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Sports and exercise today are popular for both amateurs and athletes. However, we
continue to seek the best ways to analyze best athlete performances and develop
specific tools that may help scientists and people in general to analyze athletic
achievement. Standard statistics and cause-and-effect research, when applied in
isolation, typically do not answer most scientific questions. The human body is a
complex holistic system exchanging data during activities, as has been shown in the
emerging field of network physiology. However, the literature lacks studies regarding
sports performance, running, exercise, and more specifically, sprinter athletes analyzed
mathematically through complex network modeling. Here, we propose complex models
to jointly analyze distinct tests and variables from track sprinter athletes in an untargeted
manner. Through complex propositions, we have incorporated mathematical and
computational modeling to analyze anthropometric, biomechanics, and physiological
interactions in running exercise conditions. Exercise testing associated with complex
network and mathematical outputs make it possible to identify which responses may be
critical during running. The physiological basis, aerobic, and biomechanics variables
together may play a crucial role in performance. Coaches, trainers, and runners
can focus on improving specific outputs that together help toward individuals’ goals.
Moreover, our type of analysis can inspire the study and analysis of other complex sport
scenarios.

Keywords: computational science, complex network, physiology, sprinter athletes, performance

INTRODUCTION

Mathematics, exercise, complex networks, and physiology can be integrated to answer questions
asked by both the general public and scientific experts (Noakes, 2012). The integration of sports
analytics with complex networks is called complex sports analytics. This new field helps scientists
build predictive models for better decision-making, highlighting the importance of complex
analysis that goes beyond standard statistics (Davenport and Harris, 2007). A complex network is a
mathematical representation of measurable variables as nodes and its interactions as links (a graph)
(Lewis, 2009). Such representation makes it possible to regard complex network structures as a
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promising tool for predictive models (Bashan et al., 2012). The
complex network approach has been applied to a variety of
studies involving inflammatory interactions in a cell (Wherry
and Kurachi, 2015), human diseases as wiring maps (Barabási
et al., 2011), and brain cognition analysis (Park and Friston,
2013). In physical exercise, a few studies have demonstrated the
advantages of holistic analysis as follows: metabolic biomarkers
that can preview/predict exhaustion (Kastellorizios and Burgess,
2015); the role of central regulation in muscular recruitment
(Froyd et al., 2016); the stressors’ effect on exercise (Lloyd
et al., 2016); and cycling performance and brain function (Vitor-
Costa et al., 2015). By utilizing complex networks, a few studies
argue their advantages for tactical–technical decision-making
processes by teams (Vaz de Melo et al., 2008; Passos et al., 2011;
Fewell et al., 2012), and our recent work regarding exhaustion
in treadmill tethered running (Pereira et al., 2015). Running
as an exercise has become a popular activity for both athletes
and amateurs to maintain health or achieve performance goals.
Studies have been conducted to evaluate the role of breathing
parameters in running (Cottin et al., 2007) and the importance
of athletes’ genetic backgrounds for sports performance (Sessa
et al., 2011). However, we cannot find significant literature
utilizing complex network models to analyze running exercise
performance, especially under different running conditions for
sprinter athletes. The purpose of this paper is to strategically
analyze runners’ performance considering several parameters
involved in the process, embracing both a physiological basis and
biomechanics in the tests. The main novelty here is to determine
a distinct manner of analyzing data in an untargeted manner,
inspired by others’ work among the first to apply network
physiology to analyze physiological signals (Bashan et al., 2012;
Bartsch et al., 2015; D’Agostino, 2016) and metabolites in exercise
(Lee et al., 2011); moreover, we use complex networks, which have
proven to be a remarkable tool.

With this goal, and for the suitable analysis of high-
performance athletes, we chose the supramaximal exercise
(Astorino and White, 2010). For this type of exercise, we must
consider not only one type of test but a data combination
from many testing exercises because performance depends on
various physiological factors. In our study, a set of exercise
outputs has been collected and analyzed both in (i) free
running on a track, representing a similar scenario to a
competition, and (ii) tethered running, reflecting professional
athlete training (Harrison and Bourke, 2009; Clark et al., 2010;
Alcaraz et al., 2014). We have analyzed classical aerobic and
anaerobic parameters (Dekerle et al., 2003; Midgley et al.,
2008; Keir et al., 2016). In high-intensity exercise, precise
quantifications of more than one test represent a fundamental
aspect to understand sports performance and to optimize
physical preparation (Gastin, 1994; Green, 1994). In this study,
professional sprinters who have performed close to world records
(within 90%) participated in different running tests. Each test
generated measurable outputs, which have been submitted to
our complexity analysis using two complex models for free and
tethered running, respectively. They include biomechanics and
physiological variables (Time Limit tests); anaerobic [maximum
accumulated oxygen deficit (MAOD)] data (Medbø et al., 1988;

Medbo and Tabata, 1989; Medbo and Burgers, 1990), and
aerobic data gathered from incremental tests. These have been
combined with anthropometric data for the understanding of
which physiological, anthropometric, and biomechanics variables
influence performance. Our main goal is to evaluate new ways
of interpreting and understanding the meaning of the exercise
outputs in greater performance through complex network
analysis. This novel approach integrates a considerable number of
variables under a global context called complex sports analytics.
In the following sections, we detail the materials and methods,
including the types of tests to which our volunteers submitted,
and the complex network models construction. Later, we provide
the results, discussions, and conclusions considering the analysis
of complex networks and their metrics.

MATERIALS AND METHODS

Athletes’ Characterization
Ten male professional sprinters have been selected. All subjects
gave verbal and written informed consent, and this study has been
approved by the Research Ethics Committee of São Paulo State
University, Biosciences Institute (protocol no. 3527.05062009),
in accordance with the Declaration of Helsinki. A free and
informed consent form was signed by each participant and
contains information about procedures, voluntary participation,
consent to the use of data and information for further scientific
publications, and certifies the non-use of any illegal substances.
All experiments were performed in accordance with relevant
guidelines and regulations. The participants were instructed
to observe a light diet and good hydration habits and have
their last meal between 2 and 3 h before testing and not to
consume beverages containing alcohol at least 24 h before testing;
additionally, they were requested to not practice strenuous
exercises or use medications during the experimental period. Two
selected individuals had to be excluded from our sample for not
meeting the research criteria: lesions under treatment involving
medications use, and unsatisfactory observance of evaluation
tests. Thus, eight individuals (mean age, weight, height, and fat
percentage of 21 ± 3 years, 71.49 ± 5.99 kg, 179.8 ± 6.15 cm,
and 4.9 ± 1.27%, respectively) met all research criteria, being
professional sprinters. This number of individuals analyzed can
be viewed as a limitation of our work. On the other hand,
we were able to analyze a significant quantity of parameters,
as explained later. All participants performed tests in free and
tethered running conditions. Our athletes were carefully chosen
to provide relevant data. We believe our sample does represent
the performance behavior of elite athletes, who compared to other
athletes of the same discipline, show a mean relationship between
Personal and World Records of 90.92%, as shown in Table 1.

Time Limit Running Tests
Six experimental sessions were performed within a 48- to 72-h
interval on a synthetic 400 m running track. The sessions
consisted of an incremental test and two supramaximal bouts
(110 and 120% of peak P vVO2max) for free and tethered
running, all being conducted to athletes’ exhaustion. The tests
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TABLE 1 | Athletes evaluated in our research (identified by number to protect their identity), discipline, personal record in official competitions (personal R), current world
record (world R), relationship between personal and world record (%WR), record-holding athlete’s name (current WR athlete), and competition occasion with year
(competition).

Athlete Discipline Personal R∗ (s) World R# (s) %WR Current WR athlete# Competition#

1 Men’s 400 m 48.05 43.03 89.55% Wayde Van Niekerk Rio 2016

2 Men’s 400 m 46.22 43.03 93.10% Wayde Van Niekerk Rio 2016

3 Men’s 400 m 46.64 43.03 92.26% Wayde Van Niekerk Rio 2016

4 Men’s 100 m 10.50 9.58 91.24% Usain Bolt Berlin 2009

5 Men’s 100 m 10.40 9.58 92.12% Usain Bolt Berlin 2009

6 Men’s 100 m 10.84 9.58 88.38% Usain Bolt Berlin 2009

7 Men’s 400 m hurdles 51.75 46.78 90.40% Kevin Young Barcelona 1992

8 Men’s 110 m hurdles 14.17 12.80 90.33% Aries Merritt Bruxelles 2012

Athletes’ mean %WR: 90.92%

∗Personal R, personal records in official competitions (seconds), available at: http://www.cbat.org.br/resultados; http://www.all-athletics.com/pt. #World records for each
category and competition, available at: http://www.alltime-athletics.com/; https://www.iaaf.org/; http://www.sports-reference.com/.

were performed at approximately the same time, in daylight, for
each subject, with ambient temperatures between 25 and 32◦C.
The VO2, carbon dioxide production (VCO2), and ventilation
were monitored breath by breath using a calibrated portable
gas analyzer (K4b2, Cosmed, Rome, Italy), and calibration was
performed according to the manufacturer’s recommendations.
In addition, heart rate (HR) was measured during tests using
a transmitter belt (T61 Polar Electro, Kempele, Finland). The
data for the above parameters were continuously transferred via
telemetry-specific software (K4b2 Data Management Software,
version 9.1b, Cosmed, Rome, Italy) and later analyzed in
Excel (Microsoft Office Excel 2007 for Windows, Microsoft,
United States) using the average value of 15 successive breaths
(Robergs et al., 2010). Blood samples of 25 µL were collected
from the earlobe of the volunteers in heparinized capillary tubes
at 1, 3, 5, 7, and 9 min after testing and transferred to plastic
tubes containing 400 µL of trichloroacetic acid solution at 4%,
stored on ice for further lactate analysis in a microplate reader
(ASYS Expert Plus UV, Biochrom, United Kingdom), applying
the enzymatic method. Peak lactate has been considered for our
models analysis. From both free and tethered running testing, we
retained for analysis and modeling: mean velocity (km/h), peak
lactate (mmol/L), peak VO2 (mL/min), mean VO2 (mL/min),
HR (bpm), mean R, peak R, mean VCO2 (mL/min), and peak
VCO2 (mL/min). In tethered running, we have also included
in the model: power (W), force (N), work (J), step frequency
(s−1), and step length (m). After being equipped and monitored
for 5 min standing at rest to obtain baseline measurements, the
volunteers warmed up by jogging for 800 m (two laps on the
track), followed by 5 min of stretching. The instrument utilized
in tethered running was developed by our research group (Sousa
et al., 2015) and adapted from previous work (Lima et al., 2011).
It consists of tricycle metal chassis with vertical shaft attached
to its front portion, rubber tires and mechanical brake system,
adjustable drive, front rear wheels equipped with a magnetic
sensor (55110, Hamlin, United States) and load cell (CSL/ZL-
250, MK, Brazil) attached to the front shaft, and can be adjusted
for height. A welded basket to the chassis center contains a
signal acquisition system comprises a universal DC amplifier
(Gould, United States), signal conditioner (USB-6008, National

Instruments, United States), and notebook system, powered by
12-V battery attached to the posterior-inferior region of the
chassis. For the tethered running testing, runners were tied by
the waist to the apparatus by means of a nylon belt, which was
attached to the load cell using a 1.5-m steel cord. In this condition,
resistances equivalent to 4% of body weight were imposed on
the athletes. The load cell signals were amplified and sampled at
1000 Hz by a LabVIEW analyzer (LabView Signal Express 2009,
National Instruments, United States) and subsequently analyzed
using specific routines in MATLAB (MATLAB, R2008a, The
MathWorks, United States).

Incremental Tests for Aerobic Power and
Capacity Determination
We utilized incremental tests in both running conditions (free
and tethered) to define the exercise intensities and variables here
analyzed. Incremental tests began at 9 km/h, with increased
velocity of 1 km/h every 2 min until volitional exhaustion or the
athlete could not support the predetermined velocity, indicated
by not reaching two successive marks in the required intervals,
despite intense verbal stimulus. From these tests, we determined
for both tethered and free running: peak P vVO2 (km/h), peak
PVO2 (mL/min), aerobic capacity (km/h), CVO2 (mL/min), and
% peak VO2. The aerobic capacity was determined by the analysis
of the increase of ventilator equivalents of O2 and CO2 for the
exercise intensities (Rausch et al., 1991). Although the testing
order has been necessarily met in each condition, the volunteers
were randomly assigned. At all times, velocity was controlled by
sound signals provided by an experienced evaluator, with the
purpose of guiding the athletes to pass through marks placed
every 50 m on the track.

MAOD – Anaerobic Capacity Test
Supramaximal races were performed to determine the parameters
necessary to calculate the MAOD, which was used in an
Anaerobic Capacity test. In preparation, the volunteers
performed one to two short runs (∼5–8 s). The reached
velocity of each athlete was equivalent to 120 and 110% of
peak P vVO2 achieved in the incremental tests during free and
tethered running, respectively. The peak values of physiological
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responses achieved in these evaluations were also measured
for comparison purposes. For our complex models, we utilized
the MAOD (mL) parameter from this test. Statistical analysis
was performed using the Microsoft Office Excel 2007 software
(Microsoft, United States) and Statistica 7.0 (STATSOFT,
United States).

Complex Network Models
We have chosen to build two complex network models to
understand the scenarios of performance during free and
tethered running. The following variables have been defined for
both models:

• Time Limit tests: mean velocity (Km/h), peak lactate
(mmol/L), peak VO2 (mL/min), mean VO2 (mL/min), HR
(bpm), mean R, peak R, mean VCO2 (mL/min), and peak
VCO2 (mL/min)
• MAOD – Anaerobic Capacity test: MAOD (mL)
• Aerobic Power test, Peak P vVO2 (km/h), and Peak P VO2

(mL/min)
• Aerobic Capacity test: aerobic capacity (km/h), C VO2

(mL/min), C %VO2 Peak
• Anthropometric data: %Lean mass and BMI (kg/m2)

For tethered running, we also measured in the Time Limit
test: Power (W), Force (N), Work (J), Step Freq. (s−1), and
Step Length (m). The variables are representations of distinct
levels of changes in the exercise: aerobic, anaerobic, physiological,
biomechanics, and anthropometric variations. Following our
previous methodology of building networks (Pereira et al., 2015)
and for comparative analysis, we developed an algorithm in
the Java language (IDE Eclipse, Kepler version) for calculation
and analysis of Pearson correlations between two variables
of the choices mentioned above. The scattering of points or
quality/goodness of fit was observed, and we also analyzed
the Spearman’s, Newman-Keuls and Pearsons correlations. The
latter proved the most appropriate fit in both free and tethered
running. The returned Pearson correlation results (c) were
analyzed by another routine, which classified them as weak
(−0.3 < c < 0.3), moderate (−0.7 < c = −0.3 or 0.3 = c < 0.7),
or high (c = −0.7 or c ≥ 0.7). Using the console application in
Eclipse, we built a function which returns the type of running
test (Free or Tethered), the two variables compared by the
correlation (Ex. Velocity vs. Lactate), and the final value of
correlation in double precision (Ex. 0.877820878967058). Also,
we determined and displayed the classification of this correlation
(Ex. High). A High or Moderate correlation has been selected
to indicate a link between variables that have been converted
to nodes to build the networks. Our objective to build a
meaningful graph leads us to utilize only high and moderate
correlation results. Some previous studies have considered
systems as coupled by non-linear feedback or feedforward loops;
however, they utilize a distinct type of correlation calculation
(Bashan et al., 2012; Bartsch et al., 2015; Liu et al., 2015).
Utilizing Pearsons correlations, we considered our links starting
with 0.3, a very low value, as an adequate weight for the
complex models. The actual link weights in every complex

model were directly influenced by the network structure and
complex metrics utilized in the results. Eighteen variables
became 18 nodes in the free running network from more
than 100 total correlations evaluated. Twenty-three variables
became 23 nodes in the tethered running network from more
than 200 correlations evaluated. Each node and link have been
added to another Java program, which acts as the network
interface.

Once the values and the parameters are calculated and
analyzed, we build a complex network for each performance
scenario. Each network is a graph G = {N, L, f }, where N = {n1,
n2,. . . nk} nodes, L = {l1, l2,. . . lm} links, and the mapping function
is f : N x N. The connection matrix C is expressed by f and defines
the network topology.

A node is a measurable parameter. An influence is represented
by a link – node X is linked to node Y if X has an influence
on Y, represented as X → Y. The influence of node X on node
Y is measured as the calculated correlation coefficient of the
X→ Y link. Correlations have been normalized by dividing them
by the maximum correlation value over all links present in the
graph/network. A connection matrix is defined as C and is an
N × N matrix of m links connecting all nodes. Cij =correlation
result calculated between two parameters (nodes). C is symmetric
when links are bidirectional, e.g., i↔j. Then Cij = Cji. if C
is non-singular, its eigenvector is V = {v1, v2, . . ., vk}, where
vi are eigenvalues corresponding to nodes ni. The solution to
[C−VI] = 0, where I is the identity matrix, yields the eigenvalues
V. The degree of a node is the count of its connecting links. For
eigenvalues, we have built a function Power Method (Lewis, 2009;
Ray, 2016) algorithm; the pseudo code is:

Choose a random vector q(0)εRn

for k = 1,2,. . . while Ş q(k−1)
−q(k−2)Ş>ε

z(k) = Aq(k−1)

q(k) = z(k)/Şz(k)Ş

λ(k) = [q(k)]TAq(k)

end

All these measures displayed on-screen once the interface has
been built. The betweenness centrality of node X is the number of
the shortest paths passing through it, determined by counting all
the shortest paths from all nodes to all other nodes. The presence
of a correlation-weighted link represents moderate or high
influences between nodes. Bi-directionality indicates possible
influences in both directions (a node can affect or be affected
by another node). Non-linearity is not represented in the links
composition correlations idea, but the final network structure
and the network metrics are utilized to look for scientific answers
involving running performance. We chose bi-directionality for
links because we cannot affirm that one node influences another
in only one direction. Let influence vector S(0) initially be defined
as the initial state of nodeN, then the next states are S(1) =C x S(0),
S(2) = C x C x S(0) = C2 x S(0), and so on. Thus, S(t) = Ct x S(0).
However, VI can replace C, because [C–VI ] = 0, so S(t) = [VI ]t

x S(0). Thus, the state of node i, represented by si, is asymptotic
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FIGURE 1 | Complex sports model showing the group’s averaged complex network built for free running. All nodes in the complex network were measured and
calculated for each individual. Links are assigned weights equal to the correlation coefficient between node pairs. Nodes represent anthropometric data (blue); Time
Limit test data (gray); MAOD – anaerobic capacity data (green); incremental tests – aerobic capacity data (orange); and aerobic power data (red).

to si = vi
t x si(0). Evidently, si approaches infinity if vi>1, and

approaches zero if vi<1. Thus, vi is a measure of the influence
or importance of ni to the network (Lewis, 2009; Pereira et al.,
2015). Regarding the systems state and variables, there are two
distinct points to note. Each network is fixed and modeled by
correlations and variables, and each network does not change.
These are the two models we have used. Considering each model
can be represented by a transformation matrix, we calculate
the eigenvalues and eigenvectors associated with this matrix,
which indicate the direction in which the systems may converge.
This corresponds to mathematical stability theory (Meyn, 2008),
which helps to capture networks’ essential dynamics and clarifies
the analysis.

We utilize an interface to visualize the network structure and
assign link correlations as weights for both tethered and free
running.

After construction of the two networks, we conducted
simulations for three network metrics: degree, eigenvalue, and
betweenness. All measures were exhibited on-screen once the
interface was built. For the degree, we developed another
function to calculate and show the number of links to each
node of the network. We repeated the calculations various times
and checked all values according to the network size. Each
network was fixed and modeled by correlations and variables.
We then calculated the degree of each node, highlighting the
hub node as the one with the greatest number of connections
(degree analysis). Moreover, we implemented the calculation
of the eigenvalues and the networks’ betweenness centrality,
highlighting the major value obtained from the calculations. Such
metrics were crucial for understanding the role of each node
in each complex network, and here our aim was to understand

FIGURE 2 | Complex sports model showing the group’s averaged complex
network built during tethered running. The main difference compared to the
free running scenario is that there are new nodes defined by the tethered
system in the Time Limit test, representing biomechanics outputs (purple).
Remaining nodes correspond to anthropometric data (blue), Time Limit test
data (gray), MAOD – anaerobic capacity data (green), incremental tests,
aerobic capacity data (orange), and aerobic power data (red).

the roles of the nodes regarding an athlete’s running/sprinting
performance, as presented in the following results and discussion
sections.
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TABLE 2 | Parameters utilized as nodes and their first, median, and third quartile values in each model for free and tethered running tests.

Source Variable Free Tethered

Q1 Median Q3 Q1 Median Q3

Time Limit test Mean velocitya (Km/h) 19.2 19.6 20.8 15.6 15.8 16.0

Peak lactate (mmol/L) 9.7 10.7 11.9 9.1 9.6 10.8

Peak VO2 (mL/min) 3372.5 3499.5 3550.9 3350.2 3610.5 3685.6

Mean VO2 (mL/min) 2889.1 3018.6 3239.4 2989.7 3124.1 3272.1

Heart rate (bpm) 188 191 193 173 182 186

Mean Ra 1.1 1.1 1.2 1.2 1.2 1.2

Peak R 1.4 1.4 1.5 1.4 1.4 1.5

Mean VCO2 (mL/min) 3528.2 3714.6 3818.0 3777.6 3930.2 4059.5

Peak VCO2 (mL/min) 4826.0 4939.6 5192.9 5003.5 5305.1 5494.2

Time limit (min) 2.3 2.7 2.9 3.0 3.4 3.8

Anthropometric data %Lean mass 94.1 95.0 96.0 94.1 95.0 96.0

BMI (kg/m2) 20.8 22.7 23.5 20.8 22.7 23.5

Aerobic power data Peak P vVO2
b (km/h) 16.0 16.3 17.3 14.1 14.3 14.5

Peak P VO2 (mL/min) 3284.1 3337.9 3818.8 3379.0 3560.7 3738.0

Aerobic capacity data Aerobic capacityc (km/h) 12.4 12.6 12.7 10.9 11.0 11.6

C VO2 (mL/min) 2624.0 2715.6 2955.1 2656.4 2849.6 3099.5

%Peak VO2 74.5 78.9 81.5 80.4 82.6 82.9

Anaerobic capacity data MAOD (mL) 2699.3 3482.5 4866.7 3148.7 3425.3 4052.5

We show data measured directly from the time limit main tests, from incremental tests – aerobic power and capacity data – and from the MAOD – anaerobic capacity
data. aSubstantial differences between parameters in Time Limit tests comparing two types of sprints; b,cSubstantial difference in incremental tests, from bAerobic Power
data and cAerobic Capacity data, calculated and analyzed (One-way ANOVA followed by Wald–Wolfowitz Test, p < 0.05).

RESULTS

Nodes were created and inserted, then links were added
according to the results of the correlation, and weighted by the
calculated value (Ex. velocity was connected to Lactate through a
link with 87% influence). The influence is considered mutual, in
both nodes’ directions.

Figure 1 shows the athlete group’s averaged complex network
built during free running. This complex model is the result
of measured and calculated parameters according to the test
realized, as mentioned in the Materials and Methods section:
(i) Time Limit tests, (ii) MAOD – Anaerobic Capacity tests,
(iii) Incremental tests to determine aerobic power and aerobic
capacity parameters and data, and (iv) Anthropometric data.

Figure 2 shows the group’s averaged complex network built
during tethered running, including other measured variables for
the Time Limit test, via instrument of resistance: Power (W),
Force (N), Work (J), Step Freq. (s−1), and Step Length (m).

Table 2 shows the statistical outcomes of each parameter
measured in both types of running tests. Each parameter has been
defined as a node in both network models.

Table 3 shows the variables that could be measured during
tethered running, thanks to the tethered system linked to
individuals, which produces the same running movement owing
to its supporting wheels.

Once the networks were built, it was possible to calculate
topological metrics and interpret their meanings for each model,
as shown in Figures 3 and 4. Figure 4 illustrates each type of
running and each metric analyzed, where the larger nodes have
the greater weights. Thus, larger the nodes are the greater their

TABLE 3 | Parameters utilized as extra nodes during tethered running.

Power (W) Force (N) Work (J) Step
frequency (s−1)

Step
length (m)

Mean 111.8 25.1 22178.0 2.9 1.5

SD 28.2 6.7 3058.3 0.1 0.1

Q1 96.8 21.6 19756.2 2.8 1.5

Median 101.0 23.0 22137.6 2.9 1.6

Q3 111.2 24.9 24766.3 2.9 1.6

Mean values, standard deviations, first, median, and third quartile values are
shown.

contributions in the analysis of the performance of athletes in the
analyzed scenarios.

DISCUSSION

The primary difficulty in today’s research is to find an effective
way to interpret data. The common statistical techniques may
not be able, when applied in isolation, to explore the amount and
complexity of data. In this case, computation and mathematical
models help us to show and interpret data, especially in sciences
that do not traditionally use complex tools. Network metrics can
assist in understanding the complexities in terms of parameters
and interactions.

Degree Results
The Max Degree node (most connected node) is aerobic capacity
in the free running model. This indicates that when running
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FIGURE 3 | Network metrics results according to each model. (A) The Max Degree node (most popular node) was Aerobic Capacity in free running and Peak P VO2

during tethered running (both from aerobic data). (B) The Peak R-value (O2 and CO2 consumption tax) was the Max Eigenvalue during free running, and velocity was
the maximum during tethered running (both from Time Limit tests). (C) Interestingly, in both models the betweenness measure points to an anthropometric measure:
% Lean Mass, during free running, and body mass index (BMI), during tethered running, indicates, which node is on the central path of information flow in each
network.

FIGURE 4 | Performance nodes; the top 10 nodes weighted by their ranking
positions for both running scenarios. It is possible to see: the important roles
of aerobic power and capacity; the importance of anthropometric measures
on the respective condition of athletes; and respiratory related data and
velocity are of key importance for exercise maintenance.

on the track and considering the physiological basis involved,
Aerobic Capacity has the greatest influence in a typical running
scenario above the VO2peak, as it is usual in competition. The
Peak P VO2 highlights its influence in the tethered scenario.
Previously, researchers have found that Peak VO2 increases as
a result of training and exercise (Pierce et al., 1990; Saunders
et al., 2004), and that this important physiological variable
is performance determinant-dependent, as shown previously
(McLaughlin et al., 2010). The cardio-respiratory ability to deliver
oxygen to muscles during the exercise process is demonstrated
to have a critical role in our analysis, in agreement with other
research (Bassett and Howley, 2000). However, here we have

combined distinct tests and variables, comparing parameters
and revealing the most important ones by complex metrics.
In training, with the objective of improving performance, data
from incremental tests (Aerobic Power test and Aerobic Capacity
test) show significant degrees of influence compared to other
tests jointly analyzed. These physiological-related nodes can be
viewed as hubs in each structured network of influences, which
means that Aerobic Power and Aerobic Capacity individualized
evaluations are necessary for specialized athletes to sustain an
ideal power intensity output for track competitions under the
exercise conditions investigated.

Eigenvalue Results
The eigenvalue of the complex system reached its maximum
for Peak R (Respiratory Exchange Ratio) during free running.
A high R-value represented here confirms the high intensity of
the exercises proposed, and we interpret it as carbohydrate
predominant consumption. Thus, we associate it with
carbohydrate depletion, which influences the individuals’
capacity to sustain free running. This result, extracted by our
analysis, is related to other investigations such as the importance
of R as a fitness indicator, even in untrained individuals (Ramos-
Jiménez et al., 2008), the metabolic role of R during exercise
in trained athletes (Goedecke et al., 2000), and carbohydrates’
role in helping athletes to improve performance (Egan and
D’Agostino, 2016; Luden et al., 2016). During tethered running,
the eigenvalue metric reached its maximum for velocity in the
Time Limit test. This may indicate that the velocity developed,
weighted by correlations to other parameters, and has a critical
role in tethered running. These results reveal a possible strategic
training goal for athletes using tethered training – velocity
maintenance and improvement are paramount to performance
(Petrakos et al., 2016).

Betweenness Results
Evaluating the betweenness measure in both running conditions,
we found anthropometric measures for maximum values for BMI
and % Lean Mass. Anthropometric measures, studied in a recent
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review for their potential impact on performance (Mooses and
Hackney, 2016), reflect the central path of information flux in
each network model. We interpret such data as having central
importance when considering communications between nodes
for improved performance output. The relationships weight
and height, when athletes ran tethered, and % Lean Mass,
when running free, indicate that these central nodes keep the
entire system working and develop each athlete’s performance.
Thinking of muscular mass as more energetic expenditure (and
higher O2 consumption), the ideal relationship between height
and weight (BMI) can produce greater physical aspects, such
as step size and frequency during exercise. This may explain
why anthropometric nodes are more central in runners. New
studies should consider ideal somatotypes that fit each sport
condition (Bale et al., 1986), which may help performances to
reach new extremes (Thompson, 2012). Such results highlight
the importance of some neglected parameters that can be taken
into consideration for strategic training goals in practice. In
the current tests, the individuals developed lower force, power,
and work compared with our previous work (Pereira et al.,
2015). But, on the athletics track, their velocity was greater.
Considering the specificity of athletes’ condition is different from
the average athlete, and the BMI and Lean Mass parameters
assist in understanding the logical relationships involved in the
capacity to maintain efforts for best physical condition in athletes.
Thus, our intention was to represent elite athletes who perform at
higher levels in competitions, which is why we chose the athletes
carefully. The tests were complex owing to the large number
of variables and results being obtained directly from athletes
running on a track. This manuscript falls well within the scope
and increases the knowledge base of the new emerging field of
network physiology and network medicine (Ivanov et al., 2016).

CONCLUSION

In running, aerobic evaluations, which highlight Aerobic
Capacity and the Peak VO2, are structurally significant in
our mathematical models to remain connected and they exert
influence over oscillations of other variable outputs. Such
variables are affected by important variations received from
other variables because of the connections with influences
in both directions. This reinforces the importance of the
individual aerobic evaluation of athletes to better understand
their performance. The respiratory exchange ratio (R) and the
velocity in the Time Limit tests determine the weights of the
influences on the performance outputs of numerous variables.
This suggests paying special attention to Time Limit tests to
monitor such variables in training, with a focus on R and velocity.
Additionally, the entire complex system will deliver an ideal

performance output with central dependence on anthropometric
measures, which suggests special attention should be placed on
somatotype selection for high-level performance runners (% lean
mass and BMI).

The tools and computational methods utilized here highlight
knowledge associations that can be applied to develop better
strategies regarding running that are valid for runners and
could be applicable to other sports. Complex mathematical
models help in the abstraction of data, evaluation/development
of metrics, and determining semantic meaning. Optimal
individual conditions include anthropometric, physiological,
and biomechanics outputs to improve athlete performance,
all of which are emphasized in the sports models proposed
in this article. Future research may take into consideration
other physical, biological, tactical–technical, or psychological
preparations based on the latest science advances, and other
models can be built for specific exercises and/or sports. The
final goal is to determine strategic methods to achieve optimal
efficiency in training, exercise, and sports.
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