
fphys-09-01018 July 26, 2018 Time: 13:55 # 1

REVIEW
published: 26 July 2018

doi: 10.3389/fphys.2018.01018

Edited by:
Lacolley Patrick,

Institut National de la Santé et de la
Recherche Médicale (INSERM),

France

Reviewed by:
Angélica Rueda,

Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico
Nacional (CINVESTAV-IPN), Mexico

Carlo Gabriele Tocchetti,
Università degli Studi di Napoli

Federico II, Italy
Jean-Francois Quignard,

Université de Bordeaux, France

*Correspondence:
Haissam Abou-Saleh

hasaleh@qu.edu.qa

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Vascular Physiology,
a section of the journal
Frontiers in Physiology

Received: 22 December 2017
Accepted: 09 July 2018
Published: 26 July 2018

Citation:
Eid AH, El-Yazbi AF, Zouein F,

Arredouani A, Ouhtit A, Rahman MM,
Zayed H, Pintus G and Abou-Saleh H

(2018) Inositol 1,4,5-Trisphosphate
Receptors in Hypertension.

Front. Physiol. 9:1018.
doi: 10.3389/fphys.2018.01018

Inositol 1,4,5-Trisphosphate
Receptors in Hypertension
Ali H. Eid1,2, Ahmed F. El-Yazbi1,3†, Fouad Zouein1†, Abdelilah Arredouani4, Allal Ouhtit2,
Md M. Rahman2, Hatem Zayed5, Gianfranco Pintus5 and Haissam Abou-Saleh2*

1 Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon,
2 Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar,
3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, 4 Qatar
Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar, 5 Department of Biomedical
Sciences, College of Health Sciences, Qatar University, Doha, Qatar

Chronic hypertension remains a major cause of global mortality and morbidity. It is a
complex disease that is the clinical manifestation of multiple genetic, environmental,
nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular
aging in the development of hypertension involving an impairment in endothelial
function together with an alteration in vascular smooth muscle cells (VSMCs) calcium
homeostasis leading to increased myogenic tone. Changes in free intracellular calcium
levels ([Ca2+]i) are mediated either by the influx of Ca2+ from the extracellular space
or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR).
The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels
(VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels
(CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R)
and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+

waves, not only contributes to VSMC contraction and regulates VGCC function but is
also intimately involved in structural remodeling of resistance arteries in hypertension.
This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic
Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several
lines of evidence implicate changes in expression/function levels of IP3R isoforms in
the development of hypertension, VSMC phenotypic switch, and vascular aging. The
present review discusses the current knowledge of these mechanisms in an integrative
approach and further suggests potential new targets for hypertension management and
treatment.
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INTRODUCTION

Cardiovascular diseases (CVD) remain the leading cause of death worldwide, with hypertension
being the number one cause of this high mortality (Forouzanfar et al., 2017). Nearly one-third of
the yearly global mortality is due to CVD (Chen et al., 2013). At least half or more of ischemic
stroke, hemorrhagic stroke, ischemic heart disease and other CVD such as cardiomyopathy, aortic
aneurysms, or peripheral vascular disease are intimately attributed to elevated blood pressure (BP),
or hypertension (Forouzanfar et al., 2017). This burden is on the rise, despite all therapeutic
advances made in recent years, especially in elderly people (Gates et al., 2009; GBD 2013 Risk
Factors Collaborators et al., 2015; Harvey et al., 2015; GBD 2015 Risk Factors Collaborators, 2016;
Thijssen et al., 2016).
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Hypertension is defined as a chronic and persistent elevation
of systemic arterial pressure beyond normal values. Etiologically,
hypertension is classified as primary and secondary. Primary
hypertension, also known as essential hypertension, is the most
prevalent form of high BP and constitutes around 90–95% of
the cases with unknown etiology (Carretero and Oparil, 2000;
Rossier et al., 2017). Secondary hypertension, on the other hand,
constitutes around 5–10% of hypertensive cases and arises from
known and identifiable causes such as kidney diseases, pregnancy,
endocrine disorders, neurological diseases, and others (Chiong
et al., 2008).

Chronic hypertension predisposes nearly 1.5 billion
individuals in the world to CVD, including ventricular
hypertrophy and heart failure, stroke, and renal damage
(Chockalingam, 2008). A number of factors are known to
increase the risk of high BP development including obesity,
sedentary lifestyle, insulin resistance, high alcohol intake,
high salt intake, smoking, and aging (Carretero and Oparil,
2000; Gates et al., 2009; Green et al., 2010). The development
of essential hypertension involves multiple physiological
mechanisms including cardiac output, peripheral resistance,
renin–angiotensin–aldosterone system, autonomic nervous
system, and vasoactive substances such as endothelin, bradykinin,
natriuretic peptides, and others (Beevers et al., 2001; Cain and
Khalil, 2002).

The etiology of hypertension is complex and results
from the interaction of multiple genetic, neuronal, hormonal,
environmental factors, and aging-associated diseases (Garbers
and Dubois, 1999; Oparil et al., 2003; Chockalingam, 2008). In
fact, with over 50 genes implicated in BP regulation, and other
risk factors contributing to the pathogenesis of hypertension,
it is rarely possible to determine the etiology of the disease.
However, strong evidences support the role of “vascular aging”
in the development of hypertension (Green et al., 2010; Fritze
et al., 2012; van den Munckhof et al., 2012). In fact, progressive
aging implies endothelial dysfunction, loss of nitric oxide
(NO) bioavailability, impaired vasodilation, vascular remodeling,
and increased arterial stiffness. In addition, the molecular
and cellular mechanisms underlying vascular alterations are
common and include impaired Ca2+ signaling, oxidative stress,
and production of pro-inflammatory cytokines and pro-fibrotic
growth factors.

Regardless of its etiology, a hallmark of all cases of
hypertension is an increased vascular resistance that leads to
elevated BP. Resistance arteries, with an internal diameter of
less than 350 µm, are key elements in the control of peripheral
vascular resistance. The major drop in hydrostatic pressure in
the vascular tree occurs at the level of resistance arteries. As
described by Poiseuille’s law, resistance to blood flow is inversely
proportional to the vessel radius to the fourth power; therefore,
small variations in the lumen of resistance arteries result in
significant effects on peripheral resistance with a pronounced
impact on BP. Hence, peripheral resistance is typically a function
of the diameter of resistance arteries which, in turn, is intricately
linked to the contractility state (vasomotor tone) of vascular
smooth muscle cells (VSMCs) (Bosnjak, 1993; Hill et al., 2001).
Indeed, it is these VSMCs in resistance arteries and arterioles

that act as the main effectors in the continuous regulation
of vascular resistance. By stretching VSMCs, BP activates a
myriad of signaling events that eventually produces myogenic
tone, a distinguishing feature of resistance arteries and arterioles
(D’Angelo et al., 1997; Davis, 2012; Mufti et al., 2015; Kroetsch
et al., 2017). Furthermore, this tone represents the baseline on
which various primary messengers such as neurotransmitters,
endothelium-derived vasoactive molecules, local metabolites,
or hormones converge and act to modulate constriction and
dilatation. Many membrane channels and receptors play a pivotal
role in vasotone regulation. VSMCs of resistance arteries express
several plasma membrane (PM) ion channels including K+
channels (Taguchi et al., 1994; Sobey et al., 1998; Tajada et al.,
2012), Ca2+ channels, Cl− channels (Bulley et al., 2012; Dam
et al., 2014; Heinze et al., 2014), transient receptor potential
(TRP) family of ion channels, voltage-gated Ca2+ channels
(VGCCs) (Hondeghem et al., 1986; Inoue et al., 2001; Liao et al.,
2007), epithelial Na+/acid-sensing channel (ENaC) (Jernigan and
Drummond, 2005; Drummond, 2009; Grifoni et al., 2010), and
stretch-activated channel, also known as PIEZO1 (Allison, 2017).
In addition to these channels, IP3R and ryanodine receptor
(RyR), which are localized SR membrane play an important
role in VSMC contractility and the development of hypertension
(Long et al., 2007; Mufti et al., 2010; Lin et al., 2016).

It is important to note that with sustained hypertension,
vessels undergo progressive alteration characterized by
inflammatory responses, VSMC growth and migration,
extracellular matrix synthesis and degradation, endothelial
dysfunction that increases vascular stiffness and resistance, and
decreases vascular elasticity (Shyu, 2009; Dharmashankar and
Widlansky, 2010; Renna et al., 2013). Remodeled vessels heavily
contribute to the pathophysiology of vascular diseases such as
atherosclerosis, and are subsequently at high risk of blockage or
rupture that could damage and fail the supplied organ (Renna
et al., 2013). This review will highlight the role of alterations
in inositol trisphosphate receptors (IP3R) expression/function
in changes in vascular remodeling and vascular tone, and VSM
contractility in response to chronic hypertension. A summary of
the proposed model is presented in Figure 1.

IP3R IN VSMCs: EXPRESSION,
STRUCTURE, AND LOCALIZATION

The IP3R of VSMCs plays important roles in gene expression,
cellular proliferation, and migration, as well as contractility
(Wilkerson et al., 2006; Xi et al., 2008; Adebiyi et al., 2010).
IP3R is a tetramer, with each subunit encompassing an amino
terminus, six transmembrane domains, and a carboxy terminal
tail (Michikawa et al., 1994; Yoshikawa et al., 1996). The amino
terminus contains an IP3-binding domain, a suppressor domain
that inhibits IP3 binding, and a regulatory domain (Yoshikawa
et al., 1999). This regulatory domain contains binding sites
for Ca2+ and ATP as well as consensus phosphorylation sites
(Michikawa et al., 1994; Patel et al., 1999; Foskett et al., 2007).
Within this regulatory domain, there is also a coupling motif that
is important for physical interactions between IP3R and transient
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FIGURE 1 | Proposed role of alteration in IP3R expression/function in the development of hypertension. Apart from contribution to vascular tone and VSM
contractility via SR-Ca2+ release, calcium wave production, and induction of calcium sensitization, IP3R forms a mechanosensing complex with TRP channels that is
proposed to initiate contraction in response to increased intraluminal pressure. Physiological patterns of IP3R-mediated Ca2+ release are affected by the expression
of other SR membrane proteins including SERCA. Under circumstances of sustained increased blood pressure, IP3R expression increases together with increased
sensitivity to IP3 and increased coupling with the TRP mechanosensing machinery resulting in increased intracellular Ca2+ release and increased VSM contraction.
Interplay with NFAT-mediated signaling pathways might contribute pressure-induced changes in VSMC phenotype, vascular inflammation, and VSMC senescence.
Increased VSMC proliferation and migration were reported to involve increased IP3R-mediated Ca2+ release with subsequent intracellular store depletion and
increased store-operated Ca2+ entry. IP3R-mediated Ca2+ release can potentially relay apoptotic signaling to the mitochondria contributing to vascular aging.

receptor potential canonical (TRPC) channels (Tang et al., 2001;
Adebiyi et al., 2010; Zhao et al., 2017). The transmembrane and
carboxy terminal domains are essential for tetramerization of
IP3Rs (Mignery and Sudhof, 1990; Sayers et al., 1997).

The IP3R family comprises three subtypes (IP3R1, IP3R2, and
IP3R3) that are encoded by Itpr1, Itpr2, and Itpr3, respectively.
Almost all animal cells express IP3Rs (Prole and Taylor,
2016). The human isoforms share approximately 75% amino
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acid homology; however, their sensitivity toward IP3 or other
regulatory factors is variable, thus adding a layer of complexity
for their functions (Foskett et al., 2007; Mikoshiba, 2007). This
complexity is further compounded by the existence of many
splice variants as well as the possibility of tetramerization (Foskett
et al., 2007; Mikoshiba, 2007).

Although most cells express more than one IP3R subtype,
the different subtypes exhibit some tissue-specific pattern of
expression, with one subtype being expressed at a higher level
than the others (Vermassen et al., 2004; Ivanova et al., 2014).
Moreover, the different subtypes exhibit marked difference
in their affinity for their ligand IP3 (Ivanova et al., 2014;
Vervloessem et al., 2015). They also differ in their regulation
by Ca2+ and ATP as well as their phosphorylation by various
kinases (Ivanova et al., 2014; Vervloessem et al., 2015). For
instance, although all three isoforms exhibit a biphasic mode
of IP3-induced Ca2+ release, isoform-specific characteristics of
this response are observed (Miyakawa et al., 1999; Mak et al.,
2001; Tu et al., 2005). Likewise, ATP regulates all three isoforms
but with a clear differential effect on each. For example, IP3R2
is 10 times more sensitive to ATP than IP3R3, at least in
pancreatic acinar cells (Park et al., 2008). Moreover, while all
three isoforms are targets for many kinases such as Akt, PKA,
and MAP kinases, isoform-specific regulation by these kinases
are markedly noticed. For instance, ERK1/2 can recognize three
phosphorylation resides (S436, T945, and S1765) in IP3R1 but not
in IP3R2 or IP3R3 (Bosanac et al., 2004).

Vascular smooth muscle cells expresses all three subtypes,
with IP3R1 being the predominant one in these cells (Islam
et al., 1996; Wang et al., 2001; Grayson et al., 2004; Zhou et al.,
2008). Levels of these proteins are determined by a well-regulated
balance between transcription and degradation. For instance,
while c-Myb stimulates its expression, retinoic acid and TGF-
beta inhibit expression of IP3R1 (Sharma et al., 1997; Deelman
et al., 1998; Afroze et al., 2007). Hydrogen peroxide Jak2 kinase,
Herpud1, and vasopressin regulate levels of IP3R1 by modulating
its degradation (Sipma et al., 1998; Wallace et al., 2005; Martin-
Garrido et al., 2009; Torrealba et al., 2017).

The main location of IP3Rs in VSMCs is the SR, both central
(perinuclear), and peripheral (beneath the PM) compartments
(Nixon et al., 1994; Gordienko et al., 2008; Narayanan et al.,
2012). Importantly, this localization may impart a functional
effect. For instance, IP3Rs located around the nucleus are thought
to regulate Ca2+-dependent gene expression without affecting
the global intracellular pool of Ca2+. On the other hand,
peripherally located SR allows their IP3Rs to be close enough
to the PM for localized signaling to membrane proteins to be
efficiently elicited (Adebiyi et al., 2010; Zhao et al., 2010). It is
also important to note that in addition to their role in Ca2+

release, IP3Rs have other significant functions. For example,
upon binding, IP3 causes IP3R−binding protein released with
IP3 (IRBIT) to be released from the IP3-binding site. The
now released IRBIT can then modulate other targets such as
transporters, channels as well as ribonucleotide reductase (Ando
et al., 2003; Arnaoutov and Dasso, 2014). Moreover, IP3Rs,
independent of their Ca2+ release ability, may also regulate others
proteins such as the opening of TRPC (Zhang et al., 2001). As

such, cellular distribution of IP3Rs and their Ca2+-independent
roles dictate the functions of these receptors, under both
physiologic and pathophysiologic conditions as will be discussed
below.

FACTORS AFFECTING VASCULAR
TONE: ALTERATION IN HYPERTENSION

Under physiological conditions, individual components of the
vascular system maintain a certain degree of spontaneous
constriction constituting the vascular tone. This vascular
property determines the dilatory capacity of the vascular bed
and hence the organ, whereby a higher tone allows for a higher
dilatory capacity as in the heart and skeletal muscles, and a
lower tone leads to a limited dilatory capacity as in case of
cerebral circulation (Klabunde, 2012). Indeed, vascular tone
results from the integration of several competing stimuli that
modulate the contractile state of VSMC. In isolated vessels, the
myogenic response constitutes the fundamental form of vascular
reactivity in response to increased intraluminal pressure (Uchida
and Bohr, 1969). Extrinsic influences converge to modulate this
intrinsic contractility. The overall vascular tone is set as a net
outcome of the interaction of endothelial inputs activated by
sheer stress (Koller et al., 1993), neuronal regulation (Fleming
et al., 1987), humoral mediators (Waldemar and Paulson, 1989),
tissue metabolic demand (Chovanes and Richards, 2012), and
tubuloglomerular feedback (characteristic to the renal vascular
bed) (Burke et al., 2014). The resultant level of constriction
determines the extent of systemic vascular resistance and
hence contributes to regulating BP, making the examination of
alterations in vascular tone an attractive target in the study of
hypertension.

Significantly, studies showed substantial alterations in
vascular tone in hypertension. Whether it is a causative
factor or adaptive consequence of hypertension, enhanced
myogenic response was reported in humans and animal
models of the disease (Henriksen et al., 1981; Sonoyama
et al., 2007). Early studies on spontaneously hypertensive
rats showed a reduced ability of cerebral arterioles to dilate
increasing the cerebral blood flow in response to intraluminal
pressure reduction (Waldemar and Paulson, 1989). Subsequent
multiple reports on these animals described an enhanced
myogenic constriction in response to intra-luminal pressure in
different vascular beds including skeletal muscle arterioles
(Falcone et al., 1993; Shibuya et al., 1998), mesenteric
arteries (Matrougui et al., 2000), cerebral arterioles (Jarajapu
and Knot, 2005), and renal afferent arterioles (Ren et al.,
2010).

IP3R-MEDIATED CALCIUM REGULATION
AND VASCULAR TONE GENERATION:
ALTERATION IN HYPERTENSION

Among other factors, intracellular Ca2+ is known to play a
pivotal role in the development and maintenance of vascular
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myogenic tone. The increased intraluminal pressure was shown
to elicit an increased intracellular Ca2+ in a number of vessel
preparations that develop myogenic response (Schubert and
Mulvany, 1999). Knot and Nelson (1998) reported a strong
correlation between vessel constriction in isolated pressurized rat
cerebral arteries and intraluminal pressure increase, membrane
depolarization, and increased intracellular Ca2+. Early studies
using Ca2+-sensitive dyes and two-dimensional electrophoresis
showed that the increase in intracellular Ca2+ levels ([Ca2+]i) in
these vessels was associated with an increase in myosin light chain
(LC20) phosphorylation (Zou et al., 1995). Further investigation
of the temporal association between increased intraluminal
pressure, increased [Ca2+]i, and LC20 phosphorylation showed
close coincidence of the three events in vessels examined in
pressure myography experiments (Zou et al., 2000). Upon
activation by Ca2+/calmodulin, the myosin light-chain kinase
(MLCK) specifically phosphorylates LC20 at serine-19 (Kamm
and Stull, 2001), an event that is sufficient to activate the ATPase
activity of actomyosin, cross-bridge cycling, and cell shortening
and contraction (Walsh et al., 1982).

Several receptors and transporters contribute to [Ca2+]i
dynamics in VSM, but the two primary pathways for Ca2+

influx are the PM L-type VGCC and the ER membrane IP3R
(Hill et al., 2001). On the one hand, depolarization of the PM
activates α1C, the pore-forming subunit of the VGCC, causing
a rapid Ca2+ entry from extracellular space and thus leading
to VSMC contraction. On the other hand, triggering of IP3R
by IP3 induces Ca2+ release from the ER Ca2+ stores. The
fundamental role of these two Ca2+ signaling pathways in
the clinical management of hypertension is demonstrated by
the fact that pharmacological blockers of the L-type VGCC or
α-adrenergic receptors are effective in lowering BP (Oparil et al.,
2003). In contractile VSMC, VGCCs are the major determinants
of [Ca2+]i and vascular tone. Indeed, it is mainly via through
these channels that Ca2+ enters the cell. Nevertheless, studies
also implicated RyR-mediated SR Ca2+ release not only as
a potential contributor to the generation of myogenic tone
(Mufti et al., 2010), but also via feedback regulation of VSMC
depolarization through activation of large conductance Ca2+-
dependent potassium channels (Krishnamoorthy et al., 2014).

The idea of Ca2+ influx through VGCC contributing to the
development of myogenic response stemmed from early results
demonstrating a complete loss of myogenic response following
extracellular Ca2+ removal in a variety of vessel preparations
(Schubert and Mulvany, 1999) and later corroborated by the
close association between membrane potential, intracellular
Ca2+ level, and myogenic contractility (Knot and Nelson,
1998). Voltage-associated Ca2+ currents were shown to occur
following membrane stretching in cerebral artery (McCarron
et al., 1997) and blockade of VGCC, while not affecting
the depolarization produced by the increase in intraluminal
pressure, inhibited the increase in vessel wall Ca2+ and the
myogenic response (Knot and Nelson, 1998). Models proposed
for this mechanotransduction process spanned the involvement
of membrane integrins activating downstream Ca2+-sensitive
and insensitive contractile pathways to a role for stretch sensitive
channels (Colinas et al., 2015; Mufti et al., 2015).

Out of the several members of the VGCC family, the L-type
Ca2+ channels received the most and earliest attention as the
mediator of the extracellular Ca2+ influx in myogenic response.
Certainly, L-type Ca2+ channels are broadly expressed in VSMC
(Abd El-Rahman et al., 2013), and interference with Ca2+ influx
through these channels with selective blockers was shown to
preclude the myogenic response, at least partially, in many
vessel preparations in early studies (McCarron et al., 1997;
Knot and Nelson, 1998). On the other hand, interventions
that increased L-type Ca2+ channel expression were associated
with an increased myogenic tone (Narayanan et al., 2010).
Interestingly, earlier studies of spontaneously hypertensive rats
implicated increased Ca2+ influx via VGCC in the observed
augmentation of myogenic contractility (Ren et al., 2010). It is
now widely accepted that an upregulation of VGCC expression
and/or function occurs in the context of hypertension (Joseph
et al., 2013; Tajada et al., 2013). Several signaling proteins are
implicated in this process including protein kinase C (PKC)
(Joseph et al., 2013) and PI3K (Carnevale and Lembo, 2012),
providing a mechanistic context for the contribution of humoral
mediators such as angiotensin in increased vascular resistance.

Of interest, a model was proposed implicating a role for IP3R
in regulating extracellular Ca2+ influx in VSMCs. IP3R activation
synergistically enhanced TRP channels mediated stretch-induced
depolarization (Gonzales et al., 2014). IP3R organizes in a
signaling complex with TRPC and TRPM channels whereby
stretch activates a phospholipase C isoform in addition to Ca2+

influx through TRPC channels. The resultant IP3 sensitizes
IP3R to Ca2+ entering through TRPC leading to an increased
SR Ca2+ release activating TRPM currents establishing VSMC
depolarization. Significantly, the physical coupling between IP3R
and TRP channels increased in resistance arteriole myocytes
from animal models of genetic hypertension leading to an
enhanced IP3-dependent cationic current and depolarization
(Adebiyi et al., 2012).

In addition to the extracellular Ca2+ influx, it is well
documented that Ca2+ release from the SR in the form of
Ca2+ waves is involved in arterial constriction (Boittin et al.,
1999; Jaggar and Nelson, 2000; Lee et al., 2005). Specifically,
during the myogenic response, both the number of active cells
that display Ca2+ waves and the frequency of these waves
in a given VSMC dramatically increased upon raising the
intraluminal pressure from 20 to 40 mmHg (Mufti et al., 2010).
The incidence of Ca2+ waves at high pressure was not affected
by L-type Ca2+ channel blockade but was rather sensitive to
interference with SR Ca2+ release. SR Ca2+ depletion precluded
Ca2+ wave production, LC20 phosphorylation, and myogenic
response generation. Specifically, direct inhibition of IP3R was
associated with impaired Ca2+ wave generation and interference
with the myogenic tone production (Mufti et al., 2015). Similar
effects of IP3R inhibition on micro-vessel contractility and
Ca2+ wave production were recently observed in human tissues
(Navarro-Dorado et al., 2014). Importantly, the expression of
several SR and PM-associated Ca2+ handling proteins, including
IP3R, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), and
Na+/Ca2+ exchanger, was upregulated in different hypertensive
animal models. Together with an increased SR Ca2+ release,
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the upregulation of these proteins leads to enhanced basal and
evoked vascular constriction (Linde et al., 2012; Abou-Saleh et al.,
2013). Specifically, IP3R expression was shown to be higher in
VSMC from spontaneously hypertensive rats compared to non-
hypertensive controls (Bernier and Guillemette, 1993). Moreover,
in rat models of genetic hypertension, both IP3 production and
IP3/IP3R-binding affinity are increased (Wu and de Champlain,
1996) together with an increased global [Ca2+]i (Jarajapu and
Knot, 2005).

Yet, Osol et al. (2002) showed that increased force production
in a myogenic vessel preparation in the pressure range that
is associated with myogenic contractility (60–140 mmHg)
was not associated with appreciable increases in membrane
depolarization or intracellular Ca2+ concentration. As well, a
number of early studies raised the possibility of the involvement
of Ca2+-independent force generation mechanisms in myogenic
contractility. Calcium–tone relationships were shown to be
fivefold more sensitive during pressure-induced activation
(VanBavel et al., 1998), and myogenic contractility persisted
in situations with reduced extracellular Ca2+ levels (McCarron
et al., 1997) or where membrane potential was clamped in a
depolarized state with high extracellular potassium precluding
further Ca2+ entry (McCarron et al., 1997; Lagaud et al.,
2002). Multiple lines of evidence implicated signaling pathways
involving activation of G proteins, PKC, and Rho-associated
protein kinase (ROK) in the generation of Ca2+-independent
contraction within the context of the vascular tone development
(McCarron et al., 1997; VanBavel et al., 2001; Wesselman et al.,
2001; Lagaud et al., 2002). Interestingly, a growing body of
evidence suggests that enhanced Ca2+ sensitization contributes
to augmented vascular tone in models of hypertension (Uehata
et al., 1997; Jarajapu and Knot, 2005; Zicha et al., 2014; Behuliak
et al., 2017). However, despite the direct observations that a
sustained arteriolar constriction could be obtained via enhanced
actin cytoskeleton reorganization triggered by a seemingly Ca2+-
independent signaling pathways (ROK- and PKC-mediated
pathways) (Moreno-Domínguez et al., 2013, 2014; Colinas et al.,
2015; El-Yazbi et al., 2015). These studies clearly demonstrated
the obligate dependence of the generation of arteriolar vascular
tone on Ca2+. Not only interferences with extracellular Ca2+

levels affected the myogenic response and the mechanisms of
all force generation including the Ca2+-independent pathways;
specific inhibition of IP3R precluded a pressure-dependent
increase in Ca2+ sensitization (Mufti et al., 2015).

ALTERATIONS IN IP3R
EXPRESSION/ACTIVITY ASSOCIATED
WITH VASCULAR REMODELING

Apart from mechanisms contributing to vascular tone through
regulation of the contractile machinery, an additional interesting
factor is the alteration in structural properties of the vessel
wall, referred to as vascular remodeling, a phenomenon strongly
associated with age (Baek and Kim, 2011). Initially, vascular
remodeling constituted an adaptive response of VSMC to
hemodynamic changes that can be sensed by vascular cells,

both endothelial and SMCs and translated into structural
alteration within the vessel wall. On the long run, however, these
adaptations lead to increased media thickness, reduced luminal
diameter, and extracellular matrix reorganization (Mulvany et al.,
1996; Touyz, 2005; Lemarie et al., 2010; Rizzoni and Agabiti-
Rosei, 2012). Furthermore, vascular injury induced by disruption
of atheromatous plaque or balloon angioplasty triggers a
reparative response that includes inflammation, migration and
proliferation of VSMC, and intimal hyperplasia. Ultimately, due
to changes in vessel architecture and geometry, this leads to a
negative constrictive remodeling of the arterial wall (Gibbons and
Dzau, 1994; Faxon et al., 1997).

It is now accepted that structural remodeling in resistance
arteries is closely related to the development of hypertension
(Lemarie et al., 2010; Rizzoni and Agabiti-Rosei, 2012). In this
perspective, smooth muscle cells display a significant degree
of phenotypic plasticity and, unlike most other differentiated
cells, can change their phenotype even at the differentiated
state (Yoshida and Owens, 2005; Matchkov et al., 2012). This
involves a phenotypic switch from a contractile to a proliferative,
migrating, and or/synthetic phenotype and is associated with
gene regulation and alteration of cytoplasmic Ca2+ signaling
machinery (House et al., 2008; Matchkov et al., 2012). While
vascular remodeling in aging has been partially investigated
(Wang et al., 2005, 2006, 2007), the molecular mechanisms
involved in the remodeling of Ca2+ signaling pathways observed
in hypertension is still poorly understood.

In VSMCs, resting [Ca2+]i is slightly higher than in other
cells, allowing the vessel to be in a constant state of partial
contraction. In the synthetic phenotype, however, this turns to
be less important or even voltage-independent. In contrast to
the role proposed for VGCC and IP3R in VSM contraction,
it has been suggested that regulation of [Ca2+]i in synthetic
VSMC occurs via alternative pathways including store-operated
channels (SOCs) and receptor-operated channels (ROCs) (Berra-
Romani et al., 2008; Baryshnikov et al., 2009). SOCs are activated
by depletion of internal Ca2+ stores mainly through IP3-
mediated Ca2+ release (Trebak, 2012), whereas ROCs activation
involves different components of the PLC signaling cascade
including IP3 (House et al., 2008). It is beyond the scope of this
review to discuss these two pathways in more detail. Of note,
however, the expression level of all three IP3R isoforms increase
during VSMC switch from contractile to synthetic phenotype
(Berra-Romani et al., 2008). Additionally, IP3R-mediated Ca2+

release increases in proliferating VSMC offering a possible
explanation for the observed increased in SOC Ca2+ entry
(Moses et al., 2001; Wilkerson et al., 2006). Selective inhibition
of IP3R not only reduced VSMC proliferation (Wang et al.,
2001; Wilkerson et al., 2006) but also inhibited in vitro pressure-
induced increase in VSMC migration (Tada et al., 2008). Evidence
in synthetic human VSMCs point to an altered mode of Ca2+

release via IP3R (Bobe et al., 2011). IP3-mediated release in
these cells occurs in a steady state followed by store-operated
calcium entry. This pattern was restored to the oscillatory
Ca2+ release pattern characteristic to contractile VSMCs
upon upregulation of SERCA pump expression. This switch
reduced nuclear factor of activated T cells (NFAT) signaling.
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In the context of hypertension, we have previously shown
that L-type Ca2+ channels and IP3R are specifically
and concomitantly upregulated in an angiotensin-induced
hypertension model through a NFAT-dependent pathway
(Abou-Saleh et al., 2013). Functionally, this was associated
with enhancement and sensitization of IP3-dependent Ca2+

release, thereby resulting in higher basal Ca2+ levels and
increased VSM contraction. In addition to hypertension,
upregulated NFAT signaling in the vasculature was implicated
in a number of age-related disorders including post-injury
restenosis (Bonnet et al., 2009), vascular inflammation, and
aggravation of atherosclerosis in diabetes (Nilsson-Berglund
et al., 2010; Zetterqvist et al., 2014), as well as vascular smooth
muscle senescence (Min et al., 2009). This latter observation
taken together with the evidence regarding the association of
increased IP3R expression/activity, NFAT signaling, and VSMC
phenotypic switch may add novel insights into the role of
IP3R in VSMC molecular remodeling as a part of the aging
process. Specifically, studies in several cell types demonstrated
that different IP3R isoforms occur in close proximity to the
mitochondria and transmit pro-apoptotic Ca2+ signals (Simpson
et al., 1998; Szalai et al., 1999; Mendes et al., 2005). Yet, it
is worth mentioning that the role of IP3R in aging is far
from being clear. Whereas IP3 content was shown to increase
in rat brain (Igwe and Ning, 1993), IP3R expression and
IP3 binding were shown to be decreased (Igwe and Filla,
1997).

In addition to NFAT, other Ca2+ sensitive transcription
factors such as serum response factor (SRF), c-response element
binding (CREB) seem to play an important role in switching
VSMC from a contractile to a synthetic phenotype (Matchkov
et al., 2012). Future studies on the role of IP3R in this
process need to be conducted in IP3R-deficient mice. In this
regard, the role of IP3R in VSMC contractility in vivo was
recently highlighted in a conditional triple knockout mouse,
where the agonist-mediated vascular constriction was attenuated
together with a lack of development of hypertension in response
to chronic angiotensin infusion (Lin et al., 2016). However,
the effect of the conditional knockout on VSMC phenotypic
switch in response to hypertension has not been addressed
so far.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Hypertension is a complex disease that arises from the interaction
of multiple genetic, environmental, nutritional, hormonal, and
age-related pathological conditions. The etiology of “essential
hypertension,” which accounts for more than 90% of clinical
hypertension, comprises an increased vascular resistance and is
associated with structural alterations in the wall of resistance
arteries. Modulation of [Ca2+]i in VSMC allows small arteries
and arterioles to establish vasomotor tone and regulate blood
flow, and determine peripheral vascular resistance and BP. These
changes require a phenotypic switch of VSMC from a contractile
quiescent to a versatile proliferative phenotype, a phenomenon
widely observed in age-associated vascular remodeling. As
described above, IP3R activity was shown to be essential in almost
every cellular mechanism involved in setting vascular tone level.
Additionally, modulation of IP3-dependent Ca2+ signaling may
represent an essential stimulus for VSMC shift from quiescent
to the proliferative state. KT-362 was an investigational drug
targeting IP3R-mediated Ca2+ release that showed a clinically
relevant antihypertensive action (Hester and Shibata, 1990).
However, clinical trials were discontinued at phase II. In
addition to known targets for antihypertensive therapy, novel
interventions within the PLC–IP3R pathway constitute attractive
therapeutic targets for future research given their ubiquitous
involvement in cellular processes leading to hypertension.
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