not detect significant
improvements in exercise performance. Four weeks of IEHH did
not improve oxygen transport in trained swimmers and runners
(Rodríguez et al., 2007) nor did it change the submaximal
economy in a group of well-trained athletes (Truijens et al.,
2008). Seven weeks of normobaric hypoxia training in triathletes,
caused an improvement in hematological parameters but not in
the aerobic performance (Ramos-Campo et al., 2015). Finally,
a recent systematic review and meta-analysis did not reveal a
significant benefit of resistance training in hypoxia compared to
the same training in normoxia (Ramos-Campo et al., 2018).

In general, it is commonly accepted that the application
of intermittent hypoxia exposure has beneficial effects for
competitive sport in the same way as for the biomedical
field. As discussed above, the wide difference in effects that
have been reported in the literature can be explained by
individual susceptibility and the diversity of intermittent hypoxia
patterns applied (Debevec and Mekljavic, 2013). The adaptive
or maladaptive responses can be due to differences in the
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TABLE 6 | Examples of the effects of intermittent hypoxia exposure with favorable impact in other pathological conditions.

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Epidemiological study
(1965–1972) in 20,000 altitude
native men vs. to 130,700
lowlanders (760m)

Chronic Altitude 3,692–5,538m ↓Diseases
↓Morbidity rates

Singh et al., 1977

Rats (n = 24) 8 h/d for 30 d HC 5,000m ↑Resistance to epileptogenic action
of penicillin

Agadzhanyan and
Torshin, 1986

Healthy men (n = 7) (operation
Everest II)

40 d HC 7,620m ↓T cell function
↓PHA-stimulated thymidine uptake

Meehan, 1987

Healthy men (n = 8) (operation
Everest II)

4 weeks
5 d at 2,286m
28 d at 7,620m
(gradually) peaks 1–4 h
at 8,839m

HC 2,286m
7,620m
8,839m

↓Phytohemagglutinin-stimulated
thymidine uptake and protein
synthesis in mononuclear cells
↑Monocytes
↑Plasma IgM & IgA
↓T-cell activation

Meehan et al.,
1988

Essential hypertension patients 30 min/d, 5 d/wk for 3
wks

HC 3,500m ↓BP ↓Blood vol ↓[Na]serum
↑Microcirculation ↑PO2 tissue
↓cholesterol

Aleshin et al., 1993

Tibetan natives at moderate (M)
and high (H) altitudes

Chronic Altitude M: 2,000–3,000m
H: 4,000–4,700m

↓HR ↓HVR ↓VEmax
in group at H altitude

Ge et al., 1994

Psoriasis affected patients (n =

76)
4 wk Altitude 1,560m ↓Psoriasis

no changes in plasma cortisol
Vocks et al., 1999

Neurodermitis patients (n =

31,438)
4 wk Altitude 1,560m ↓Dermatosis

↓Psoriasis ↓ECP
Engst and Vocks,
2000

Coronary patients (n = 46) 22 sessions 3 h/d HC 3,500m ↓Total cholesterol
↑HDL ↓LDL ↓VLDL ↓TG

Tin’kov and
Aksenov, 2002

Mice (n = 9) IHT 5 × (6:6) NH FiO2 = 0.06 ↑EPO; ↑heart HIF-1α Cai et al., 2003

Obese subjects (BMI > 27) (n =

20)
-Hypoxia (n = 10; 8w + 2m)
-Sham (n = 10; 8w + 2m)

1.5 h/d, 3 d/wk for 8
wk exercising at 60%
VO2max

NH FiO2 = 0.15
(≈2,500m)
FiO2 = 0.201
(≈450m)

↓BMI and ↑BW loss ↓cholesterol
↓TG and ↓LDL

Netzer et al., 2008

Healthy men (n = 20)
-Hypoxia (n = 10)
-Normoxia (n = 10)

1 h/d, 3 d/wk for 4 wk
exercising at 3 mmol/L
Lac HR

NH FiO2 = 0.15
(≈2,760m)
FiO2 = 0.21 (≈SL)

↓Body fat content ↓TG
↓HOMA-Index fasting insulin and
↓AUCins

Haufe et al., 2008

Atopic dermatitis and psoriasis
patients (mini-review)

12 d−4 wk Altitude 1,560m ↓Symptoms Steiner, 2009

Obese men (n = 20) 1 week Altitude 2,650m ↓BW ↑BMR ↓Food intake ↑Basal
leptin ↓diastolic BP

Lippl et al., 2010

Overweight to obese subjects (n
= 24)

4 wk training under
hypoxia at 65%
VO2max

NH FiO2 = 0.15
(≈2,760m)

↑Physical fitness
↓Metabolic risk markers
↑Body composition

Wiesner et al.,
2010

Mice (in vivo; lymphoid organs) Acute 2 h exposure NH FiO2 = 0.08
FiO2 = 0.21
FiO2 = 1 (variable
in organs: thymus
< lymphoid nodes
< spleen)

↑T-cell activation in better oxygenated
tissues.
T-cell activation in vivo is dependent
on localization and decrease with
hypoxia

Ohta et al., 2011

Mice (WT vs. KO) Myoblast cell culture NH 5 vs. 21% Endogenous EPO promotes satellite
activation and functional recovery
after muscle injury

Jia et al., 2012

Rats (n = 8) 3 h/d for 6 d HC 5,500m Injured excitotoxic brain:
↑EPO ↓Lipid peroxidation
↓Apoptotic cell death

Costa et al., 2013

Healthy adult sedentary men (n
= 28)

2 × 20 min/d × 3 d/wk
for 10 weeks

HC
(CVAC)
5 fluctuations/min

Progressive:
SL - 3,048m (wk
1)
SL - 6,096m (wk
5–10)

No changes in Hct, [Hb], cholesterol
and insulin
↓Fasting plasma glucose
↓Plasma glucose in response to oral
glucose tolerance test

Marquez et al.,
2013

Recreationally active
mountaineers (n = 10; 3w +

7m)

28 h Altitude 3,777m ↓Immune response Oliver et al., 2013

(Continued)
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TABLE 6 | Continued

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Obese patients (BMI > 30
kg/m2 ) (n = 16; 4w + 12m)

52 sess of 90min (8
mo)

NH Exercise: 3,500m
Rest: 4,500m

No added effects by hypoxia to those
provoked by moderate intensity
exercise

Gatterer et al.,
2015

Prediabetic adult patients (n =

11; 6w + 5m)
3 sess/wk for 3 wk NH (IHT 5:5) FiO2 = 0.12

(≈4,400m)
↑mRNA expression of HIF-1α and
target genes
↓Fasting plasma glucose
↓Plasma glucose response to 2 h
post-oral glucose tolerance test

Serebrovska et al.,
2017

Trained rats (n = 78)
-Basal (n = 6)
-Hypoxia (n = 24)
-Hypoxia + LAE (n = 24)
-Normoxia (n = 24)

4 h/d for 14 d HC 4,000m m. soleus:
↑Histological muscle damage
recovery
No change in fiber types
↓Fiber size
↑Capillarisation
↑VEGF expression
↑Citrate synthase activity
↑PGC-1α

Rizo-Roca et al.,
2017a

Trained Rats (n = 78)
-Basal (n = 6)
-Hypoxia (n = 24)
-Hypoxia + LAE (n = 24)
-Normoxia (n = 24)

4 h/d for 14 d HC 4,000m m. soleus:
↑Mitochondrial biogenesis markers
↑Mitochondrial dynamics markers
↓Oxidative stress
↓Apoptotic signalling

Rizo-Roca et al.,
2017b

Rats (n = 28)
-Normoxia sedentary (n = 7)
-Normoxia + EET (n = 7)
-Hypoxia sedentary (n = 7)
-Hypoxia + EET (n = 7)

5 h/d for 4 wk HC 6,000m ↓Food intake
↓Body weight gain
↓Oxygen consumption
Additive effect of IHH+EET

Cabrera-Aguilera
et al., in press

3 mmol/L Lac HR, heart rate corresponding to the 3 mmol/L lactate value in the FiO2-specific incremental test; Altitude, geographic altitude; AMS, acute mountain sickness; AUCins,

Insulin response (area under curve) to oral glucose tolerance test; BMI, body mass index; BMR, basal metabolic rate; BP, arterial blood pressure; BW; body weight; CVAC, Cyclic

Variations in Altitude Conditioning; ECP, eosinophil cationic protein; EET, endurance exercise training; EPO, Erythropietin; FiO2, Fraction of inspired oxygen; [Hb], Blood hemoglobin

concentration; HC, Hypobaric Chamber; Hct, Hematocrit; HDL, high density lipoproteins; IHT, Intermittent hypoxic training alternating hypoxia with normoxia along the exposure protocol;

HOMA-Index, homeostatic model assessment index of insulin resistance; HR, Heart rate; HVR, hypoxic ventilatory response; IHH, intermittent hypobaric hypoxia; IHT (6:6), intermittent

hypoxic training, alternating 6min hypoxia with 6min normoxia along the session; LAE, light aerobic exercise; LDL, low density lipoproteins; NH, normobaric hypoxia; TG, plasma

triglycerides; VEmax; maximal exercise pulmonary ventilation; VLDL, very low density lipoproteins.

frequency, severity or duration of hypoxic episodes (Serebrovska
et al., 2016). Factors such as age, sex or genotypic variability
may also contribute to varying results (Almendros et al.,
2014). A review of relevant publications between 1980 and
2015 concluded that evidence regarding the effects of altitude
training on athletic performance is weak but that the natural
stay at altitude combined with a live high-train low training
strategy may provide the best protocol for enhancing endurance
performance in elite and subelite athletes (Khodaee et al., 2016),
thus confirming similar findings in a previous study (Bonetti
and Hopkins, 2009). Finally, a recently published meta-analysis
on the effect of natural or simulated altitude training in team-
sport athletes conclude that hypoxic intervention appears to
be a worthwhile training strategy for improvement in team-
sport athletes, with enhanced performance over control groups
persisting for at least 4 weeks post-intervention (Hamlin et al.,
2018). Also, our recent data indicate that contractile activity
seems to be necessary to trigger in skeletal muscle the adaptive
responses induced by intermittent exposure to hypoxia (Rizo-
Roca et al., 2018).

Although most of the expected effects of altitude training
and IEHH programs have been mainly aimed at improving

aerobic capacity (Stray-Gundersen and Levine, 1999; Wilber,
2004), some reports also have described benefits for strength
training at moderate hypoxia levels (Nummela and Rusko, 2000;
Manimmanakorn et al., 2013; Álvarez-Herms et al., 2015b, 2016).
The underlying mechanism of these responses remain to be
clarified, but potential psychological benefits may be derived
of the perception of increased effort during hypoxic training
(Álvarez-Herms et al., 2016). In addition, training during hypoxia
may result in a greater increase in muscular endurance than the
same training load performed in normoxia, probably because of
increased angiogenesis in skeletal muscle level (Kon et al., 2014),
can be involved in those improvements.

NORMOBARIC VS. HYPOBARIC HYPOXIA:
THE SAME STIMULUS?

When artificial methods of producing hypoxia exposure were
first developed, no attention was paid to the differences between
hypobaric (low barometric pressure) and normobaric (low
oxygen content in an inhaled gas mixture) hypoxia. It seems
evident that the same physiological effects are expected for
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TABLE 7 | Examples of the intermittent hypoxia exposure on the improvement of human physical performance.

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Elite alpinists (n = 5; 1w + 4m) 1 wk chronic + 38 h for
4 d

Altitude + HC 4,350–4,807m (1
wk at Mt Blanc)
5,000–8,500m (4
d at HC)

↑SaO2 during HT
↑Altitude acclimatization

Richalet et al.,
1992

Competitive (n = 39, 12w +

27m)
4 wk Altitude LH-TL

1,250/2,500m
↑VO2max Levine and

Stray-Gundersen,
1997

Competitive (n = 39; 12w +

27m)
14 d LH-TL

LH-TH
1,200–1,400
m/2,500–3,000m

↑VO2max
↑VO2max

Chapman et al.,
1998

Alpinists (n = 17) 3–5 h/d for 9 d HC 4,000–5,500m Vo2max ↑Lact/Vel Rodríguez et al.,
1999

Competitive (n = 126, 37w +

89m)
4 wk Altitude LH-TL

1,250/2,500m
↑Vo2max in responders Stray-Gundersen

and Levine, 1999

Alpinists (n = 9) 2 h/d 14 d HC 5,000m ↑VE ↑SaO2 during exercise at
5,000m

Ricart et al., 2000

Elite athletes (n = 18; 2w +

16m)
-Hypoxia (n = 8; 2w + 6m)
-Control (n = 10; 10m)

10 d NH
(LH-TL)

FiO2 = 0.158
(≈2,200m)

↓400-m race time
↑resting blood pH

Nummela and
Rusko, 2000

Elite alpinists (n = 6) 3–5 h/d for 17 d HC 4,000–5,500m ↑TtE ↑Lact/Vel Casas M. et al.,
2000

Competitive (n = 23; 11w +

12m)
-Hypoxia (n = 11)
-Normoxia (n = 12)

3 h/d, 5 d/wk for 4 wk HC 4,000–5,500m Marginal ↑VO2max (p < 0.07) but
only in swimmers

Rodríguez et al.,
2007

Elite athletes (n = 41)
-XC Skiers (n = 11)
-Swimmers (n = 18)
-Runners (n = 12)

18 nights
13 nights
18 nights

NH and Altitude
(LH-TL)

1,200m/
/2,500–3,500m
/2,500–3,000m
/2,500–3,000m

↑VO2max
↑VO2max
↑VO2max

Richalet and Gore,
2008

Competitive (n = 28; 11w +

17m)
3 h/d, 5 d/wk for 4 wk HC 4,000–5,500m No changes in submaximal economy Truijens et al.,

2008

Meta-Analysis of 51 studies on
elite and sub-elite athletes

Diverse Natural vs. artificial
altitude (no
discrimination
between artificial
NH or HH)

Diverse ↑Maximal endurance power output
after natural and brief intermittent
artificial LH-TL

Bonetti and
Hopkins, 2009

Randomized,
placebo-controlled, double-blind
study (n = 40; 18w + 22m)

3 × 70 min/wk for 3 wk
exercising + 4 ×

90min passive for 1 wk

NH 2,500m (wk-1)
3,000m (wk-2)
3,500m (wk-3)
4,500m (wk-4)

↓AMS 1st d at 3,611m
∼=AMS 2nd d at 4,559m

Schommer et al.,
2010

Healthy men (n = 26)
Randomized,
placebo-controlled, double-blind
study

1 h/d for 1 wk NH FiO2 = 0.126
(≈4,500m)

↓AMS after 8 h at FIo2 = 0.113
(≈5,300m)

Wille et al., 2012

Female netballer players (n = 30)
-Hypoxic training
-Vascular occlusion training
-Control

0–90◦ bilateral knee
extension and flexion
3 sess/wk for 5 wk

NH FiO2 = variable to
maintain
SpO2≈80%

↑MVC3
↑MVC30
↑Reps20

Manimmanakorn
et al., 2013

USARIEM Retrospective review
(n = 170; 37w + 133m)

Several Altitude, HC and
NH

4,300m HC or altitude much more effective
than NH for ↓AMS and ↑performance
during acute altitude exposure

Fulco et al., 2013

Healthy unacclimatized men (n =

42)
-Hypoxia (n = 21)
-Normoxia (n = 21)

Sleep for 14
consecutive nights

NH FiO2≈0.145
(≈2,600m)

↓AMS after 20 h at FIo2 = 0.12
(≈4,500m)

Dehnert et al.,
2014

Healthy men (n = 16)
-Hypoxia (n = 9)
-Normoxia (n = 7)

Resistance training
2 sess/wk for 8 wk (16
sessions in total)

NH FiO2 = 0.144
(≈3,000m)

↑Muscular endurance
↑VEGF ↑Capillary-to-fiber ratio

Kon et al., 2014

(Continued)
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TABLE 7 | Continued

Subjects Time of hypoxia Hypoxia method Hypoxia dosage Outcome References

Male elite athletes (n = 12)
-Hypoxia (n = 6)
-Normoxia (n = 6)

CST
3 sess/wk for 4 wk
(27 h in total)

HC 3,000m ↑Anaerobic performance Álvarez-Herms
et al., 2015a

Elite swimmers
(n = 54; 30w + 24m)

3 or 4 wk Altitude
LH-TH vs. LL-TL
vs. LH-TH+TL

690/2,320m ↓TT for LH-TH+TL Rodríguez et al.,
2015

Male trained triathletes (n = 18)
-Hypoxia (n = 9)
-Normoxia (n = 9)

1 h/d × 2 d/wk for 7 wk NH FiO2 =

0.145–0.15
(≈2,800–2,500m)

No differences in aerobic performance Ramos-Campo
et al., 2015

Male well-trained triathletes (n =

16)
18 d NH and Altitude

LH-TL
1,100/2,250m ↑VO2max

↓3-km run time
Saugy et al., 2016

Well-trained (n = 16) Acute exposure during
HIIE jump test

NH FiO2 = 0.165
(≈1,900m)
FiO2 = 0.135
(≈3,500m)

↑Effort perception Álvarez-Herms
et al., 2016

Well-trained men (n = 16) Acute exposure during
5 × 3 45◦ leg press
and bench press at
85% 1RM test

NH FiO2 = 0.165
(≈1,900m)

Serum ↑Lactate ↑GH Filopoulos et al.,
2017

Male endurance-trained (n = 15)
-Hypoxia (n = 9)
-Normoxia (n = 6)

IHT
6 × (5:5) at 80–85% of
vVO2max
3 sess/wk for 6 wk

NH FiO2 = 0.106
(≈5,000m) (wk
1–2)
FiO2 = 0.114
(≈5,500m)
(wk 3–6)

↑TtE at 95% VO2max Sanchez and
Borrani, 2018

1RM, one repetition maximum; Altitude, geographical altitude; AMS, acute mountain sickness; CST, circuit strength training; FiO2, Fraction of inspired oxygen; HC, Hypobaric Chamber;

HIIE, high intensity intervallic exercise; HT, hypoxic test (at 4,800m equivalent attitude); IHT, Intermittent hypoxic training alternating hypoxia during exercise with normoxia during

recovery between sets; Lact/Vel, Lactate/Velocity curve (up-arrow means right shift); LH-TL, Living High-Training Low; LH-TH, Living High-Training High; MVC3, 3 s maximal voluntary

contraction; MVC30, 30 s maximal voluntary contraction; NH, Normobaric hypoxia; TtE, Time to exhaustion; Reps20, maximal number of repetitions at 20% 1RM; TT, time trial; USARIEM,

United States Army Research Institute of Environmental Medicine; VO2max, maximal oxygen consumption capacity.

a determined alveolar oxygen partial pressure, regardless of
the technical means used. However, data in the literature
present consistent discrepancies after applying hypobaric and
normobaric hypoxia, which could be attributed to alterations
in other environmental parameters that affect alveolar gas
composition, such as carbon dioxide partial pressure, humidity
and temperature. For instance, even for the same level of
oxygen partial pressure, the atmospheric composition in a
small hypoxic tent with low air turnover (limited by the flow
capacity of the hypoxic device) can be very different from
the air composition in a hypobaric chamber. Generally, the
use of powerful vacuum pumps in hypobaric chamber systems
guarantees sufficient renewal of the air inside the room, thus
preventing carbon dioxide accumulation and a rise in air
temperature and humidity, factors that could become unbalanced
in small volume hypoxic tents, especially with exercising subjects
inside. In a comparative study of hypobaric (low pressure
chamber) and normobaric hypoxia (hypoxic tent) during a
submaximal exercise test in the same subjects, differences were
observed in some cardiorespiratory and heart rate variability
parameters between the two artificial hypoxia systems used
(Basualto-Alarcón et al., 2012).

An interesting and dynamic debate, which is beyond the scope
of this review, is currently under way among altitude researchers
concerning whether or not hypobaric hypoxia induces different

responses from normobaric hypoxia (Girard, 2012; Millet et al.,
2012; Hauser et al., 2016; Saugy et al., 2016). Some evidences
demonstrate that there are different physiological responses
and outcomes between exposure to normobaric and hypobaric
hypoxia conditions (Savourey et al., 2003; Fulco et al., 2013;
Millet et al., 2013; Beidleman et al., 2014; Debevec and Millet,
2014; Boos et al., 2016; DiPasquale, 2017). For instance, it has
been reported that the decrease in air density that accompanies
the partial pressure drop of oxygen at geographic altitude
affects the way in which explosive actions are executed and
increases movement velocity and power during force-velocity
bench presses in comparison to normobaric hypoxia (Feriche
et al., 2014).

CONCLUSIONS

A growing body of knowledge supports the beneficial effects
of natural or simulated altitude techniques on health outcomes
(Navarrete-Opazo and Mitchell, 2014; Millet et al., 2016;
Lizamore and Hamlin, 2017). Future research should be oriented
to: (1) gain more in-depth knowledge of the subcellular
mechanisms involved in the hypoxic response at different
tissue levels, (2) standardize hypoxia exposure methods and
establish a universal method for measuring, and repeatedly
applying, hypoxic dosage, (3) improve predictions of individual
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hypoxia tolerance to prevent possible negative consequences,
(4) apply this new knowledge to the selection and education
of altitude workers, (5) improve altitude acclimatization,
altitude training camps and altitude competition events to
benefit mountaineers, athletes and coaches, and finally (6)
cautiously explore the application of IEHH in pathological
conditions.
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