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Introduction: Right ventricular (RV) fibrosis contributes to RV failure in pulmonary
arterial hypertension (PAH). The mechanisms underlying RV fibrosis in PAH and the role
of RV fibroblasts (RVfib) are unknown. Activation of the mitochondrial fission mediator
dynamin-related protein 1 (Drp1) contributes to dysfunction of RV myocytes in PAH
through interaction with its binding partner, fission protein 1 (Fis1). However, the role of
mitochondrial fission in RVfib and RV fibrosis in PAH is unknown.

Objective: We hypothesize that mitochondrial fission is increased in RVfib of rats with
monocrotaline (MCT)-induced PAH. We evaluated the contribution of Drp1 and Drp1–
Fis1 interaction to RVfib proliferation and collagen production in culture and to RV
fibrosis in vivo.

Methods: Vimentin (+) RVfib were enzymatically isolated and cultured from the RVs
of male Sprague–Dawley rats that received MCT (60 mg/kg) or saline. Mitochondrial
morphology, proliferation, collagen production, and expression of Drp1, Drp1 binding
partners and mitochondrial fusion mediators were measured. The Drp1 inhibitor
mitochondrial division inhibitor 1 (Mdivi-1), P110, a competitive peptide inhibitor of Drp1–
Fis1 interaction, and siRNA targeting Drp1 were assessed. Subsequently, prevention
and regression studies tested the antifibrotic effects of P110 (0.5 mg/kg) in vivo. At
week 4 post MCT, echocardiography and right heart catheterization were performed.
The RV was stained for collagen.

Results: Mitochondrial fragmentation, proliferation rates and collagen production were
increased in MCT-RVfib versus control-RVfib. MCT-RVfib had increased expression of
activated Drp1 protein and a trend to decreased mitofusin-2 expression. Mdivi-1 and
P110 inhibited mitochondrial fission, proliferation and collagen III expression in MCT-
RVfib. However, P110 was only effective at high doses (1 mM). siDrp1 also reduced
fission in MCT-RVfib. Despite promising results in cell therapy, in vivo therapy with P110
failed to prevent or regress RV fibrosis in MCT rats, perhaps due to failure to achieve
adequate P110 levels or to the greater importance of interaction of Drp1 with other
binding partners.
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Conclusion: PAH RVfib have increased Drp1-mediated mitochondrial fission. Inhibiting
Drp1 prevents mitochondrial fission and reduces RVfib proliferation and collagen
production. This is the first description of disordered mitochondrial dynamics in RVfib
and suggests that Drp1 is a potential new antifibrotic target.

Keywords: mitochondrial fission, mitochondrial dynamics, dynamin-related protein 1 (Drp1), fibrosis,
mitochondrial division inhibitor 1 (Mdivi-1), P110

INTRODUCTION

Pulmonary arterial hypertension (PAH) is characterized
by pulmonary vascular obstruction, vascular stiffening and
vasoconstriction, leading to increased right ventricular (RV)
afterload and, consequently, right ventricular hypertrophy
(RVH). Ultimately, pulmonary vascular disease leads to death
from RV failure. Despite the importance of pulmonary vascular
hemodynamics in PAH, RV function is the major determinant of
the long-term prognosis (D’Alonzo et al., 1991; Sandoval et al.,
1994; Campo et al., 2010; Ghio et al., 2010; Humbert et al., 2010;
Sachdev et al., 2011; Voelkel et al., 2015). Some PAH patients,
such as those with Eisenmenger’s syndrome, respond to increased
afterload with an adaptive form of RVH, which is associated
with a good prognosis; whereas, others, such as patients with
scleroderma, have a maladaptive form of RVH. While the
differences between adaptive and maladaptive RVH remain
poorly defined, patients with maladaptive RVH have worse
functional capacity. These patients have greater impairment of
angiogenesis, adrenergic signaling and metabolism, and display
impaired RV morphology characterized by RV dilatation and
fibrosis (Archer et al., 2013; Ryan and Archer, 2014).

Disorders of mitochondrial metabolism, notably an increase in
uncoupled glycolysis due to activation of pyruvate dehydrogenase
kinase (the Warburg phenomenon), contribute to impaired RV
myocyte function in RVH (Piao et al., 2010, 2013; Fang
et al., 2012). The Warburg phenomenon also promotes an
hyperproliferative, apoptosis-resistant phenotype in pulmonary
artery smooth muscle cells (PASMC) in PAH (Michelakis
et al., 2002; McMurtry et al., 2004; Bonnet et al., 2006).
A similar Warburg shift in metabolism in pulmonary adventitial
fibroblasts, mediated by epigenetic changes in pyruvate
kinase muscle isoform 2/isoform 1 ratio, contributes to a
hyperproliferative, profibrotic vascular fibroblast phenotype in
PAH (Zhang et al., 2017).

In addition to metabolic changes (Sutendra and Michelakis,
2014), the mitochondria in PAH display structural changes due
to disorders of mitochondrial dynamics that are linked to cell
cycle regulation (Marsboom et al., 2012) and production of
reactive oxygen species (Tian et al., 2017). Mitochondria undergo
dynamic cycles of fission (division) and fusion (union) to form a
highly plastic network. The mitochondrial network is regulated
by various GTPase, including the fusion mediators mitofusin-1
(MFN1), mitofusin-2 (MFN2), and optic atrophy-1 (OPA1)
and the fission mediator, dynamin-related protein 1 (Drp1)
(Chen et al., 2003; Westermann, 2010). Inactivated Drp1 resides
in the cytosol. Once activated by either dephosphorylation at
Serine 637 (Cereghetti et al., 2008; Sharp et al., 2014, 2015),

phosphorylation at Serine 616 (Taguchi et al., 2007; Marsboom
et al., 2012), or both (Rehman et al., 2012), Drp1 translocates to
the outer mitochondrial membrane where it associates with one
or more of its binding partners, including fission protein 1 (Fis1),
mitochondrial fission factor (MFF), and mitochondrial dynamics
proteins of 49 and 51 kDa (MiD49 and MiD51) (Otera et al., 2010;
Zhao et al., 2011; Loson et al., 2013; Chen et al., 2018). Activated
Drp1 and its binding partners multimerize, forming a ring-like
structure, which constricts and divides the mitochondrion,
resulting in mitochondrial fission (Lee et al., 2004; Zhu et al.,
2004; Chan, 2007; Youle and van der Bliek, 2012; Archer, 2013).
Increased rates of mitochondrial fission are observed in PASMC
in PAH, resulting in a fragmented mitochondrial network that
promotes a hyperproliferative, apoptosis-resistant phenotype
(Bonnet et al., 2007; Marsboom et al., 2012). This increase
in mitotic fission is coordinated with cell cycle progression
and reflects a shared reliance of fission and mitosis on certain
kinases, including cyclin B1-CDK1 (Marsboom et al., 2012).
However, the importance of increased fission is contextual and
varies by cell type. For example, excessive mitochondrial fission
in RV myocytes in PAH leads to increased production of
mitochondrial-derived reactive oxygen species and impaired RV
diastolic function (Tian et al., 2017), rather than changes in cell
proliferation.

Inhibiting mitochondrial fission by targeting Drp1 has
therapeutic potential in PAH. Mitochondrial division inhibitor 1
(Mdivi-1), a selective Drp1 GTPase activity inhibitor (Cassidy-
Stone et al., 2008), inhibits mitochondrial fission and reduces
proliferation in PASMC from PAH patients and improves
hemodynamics in vivo in animal models of pulmonary
hypertension (Marsboom et al., 2012). Mdivi-1 also inhibits
mitochondrial fission in rat left ventricular (LV) myocytes
and improves LV function both in ex vivo Langendorff
ischemia-reperfusion injury model in rat and in in vivo cardiac
arrest model in mouse (Sharp et al., 2014, 2015). P110, a
relatively novel drug, is a 7-amino acid peptide representing a
homology sequence between Drp1 and Fis1 (Guo et al., 2013;
Qi et al., 2013). It is delivered across cell membranes and can
cross the blood–brain barrier with the TAT47−57 carrier peptide
(Guo et al., 2013). P110 selectively inhibits pathological, but
not physiological mitochondrial fission (Guo et al., 2013; Qi
et al., 2013). Blocking the interaction between Drp1 and Fis1
with P110 also preserves mitochondrial morphology and cellular
function in rat cardiac myocytes under ischemia-reperfusion
injury in vitro and ex vivo and improves LV function in
an ischemia-reperfusion injury model in vivo (Disatnik et al.,
2013). Our group has also demonstrated that P110 improves
mitochondrial function and preserves RV diastolic function in
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both normal and monocrotaline (MCT)-induced PAH rat RVs
in ischemia-reperfusion injury model using the Langendorff
preparation (Tian et al., 2017). However, Fis1 is not important
to the increased fission observed in PAH PASMC (Chen et al.,
2018). The mitochondrial metabolic and mitochondrial dynamics
profile of RV fibroblasts (RVfib) is unknown, as its potential
relevance to RV fibrosis.

Here, we isolated RVfib from normal and pulmonary
hypertensive rats and studied changes in mitochondrial
dynamics. We focused on these cells as they are likely the
major determinant of the RV fibrosis that occurs in maladaptive
RVH. We compared RVfib from control versus monocrotaline
(MCT)-induced PAH rats, using this well-established model
because of the predisposition of the MCT RV to develop
fibrosis and the MCT rat to die of RV failure. We characterized
the mitochondrial dynamics in RVfib and examined the
relationship between the observed increase in mitochondrial
fission and increased rates of RVfib proliferation and collagen
production. We then examined the effects of Mdivi-1 and P110
on mitochondrial morphology, cell proliferation and collagen
production. We also evaluated the role of Drp1–Fis1 interaction
in the regulation of mitochondrial fission in RVfib in PAH.

We demonstrate that MCT-RVfib have a fragmented
mitochondrial phenotype due to excessive mitochondrial
fission mediated by Drp1 activation. This phenotype persists
in culture, suggesting it may be epigenetically mediated. This
increase in fission promotes excess proliferation and collagen
production. The Drp1 inhibitor Mdivi-1, small inhibitory RNA
targeting Drp1 (siDrp1), and high doses of P110 each reverse
mitochondrial fission. Both Mdivi-1 and high dose P110 reduce
proliferation and collagen production in MCT-RVfib in vitro.
Despite promising results in cell culture, P110 was not effective
in vivo, at the administered dose. This is the first description
of increased mitochondrial fission as a mediator of cardiac
fibroblast proliferation and collagen production. Drp1 is a
potential new antifibrotic target in PAH.

MATERIALS AND METHODS

Experiments were conducted in accordance with the published
guidelines of the Canadian Council on Animal Care and
approved by the Queen’s University Animal Care Committee.

Reagents
Monocrotaline (MCT; C2401), Mdivi-1 (M0199), dimethyl
sulfoxide (DMSO; D2650), collagenase (C0130), Dulbecco’s
modified Eagle’s medium (DMEM; D5796), 10% neutral buffered
formalin (HT501128), and bovine serum albumin (A7906)
were purchased from Sigma (St. Louis, MO, United States).
Both P110 and the peptide control sequence, TAT, were
purchased from United Peptide (Herndon, VA, United States).
L-glutamine (25030081), fetal bovine serum (SH3039603),
penicillin-streptomycin (15140163), trypsin-EDTA (25200056),
Hanks’ Balanced Salt Solution (SH3058802), phosphate-buffered
saline (PBS; SH3025601), paraformaldehyde (AC416780250),
Triton X-100 (BP151-100), and Tween-20 (BP337-100) were

purchased from Thermo Fisher Scientific (Waltham, MA,
United States). Fibroblast growth factor-basic was purchased
from ProSpec (CYT-608; East Brunswick, NJ, United States).

Monocrotaline-Induced PAH Animal
Model
Male Sprague–Dawley rats (∼270 g) (Charles River, QC, Canada)
received a single subcutaneous injection of monocrotaline (MCT;
60 mg/kg) (n = 45) or PBS (n = 5). We assessed the effects of
P110 both as a prevention and as a regression intervention. In
both protocols, P110 and TAT were administered at 0.5 mg/kg
via intraperitoneal injection. In the prevention group (MCT-P3
group; n = 5), P110 was injected once at the time of injection
of MCT.

There were two regression protocols. In one, P110 (MCT-P1
group; n = 14) or TAT (MCT-T1 group; n = 14) was injected on
day 14 and 19 post MCT injection. In the other, P110 (MCT-P2
group; n = 7) or TAT (MCT-T2 group; n = 5) was injected on
alternating days beginning day-10 post MCT injection.

Echocardiography
At week 4 after MCT injection, Doppler, 2-dimensional,
and M-mode echocardiography was performed using a
high-frequency ultrasound system (Vevo 2100; Visual Sonics,
Toronto, ON, Canada), as described (Urboniene et al., 2010;
Tian et al., 2017). The following variables were measured:
pulmonary artery acceleration time (PAAT), main pulmonary
artery (PA) inner diameter at the level of the pulmonary outflow
tract during mid-systole, diastolic and systolic thickness of
the RV free wall (RVFW), and tricuspid annular plane systolic
excursion (TAPSE). RVFW systolic thickening was calculated as
(RVFWsystole – RVFWdiastole)/RVFWdiastole, and cardiac output
(CO) was estimated as HR×VTI× ID2/4, where HR is the heart
rate, VTI is the systolic velocity time integral over the main PA
flow obtained from pulsed-wave Doppler, and ID is the inner
diameter of the main PA at mid-systole, as described previously
(Piao et al., 2010; Urboniene et al., 2010; Prins et al., 2017; Tian
et al., 2017).

Right Heart Catheterization (RHC)
At week 4, following cardiac ultrasound, invasive closed-chest
RHC was performed to obtain RV pressure-volume loops.
Briefly, rats were anesthetized with 5% isoflurane induction and
maintained with 3% during procedures. A high-fidelity catheter
(Scisense pressure-volume catheter; Transonic, London, ON,
Canada) was advanced to RV through the right jugular vein and
the right atria in closed-chest animals. During catheterization,
animals were intubated and ventilated. RV pressure and
volume were recorded continuously using Scisense ADV500
Pressure-Volume Measurement System (Transonic, London,
ON, Canada) and LabScribe2 software (iWorx, Dover, NH,
United States). RV systolic pressure and end-diastolic pressure
(RVSP and RVEDP, respectively) were directly obtained from
the pressure trace. Total pulmonary resistance (TPR) was then
calculated as mPAP/CO, where CO is cardiac output calculated
as (RV end-diastolic volume − RV end-systolic volume) × heart
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rate, and mPAP is the mean pulmonary artery pressure estimated
as 0.61× RVSP+ 2 (Chemla et al., 2004).

Histological Analysis
After RHC, animals were sacrificed. RV and LV plus septum were
then dissected for tissue weight measurement. Biopsies of RV free
wall tissues were fixed in 10% buffered formalin. The fixed tissues
were then embedded in paraffin and stained with picrosirius red,
for measurement of collagen deposition.

Images of RV stained with picrosirius red were taken
by a scientist who was blinded to the experimental groups,
using a Leica digital color camera (Leica DFC310 FX, Leica
Microsystems; Wetzlar, Germany) and Leica DM4000 B LED
microscope with a 20X objective (Leica Microsystems; Wetzlar,
Germany). For each sample, more than 4 areas were imaged
and analyzed for the percentage of the collagen area using Leica
software (LAS V4.7, Leica Microsystems; Wetzlar, Germany).
Results are presented as the average percentage of all the sample
areas stained with picrosirius red.

RV Fibroblasts Isolation
RVfib were isolated from control and monocrotaline rats
(n = 8 each) using a modification of a previously described
method (Agocha and Eghbali-Webb, 1997). Briefly, excised fresh
RV free wall tissues were rinsed with ice-cold PBS twice and
minced in ice-cold PBS into small pieces at ∼0.5 mm. The
minced tissues were then digested at 37◦C in 2 mL Hanks’
Balanced Salt Solution supplemented with 0.1% trypsin-EDTA
and 200 U/mL collagenase in 15 mL conical tube by constant
stirring at a speed of 1000 RPM via EppendorfTM ThermoMixer
temperature control device (05412503; Thermo Fisher Scientific,
Waltham, MA, United States) for 5 min, and the supernatant
was discarded. A total of 2 mL digestion solution was added
to the 15 mL conical tube for the next digestion. The second
to the sixth digestions underwent constant stirring for 15 min
each, and at the end of each digestion period the supernatant was
aspirated and centrifuged. The pellet was suspended in culture
medium and placed on a 100-mm culture dish (12-556-02; Fisher
Scientific, Waltham, MA, United States). After the supernatant
was aspirated, 2 mL of fresh digestion solution was added for
the next cycle. On the second and the third days after the
cell isolation, the cell culture dish was washed with PBS and
replaced with new culture medium. Starting from the fourth
day, the culture medium was replaced every 2 or 3 days. The
identity of fibroblasts was confirmed by immunofluorescence
using previously published criteria (positive for vimentin and
negative for α-smooth muscle actin, von Willebrand factor, and
heavy chain cardiac myosin) (Neuss et al., 1996; Agocha and
Eghbali-Webb, 1997).

Cell Culture
Isolated RVfib were cultured in DMEM containing glucose
(4500 mg/L), supplemented with 2 mM L-glutamine, 10% fetal
bovine serum, penicillin/streptomycin (100 U/mL), and 4.6 ng/L
fibroblast growth factor basic. Cells were treated with P110 or
control peptide TAT (10, 50, 100 µM or 1 mM) daily, with small
interfering RNA of Drp1 (siDrp1) or its negative control (NC1),

or with Mdivi-1 (25 µM) or DMSO once. Depending on the
experiment they were studied 5, 24, 48, or 72 h post incubation
with the study drug.

qRT-PCR
The mRNA was extracted from RVfib using the InvitrogenTM

Ambion PureLink RNA Mini Kit (12183025; Thermo Fisher
Scientific, Waltham, MA, United States), and then converted
to cDNA with High-Capacity cDNA Reverse Transcription
Kit (4368814; Thermo Fisher Scientific, Waltham, MA,
United States). mRNA levels of Drp1, Fis1, MFF, MiD49, and
MiD51 were assessed by Bio-Rad CFX96 qPCR instrument
(Mississauga, ON, Canada). mRNA expression was normalized
to GAPDH mRNA and the relative expression between groups
was assessed using 2−11Ct equation. All the primers were
purchased from IDT (San Jose, CA, United States).

Mitochondrial Networking
Mitochondrial fragmentation was evaluated with MitoTrackerTM

Green FM (M7514; Thermo Fisher Scientific, Waltham, MA,
United States) or tetramethylrhodamine methyl ester (TMRM;
Cat #T668, Lifetechnologies; Carlsbad, CA, United States).
Briefly, RVfib were cultured in a 35-mm glass-bottom
dish (P35G-1.5-14-C; MatTek Corporation, Ashland, MA,
United States) and incubated in culture medium containing
400 nM MitoTrackerTM Green FM or 25 nM TMRM at 37◦C
in the dark for 40 or 20 min, respectively. Images were then
taken with a Leica SP8 confocal, laser-scanning microscope
(Leica Microsystems; Wetzlar, Germany) with a 1.40 NA, 63X
oil immersion objective with 3X digital zoom. Mitochondrial
segments were identified using ImageJ (National Institutes
of Health, Bethesda, MD, United States), and mitochondrial
fragmentation count was calculated as the ratio of the number of
individual mitochondria and the total area of these mitochondria,
as described (Marsboom et al., 2012; Rehman et al., 2012).

In addition, mitochondrial morphology was also quantified
via a machine-learning algorithm using the Leica LAS X
software (Leica Microsystems; Wetzlar, Germany), as described
(Chen et al., 2018). This algorithm automatically measures
the percentage area of three morphology-based categories
(punctate, intermediate, and filamentous) in an entire field of
cells, independent of the operator. Briefly, an image that has
mitochondria covering a large range of area, length, and aspect
ratio was chosen, and more than 15 mitochondria from each
category were manually selected from this image to inform
the machine-leaning algorithm. Subsequently, the algorithm was
applied to all the images to obtain the percentage area of each
category in each image. Results are presented as the average
distribution of the three categories.

Proliferation Assay
Cell proliferation was assessed using the Click-iT R© EdU
Flow Cytometry Assay Kit following the manufacturer’s
instructions (C10420; Thermo Fisher Scientific, Waltham,
MA, United States), as described (Hong et al., 2017). Briefly,
10 µM EdU (5-ethynyl-2′-deoxyuridine) was added to the
culture medium for incorporation into DNA during active DNA
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synthesis and the cell culture dish that did not have addition
of EdU was taken as a negative staining control. A total of
24 h following the addition of EdU, cells were harvested, fixed,
permeabilized, and labeled with Alexa Fluor R© 488 azide. The
analysis for proliferation was then performed using the analysis
mode of the flow sorter SH800S (Sony Biotechnology Inc., San
Jose, CA, United States). A total of 10,000 events were recorded,
adjusted according forward and side scatter and the positive
population was gated and analyzed using the 488 nm laser and
FL2 filter (525± 50).

Immunoblotting
Proteins were extracted from RVfib with cell lysis buffer (#9803;
Cell Signaling Technologies, Beverly, MA, United States) and 50
or 70 µg (for phosphorylated Drp1 at Serine 616) protein was
loaded to SDS-PAGE gel for immunoblotting. Images were taken
with Chemidoc MP Imaging System (Bio-Rad Laboratories;
Mississauga, ON, Canada) and analyzed with ImageJ (National
Institutes of Health, Bethesda, MD, United States). The following
antibodies were used: anti-β-actin (A5441; Sigma, St. Louis,
MO, United States), anti-MFN2 (ab56889; Abcam, Cambridge,
MA, United States), anti-phospho-Drp1 (Ser616) (#3455; Cell
Signaling Technology, Danvers, MA, United States), anti-Drp1
(611112; BD Transduction LaboratoriesTM, San Jose, CA,
United States). β-actin was used as loading control. Note
that for the gels running for phosphorylated Drp1 at Serine
616, the cells were collected on ice and low temperature was
carefully maintained throughout all steps of protein isolation and
processing.

Immunofluorescence
Cells were fixed in 4% paraformaldehyde at room temperature
for 10 min, permeabilized with 1% Triton X-100 in PBS,
blocked in 2% bovine serum albumin plus 0.05% Tween-20
in PBS for 30 min, and incubated with primary antibodies
at 4◦C overnight. The following primary antibodies were
used: anti-collagen III (ab6310; Abcam, Cambridge, MA,
United States), anti-collagen I (ab34710; Abcam, Cambridge,
MA, United States), anti-phospho-Drp1 (Ser616) (#3455;
Cell Signaling Technology, Danvers, MA, United States),
anti-vimentin (ab8069; Abcam, Cambridge, MA, United States),
anti-α-smooth muscle actin (ab5694; Abcam, Cambridge, MA,
United States), anti-von Willebrand factor (ab6994; Abcam,
Cambridge, MA, United States), and anti-heavy chain cardiac
myosin (ab15; Abcam, Cambridge, MA, United States). Slides
were then washed with PBS for 5 min three times and then
incubated with secondary antibodies (Alexa Fluor-conjugated
secondary antibodies Alexa Fluor 488 goat anti-rabbit #A-
11034 and Alexa Fluor goat anti-mouse #A-11031; Invitrogen,
Carlsbad, CA, United States) for 60 min at room temperature.
Finally, slides were washed with PBS three times in the
dark and mounted in ProLongTM Gold Antifade Mountant
with DAPI (P36935; Thermo Fisher Scientific, Waltham,
MA, United States). Images on phospho-Drp1 (Ser616) and
collagen were taken with a Leica SP8 confocal, laser-scanning
microscope (Leica Microsystems; Wetzlar, Germany) with
a 1.40 NA, 63X oil immersion objective with 3X digital

zoom and with Leica DM4000 B LED microscope with
a 20X objective (Leica Microsystems; Wetzlar, Germany).
A microscopist blinded to treatment groups performed the
analysis. Images for cell characterization were acquired with
an EVOS image system (EVOS FL Color, Life Technologies;
Carlsbad, CA, United States). The intensity of fluorescent signal
for phospho-Drp1 (Ser616) and collagen I and III was measured
using ImageJ software (National Institutes of Health; Bethesda,
MD, United States).

Statistical Analysis
All of the data are reported as mean ± standard error of the
mean (SEM). Two-tailed, Student’s t-test, paired t-test, Chi-
Square test, or analysis of variance (ANOVA) was performed
as appropriate. Statistical analyses were performed using the
GraphPad Prism version 7.04 for Windows (GraphPad1 Software,
La Jolla, CA, United States). A P < 0.05 was considered
statistically significant.

RESULTS

Mdivi-1, siDrp1, and P110 at High Dose
Inhibit Mitochondrial Fission in MCT-RV
Fibroblasts
The identity of isolated fibroblasts from RV was confirmed
with immunofluorescence positive for vimentin and negative
for α-smooth muscle actin, von Willebrand factor, and heavy
chain cardiac myosin staining (Supplementary Figure S1).
Compared to control-RVfib, MCT-RVfib displayed excessive
mitochondrial fission indicated by increased mitochondrial
fragmentation count (MFC) and decreased percentage area of
filamentous mitochondria (Figure 1). Both Mdivi-1 (25 µM)
treatment for 5 or 24 h and siDrp1 for 48 h inhibited
mitochondrial fission in MCT-RVfib, whereas P110 treatment
for either 5, 24, or 48 h at a dose of 10, 50, or 100 µM did
not significantly inhibited mitochondrial fission in MCT-RVfib
(Figure 1 and Supplementary Figure S2). Treatment with
P110 at a high dose (1 mM) for 3 days significantly
inhibited mitochondrial fission in MCT-RVfib with no effect on
Control-RVfib (Figures 1D,E).

Mdivi-1 and P110 at High Dose Reduce
Proliferation in MCT-RV Fibroblasts
Compared to Control-RVfib, MCT-RVfib had higher proliferation
rates (Figure 2). Mdivi-1 (25 µM) treatment for 48 h significantly
reduced proliferation rates in MCT-RVfib (Figure 2). Treatment
with P110 for 48 h at a dose of 10, 50, or 100 µM had no
significant effect on the proliferation of MCT-RVfib (Figure 2).
Again, treatment with P110 at a high dose (1 mM) for 3 days
significantly reduced proliferation rates in MCT-RVfib but also
in Control-RVfib (Figure 2). Preliminary study found that
treatment with P110 at low doses (0.5 mM or lower) for 3 days did
not reduce proliferation rates on RV fibroblasts from two MCT
rats (data not shown).

1www.graphpad.com
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FIGURE 1 | Monocrotaline (MCT)-induced RVfib display mitochondrial fragmentation and mitochondrial division inhibitor 1 (Mdivi-1; 25 µM) for both 5 and 24 h,
small interfering RNA targeting Drp1 (siDrp1) for 48 h, and P110 treatment at high dose (1 mM) for 3 days inhibited mitochondrial fission, whereas P110 at a dose up
to 100 µM for 5, 24, and 48 h has no significant effect. Representative mitochondrial network stained with TMRM in RVfib with and without (A) Mdivi-1 for
5 and 24 h, (B) siDrp1 for 48 h, or (C) P110 (up to 100 µM) treatment for 5 h; (D) Representative mitochondrial network stained with MitoTrackerTM Green FM with
P110 and its control TAT (1 mM) treatment for 3 days; (E) Summary of mitochondrial fragmentation count (MFC) in RVfib; (F) Representative mitochondrial network
divided into three categories (punctate, red; intermediate, green; filamentous, purple) in RVfib treated with Mdivi-1 (25 µM) for 24 h and summary of area distribution
of the three categories. ∗∗P < 0.01 and ∗∗∗P < 0.001 versus PBS+DMSO, PBS+NC1, or PBS+TAT group; $P < 0.05, $$P < 0.01, and $$$P < 0.001 versus the
corresponding vehicle control group (i.e., MCT+DMSO, MCT+NC1, or MCT+TAT). n = 5 per group except for the PBS+NC1 and PBS+siDrp1 groups (n = 2).
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FIGURE 2 | Compared to control, monocrotaline (MCT)-induced RVfib are hyperproliferative as measured by Click-iT R© EdU assay. Mitochondrial division inhibitor 1
(Mdivi-1; 25 µM) for 2 days and high dose of P110 (1 mM) for 3 days reduced proliferation in MCT-RVfib whereas lower doses of P110 had no effect. ∗P < 0.05 and
∗∗P < 0.01 versus PBS+DMSO or PBS+TAT group; $P < 0.05 and $$P < 0.01 versus the corresponding vehicle control group. n = 5 per group.

Mdivi-1 Reduces Collagen Production in
MCT-RV Fibroblasts
Compared to Control-RVfib, MCT-RVfib increased collagen
production in both types I and III, though only statistically
significantly in type III (Figure 3). Mdivi-1 (25 µM) for 3 days
significantly reduced type III collagen production in MCT-RVfib,
while P110 (1 mM) for 3 days showed a trend (P = 0.14) in
reducing type III collagen production in MCT-RVfib (Figure 3).

MCT-RV Fibroblasts Have Increased
Phosphorylated Drp1 at Serine 616
Activated Drp1 (phosphorylation at Serine 616) measured via
immunofluorescence was significantly increased in MCT-RVfib
versus Control-RVfib (Figures 4A–C), which is confirmed with
immunoblotting (Figure 4D). qRT-PCR measurement showed
that there was no significant difference between Control-RVfib
and MCT-RVfib in the mRNA expression of total Drp1, Fis1,

MFF, MiD49, or MiD51 (Figure 4E). Immunoblotting also did
not find significant change in total Drp1 in MCT-RVfib versus the
control (Figure 4F). In addition, qRT-PCR measurement found
no significant difference between groups in the mRNA expression
of fusion mediators (MFN1, MFN2 and OPA1) (Supplementary
Figure S3). However, there was a trend toward reduction
in the expression of MFN2 mRNA (P = 0.32) and protein
(P = 0.18) in MCT-RVfib versus Control-RVfib (Supplementary
Figures S3, S4).

P110 Does Not Improve RV Function in
MCT Rats
At week 4 post-injection of MCT or PBS, the body weight of
MCT rats was significantly less than PBS (i.e., control) rats
and was not altered by P110 treatment (either prevention
or regression) (Supplementary Figure S5). Compared to
control (i.e., PBS), MCT rats had significantly increased total
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FIGURE 3 | Compared to control, monocrotaline (MCT)-induced RVfib have significantly greater production of collagen type III but not collagen type I. Mitochondrial
division inhibitor 1 (Mdivi-1; 25 µM) significantly reduced type III collagen production and P110 (1 mM) for 3 days showed a trend in reducing type III collagen
production (P = 0.14). Representatives of (A) type III (red) and (B) type I (green) collagen in RVfib characterized by immunofluorescence; (C) Summary of intensity of
the fluorescent signal. ∗P < 0.05 versus PBS+DMSO group; $P < 0.05 versus MCT+DMSO group. n = 5∼6 per group.

pulmonary resistance (TPR, estimated from RHC; Figure 5A)
and developed RV hypertrophy (RVH) (Figure 5B). MCT
rats had higher pressure in both PA and RV as indicated by

shorter pulmonary artery acceleration time (PAAT) (measured
by echocardiography; Figure 5B) and higher RV systolic
pressure (RVSP) and RV end-diastolic pressure (RVEDP)
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FIGURE 4 | Compared to control, monocrotaline (MCT)-induced RVfib have upregulation of phosphorylation of dynamin-related protein 1(Drp1) at Serine 616 but no
significant changes in total Drp1 or Drp1 binding partners. Representative immunofluorescence images of phosphorylated Drp1 at Serine 616 (P-Drp1-S616; red) in
RVfib (A) at 20X with DAPI at blue and (B) at 63X; (C) Summary of the intensity of phosphorylated Drp1 at Serine 616 (n = 5∼6 per group); (D) Immunoblotting on
P-Drp1-S616 and its ratio to total Drp1 (n = 4∼5 per group); (E) mRNA expression of total Drp1, fission protein 1 (Fis1), mitochondrial fission factor (MFF), and
mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively) in RVfib (n = 6∼8 per group); (F) Immunoblotting on total Drp1 in RVfib (n = 4∼6
per group). ∗P < 0.05 and ∗∗P < 0.01 versus PBS group.

(measured by RHC; Figure 5A). Also, MCT rats had reduced
RV contractility manifest as reduced RVFW systolic thickening,
reduced tricuspid annular plane systolic excursion (TAPSE),
and reduced cardiac output (CO) (Figure 5B). P110 treatment
did not improve RV function in MCT rats in either the
prevention protocol (P110 was administered at the time
of MCT injection) or the two regression protocols (P110
administered on day 14 and 19 or every other day from day 10)
(Figure 5).

MCT RV Develops Fibrosis That Is Not
Altered by P110 Treatment
Compared to control, MCT rats developed greater RV fibrosis, as
observed from picrosirius red staining (Figure 6). In vivo P110
treatment did not prevent or regress RV fibrosis in MCT rats
(Figure 6).

DISCUSSION

This study examined the role of disordered mitochondrial
dynamics in the hyperproliferative, collagen-producing
phenotype of RV fibroblasts derived from rats with MCT-induced
PAH. The study revealed five significant findings. First,
MCT-RVfib display excessive mitochondrial fission and
this phenotype persists in culture. Second, MCT-RVfib are
hyperproliferative. Third, MCT-RVfib have increased expression

of activated Drp1 (phosphorylated at Serine 616). Fourth,
the mitochondrial fission is crucial to the hyperproliferative,
profibrotic phenotype, since Mdivi-1 treatment, which inhibits
mitochondrial fission, also reduces proliferation and collagen
production, indicating Drp1 is a potential antifibrotic target.
Fifth, P110, a competitive peptide that antagonizes the interaction
between Drp1 and Fis1 also reduces mitochondrial fission and
RVfib proliferation in vitro; however, it only has these effects at
very high doses. Moreover, P110 failed to prevent or regress RV
fibrosis or improve RV function in vivo. These data suggest that
Drp1-mediated fission is central to the RVfib hyperproliferative,
profibrotic phenotype in MCT-PAH.

Changes in mitochondrial dynamics regulates vital cellular
functions including metabolism, cell cycle progression, and
apoptosis (Archer et al., 2008; Suen et al., 2008; Rehman et al.,
2012). Excessive mitochondrial fission has been observed in
PAH in RV myocytes (Tian et al., 2017), pulmonary artery
smooth muscle cells (PASMC) (Marsboom et al., 2012; Chen
et al., 2018), and pulmonary adventitial fibroblasts (Plecita-
Hlavata et al., 2016). In PASMC, excessive mitotic fission is
associated with increased proliferation and is thought to reflect
coordination between division of the nucleus and mitochondria
(Marsboom et al., 2012; Chen et al., 2018). In PAH PASMC,
this fissogenic phenotype is mediated by both posttranslational
modification of Drp1, leading to its activation, and increased
interaction of Drp1 and upregulation of its recently discovered
binding partners, MiD49 and MiD51 (Chen et al., 2018). Similar
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FIGURE 5 | Monocrotaline (MCT) rats developed RV hypertrophy and pulmonary hypertension and P110 did not improve RV function. (A) RV systolic and diastolic
pressures (RVSP and RVEDP) and total pulmonary resistance (TPR) increased in MCT rats and were not changed by P110 treatment; (B) MCT decreased pulmonary
artery acceleration time (PAAT) and caused increases in RV free wall (RVFW) thickness and the ratio of RV over LV plus septum weight (RV/LV+S). MCT rats had
reduced RVFW thickening, tricuspid annular plane systolic excursion (TAPSE), and cardiac output (CO). Treatment of P110 did not change any of these parameters
in MCT rats. MCT-T1 and MCT-P1, MCT rats treated with TAT and P110, respectively, on day 14 and 19; MCT-T2 and MCT-P2, MCT rats treated with TAT and
P110, respectively, every other day starting from day 10; MCT-P3, MCT rats treated with P110 only once immediately before the injection of MCT. ∗P < 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001 versus PBS group. n = 4∼10 per group.

to PAH PASMC, we also found that RVfib in MCT-PAH
display more mitochondrial fragmentation (Figure 1) and
increased proliferation (Figure 2), confirming the persistence of
a phenotype characterized by excess fission and rates of fibroblast
proliferation in culture. To the best of our knowledge, this is
the first study to demonstrate mitochondrial fission and show
that it regulates the proliferation and collagen production of in
RVfib in PAH, or indeed in any cardiac disease. We speculate
that epigenetic mechanisms, triggered by MCT, are in play, since
the phenotype persists through multiple passages of fibroblasts in
culture of these cells, which are derived from genetically normal
rodents.

Mechanistically, the mitochondrial network is regulated by
fission mediator (Drp1) and fusion mediators (MFN1, MFN2,
OPA1). Increases in Drp1 or decreases in fusion mediators result
in mitochondrial fragmentation in both PASMC and pulmonary
artery adventitial fibroblasts in PAH (Marsboom et al., 2012; Ryan

et al., 2013; Plecita-Hlavata et al., 2016; Chen et al., 2018). Our
group has previously found an increase in the phosphorylated
Drp1 at Serine 616 and a decrease in MFN2 in PASMC in
PAH (Marsboom et al., 2012; Ryan et al., 2013). Studies on
pulmonary artery adventitial fibroblasts from the lungs in PAH
found a decrease in both MFN2 and OPA1 (Plecita-Hlavata
et al., 2016). Consistent with this we found an increase in the
phosphorylated Drp1 at Serine 616 (Figures 4A–D) and a strong
trend to decreased MFN2 expression (Supplementary Figures S3,
S4) in RVfib in MCT-PAH, without significant changes in the
other two fusion mediators (MFN1 and OPA1) (Supplementary
Figure S3). Therefore, our data suggest that acquired activation
of Drp1 promotes mitochondrial fragmentation in MCT-RVfib,
perhaps reinforced by reduced expression of the fusion mediator
MFN2.

Since Drp1 mediates mitochondrial mitotic fission, which is
associated with accelerated cell cycle progression and increased
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FIGURE 6 | Collagen deposition in RV is increased monocrotaline (MCT) rats
and not changed by P110 treatment. (A) Representative images of RV stained
with picrosirius red for collagen and (B) summary of collagen area fraction.
MCT-T1 and MCT-P1, MCT rats treated with TAT and P110, respectively, on
day 14 and 19; MCT-T2 and MCT-P2, MCT rats treated with TAT and P110,
respectively, every other day starting from day 10; MCT-P3, MCT rats treated
with P110 only once immediately before the injection of MCT. ∗∗∗P < 0.001
versus PBS group. n = 4∼10 per group.

cell proliferation, Drp1 has been proposed as a therapeutic
target for PAH (Marsboom et al., 2012). Mdivi-1, which
inhibits a conformational change of Drp1 required for self-
assembly and GTP hydrolysis, is a selective Drp1 GTPase activity
inhibitor (Cassidy-Stone et al., 2008). Inhibiting Drp1 via Mdivi-
1 inhibits mitochondrial fission and reduces proliferation in
PASMC in PAH (Marsboom et al., 2012). In agreement with
the study on PASMC, the current study demonstrates the same
effects of Mdivi-1 on RVfib in MCT-PAH in vitro, i.e., the
inhibition of mitochondrial fission and reduction in proliferation
(Figures 1, 2). The inhibition of mitochondrial fission is also
achieved by knocking down Drp1 (i.e., siDrp1; Figure 1),
providing additional molecular certainty that it is Drp1 which
is crucial to the fragmented mitochondrial morphology in MCT-
RVfib.

Along with excessive mitochondrial fission and
hyperproliferation, MCT-RVfib also have greater collagen
production than Control-RVfib (Figure 3), consistent with the
increased RV fibrosis observed in MCT versus control rats
(Figure 6). Mdivi-1 also reduced collagen type III production
in MCT-RVfib (Figure 3), indicating that mitochondrial fission
is linked to collagen production and that Drp1 is a potential
antifibrotic target.

Activated Drp1 translocates to the mitochondrion where
it associates with its binding partners creating a ring-like,
multimeric structure which constricts and divides the

mitochondrion. The relevant binding partner varies by cell
type. For example, in cardiomyocytes, Drp1 binds to Fis1 but not
MiD51 or MFF under conditions of acute ischemia-reperfusion
injury (Disatnik et al., 2013). In the MCT RV, P110 (1 µM) both
inhibits mitochondrial fission and improves RV myocyte and
cardiac diastolic function in ischemia-reperfusion injury (Tian
et al., 2017). In contrast, in the current study, only 1000-fold
higher doses of P110 were able to inhibit mitochondrial fission
or reduce proliferation in MCT-RVfib in vitro (Figures 1, 2).
At these doses, the specificity of P110, a competitive peptide
which theoretically only inhibits the interaction between Fis1
and Drp1, is unknown. This basis for the difference between
the cardiomyocytes and RVfib studies is unknown. In vivo P110
failed to prevent or regress RV fibrosis. Our protocol involved
repeated administration of P110 over 2 weeks. In contrast,
Disatnik et al. (2013) gave P110 treatment immediately prior
to a single point injury (acute ischemia-reperfusion injury)
and observed a beneficial effect. We speculate that MCT,
which causes a complex and sustained injury, may be less
amenable to intervention (Figures 5, 6). Previous studies have
used a high dose of P110 at 3 mg/kg/day using Alzet osmotic
mini-pumps on mouse models of Huntington’s disease and
amyotrophic lateral sclerosis and shown benefits of P110 (Guo
et al., 2013; Joshi et al., 2018). In addition, the half-life of P110
is probably as short as 1 h (Qi et al., 2013), perhaps higher doses
of P110 and use of continuous infusion protocols might have
proven more effective. Alternatively, Fis1 may simply be less
relevant as a Drp1 binding partner in MCT-RVfib than other
binding partners, which we did not assess (MFF, MiD49, and
MiD51).

Nonetheless, the fact that P110 at high dose also inhibited
mitochondrial fission and cell proliferation (Figures 1, 2) may
indicate a role for Drp1–Fis1 interaction, as observed in the
RV myocytes in this MCT model of PAH (Tian et al., 2017).
However, we were only able to observe an effect of P110 at 1 mM
dose and the effect required several days of incubation. This
may indicate that the observed effects are nonspecific or that the
interaction between Drp1 and Fis1 in RV fibroblasts is robust and
hard to reverse. Certainly, at the doses of P110 that we could
afford to test we could neither prevent nor regress RV fibrosis
in vivo (Figure 6). This would favor the interpretation that the
Drp1–Fis1 interaction may be less critical in RVfib than in RV
myocytes.

The finding that P110 treatment did not change PAAT or
pulmonary vascular resistance (or TPR) in MCT rats (Figure 5)
indicates Drp1–Fis1 interaction is not important either for
pulmonary vasculature at least in MCT-PAH. This confirms a
recent study from our group. Although Fis1 is found to be
upregulated in PASMC in human PAH patients (Marsboom
et al., 2012; Ryan et al., 2013), knockdown of Fis1 using a small
interfering RNA (siRNA) does not inhibit mitochondrial fission
nor reduce proliferation in PASMC in human PAH patients
(Chen et al., 2018).

Drp1 may use different binding partners to facilitate
mitochondrial fission in RVfib in PAH. We recently showed
that two Drp1 binding partners (MiD49 and MiD51) are
upregulated in PASMC in PAH. The epigenetic upregulation of
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MiDs (mediated by a reduced expression of microRNA 34a-3p)
promotes a Drp1-dependent increase in mitochondrial fission
and proliferation in PASMC in both human PAH patients and
MCT rats (Chen et al., 2018). In this study, mRNA expression of
MiD49 and MiD51 was not changed in MCT-RVfib (Figure 4E),
although mRNA and protein expression levels are not always
concordant. The role of MiDs on mitochondrial fission in RVfib
remains unknown.

Limitations
Several limitations are acknowledged. First, we did not examine
if Mdivi-1 can reduce RV fibrosis in MCT rats. Our group
has previously shown that Mdivi-1 can improve RV function
in MCT rats (Marsboom et al., 2012). In addition, another
study demonstrates that Mdivi-1 can reduce LV fibrosis in aortic
banding model in rats (Givvimani et al., 2012). We propose (but
did not prove) that Mdivi-1 would reduce RV fibrosis in PAH.
This requires direct confirmation in a future in vivo study.

Second, we did not measure the expression of Drp1
phosphorylated at Serine 637. Decreased phosphorylation of
Drp1 at Serine 637 contributes to ischemia-reperfusion injury
in cardiac arrest (Cereghetti et al., 2008; Chang and Blackstone,
2010; Sharp et al., 2014, 2015). In future studies, measurement of
this phosphorylation of Drp1 in RVfib will be important to better
determine the mechanism of Drp1 activation.

Third, we did not perform immunoprecipitation studies on
RVfib to directly examine the role of Drp1–Fis1 interaction in
MCT-RVfib. Indeed, previous in vitro studies (Disatnik et al.,
2013) showed that P110 at 1 µM (which is a low dose) inhibited
ischemia-induced mitochondrial fission in cardiac myocytes.
In ischemia-reperfusion injury, the Drp1–Fis1 interaction is
well established as an early step in the generation of the
mitochondrial-derived reactive oxygen species that drives cardiac
dysfunction. In contrast, in RV fibroblasts, P110 at this dose
(1 µM) had no effect. This may be due to the difference in
sensitivity of the Drp1–Fis1 interaction in different cell types
(cardiomyocytes versus cardiac fibroblasts) and/or a different role
for Fis1 in different pathologic situations (more important in
acute ischemia than in the MCT model of chronic, pressure-
volume overload). The reason why such high doses of P110 were
required to have significant effects on RVfib in vitro is unclear. In
the future, immunoprecipitation studies will be used to clarify the
role of high dose P110 on Drp1–Fis1 interaction.

Fourth, because P110 only blocks the interaction between
Drp1 and Fis1, the failure of P110 treatment in vivo
may indicate either that adequate levels of P110 were not
achieved in vivo and/or that the Drp1–Fis1 interaction is less

important in the pathogenesis of the fragmented mitochondria-
proliferative fibroblast phenotype than other Drp1-binding
partner interactions (such as Drp1-MiD49 and Drp1-MiD51).
The role of MiD49 and MiD51 in MCT-RVfib remains unknown
and requires further study.

CONCLUSION

We conclude that in MCT-induced PAH, RV fibroblasts display
mitochondrial fragmentation that reflects Drp1-mediated fission.
Increased mitochondrial fission promotes a hyperproliferative
state and results in excessive production of collagen type III.
Inhibiting Drp1 can inhibit mitochondrial fission, and reduce
fibroblast proliferation and collagen production, suggesting Drp1
is a potential antifibrotic target. Further in vivo preclinical studies
are required to establish the translational relevance of these
observations.
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