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Before birth and early in life, the developing brain is particularly sensitive to environmental
and pharmacological influences. Increasing experimental evidence suggests that an
association exists between exposure to anesthesia during a vulnerable period of
brain development and subsequent poor neurodevelopmental outcomes. However, the
mechanisms underlying this association are not fully understood. Epigenetics, broadly
defined as the regulation of gene expression without alterations of DNA sequence, has
become a field of tremendous interest in neuroscience. In recent years, a growing body
of literature suggests that anesthesia-induced long-term changes in gene transcription
and functional deficits in learning and behavior later in life are mediated via epigenetic
modifications. This brief review provides an overview of epigenetic mechanisms and
highlights the emerging roles played by epigenetic dysfunctions in the processes of
anesthesia-induced neurotoxicity in the developing brain. Epigenetic targeting of DNA
methyltransferases and/or histone deacetylases may have some therapeutic value.
Epigenetics may lead to the identification of novel markers that contribute toward
considerable translational significance in the field of neuroprotection.
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INTRODUCTION

Every year, millions of pregnant women, neonates, infants, and toddlers across the world are
exposed to anesthesia for surgeries, therapeutic procedures, and imaging studies. However, before
birth and early in life, the developing brain is a particularly sensitive target to environmental
and pharmacological influences. Currently the majority of general anesthetics used function
through N-methyl-D-aspartate (NMDA) receptor and/or γ-aminobutyric acid receptor type A
(GABAA) receptor modulation (Garcia et al., 2010; Petrenko et al., 2014). Inhaled and intravenous
anesthetics share overlapping effects on these two receptors (Hudson and Hemmings, 2011).
Prolonged or excessive stimulation of NMDA receptors and/or GABAA receptors may interfere
with the neural circuitry during early neurodevelopment, a consequence that may account for the
developmental neurotoxicity induced by general anesthetics (Fredriksson et al., 2004; Fredriksson
et al., 2007). Accumulating evidence from rodent and primate studies has demonstrated that
in utero [most general anesthetics can cross the placenta and reach fetal blood (Palanisamy,
2012)] or neonatal exposure to commonly used inhaled and intravenous general anesthetics is
associated with neural degeneration and subsequent neurocognitive impairments, manifested in
learning and memory disabilities (Andropoulos and Greene, 2017). Several retrospective clinical
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studies have demonstrated that childhood exposure to general
anesthetics pose an increased risk of neurocognitive impairments
(Creeley, 2016). Anesthesia-induced toxic effects on the central
nervous system attract wide public attention but their underlying
mechanisms are largely unknown. An increasing number
of studies demonstrate that general anesthetics may initiate
abnormal neurodevelopment, at least in part, through epigenetic
mechanisms.

Epigenetics refers to the study of heritable changes in
the expression and function of genes without alterations in
DNA sequence. Major epigenetic mechanisms include DNA
methylation, histone modification, and non-coding RNAs.
Epigenetics, which acts as a mediator between genotype and
environment, plays significant roles in brain development and
cognitive processes by translating environmental cues into
changes in the expression of target genes (Van Soom et al.,
2014; Kundakovic and Champagne, 2015). Emerging studies have
revealed that epigenetic dysregulation is one of the hallmarks
of abnormal brain function and neurodegenerative diseases
(Delgado-Morales et al., 2017; Tran and Miyake, 2017). It
is especially interesting that epigenetic dysregulation currently
garners much attention as a pivotal player in anesthesia-induced
neurotoxicity at the early stages of brain development.

EPIGENETIC CHANGES AND
THERAPEUTIC APPROACHES FOR
ANESTHETIC-INDUCED
DEVELOPMENTAL NEUROTOXICITY

DNA Methylation and DNMTs Inhibitors
DNA methylation (Moore et al., 2013; Heyward and Sweatt,
2015) is the most characterized epigenetic event in which DNA
methyltransferases (DNMTs) catalyze the covalent conversion
of cytosine residues to 5-methylcytosine residues, which can
lead to long-term down-regulation of target genes. Three
active mammalian DNMTs have been identified, DNMT1,
DNMT3a, and DNMT3b. DNMT1 has a preference for hemi-
methylated DNA, whereas DNMT3a and DNMT3b are involved
in the formation of new methylation patterns to unmodified
DNA, called de novo DNA methylation. DNA methylation
regulates gene expression by recruiting proteins involved in
gene repression and/or by blocking promoter regions to which
activating transcription factors should bind. DNMT inhibitors
are widely used as epigenetic modulators, thereby representing
promising targets in epigenetic therapies. DNMT inhibitors can
modulate aberrant DNA methylation pattern in a reversible
manner by inhibiting DNMT activity.

A recent study has demonstrated that the expression of
DNMT1 is significantly increased in the hippocampi of rats
with neonatal exposure to isoflurane (Wu et al., 2016).
A further chromatin immunoprecipitation (ChIP) study has
revealed increased occupancy and methylation (5′-cytosine)
levels at the promoter region of the neurotrophin, brain-
derived neurotrophic factor (BDNF) gene, a critical modulator
of synaptic plasticity. This increased methylation at the BDNF

promoter region was associated with suppression of BDNF
expression and subsequent memory loss. Hippocampal DNMT3a
and DNMT3b levels are increased in a rat model with repeated
neonatal sevoflurane exposure, resulting in the hypermethylation
of BDNF and Reelin genes (Ju et al., 2016). Interestingly, DNMT1
levels do not significantly change (Ju et al., 2016). Different
model species, anesthetics, and/or exposure doses within these
studies may account for these findings. Pretreatment with the
DNMT inhibitor, 5-aza-2′-deoxycytidine, reverses sevoflurane-
induced dendritic spine decreases and cognitive abnormalities
by inhibiting DNMT activity and enhancing the expression of
synaptic plasticity-related genes (Ju et al., 2016).

Histone Modifications and HDAC
Inhibitors
There have been some important publications in recent years
that have pointed out the importance of histone modifications
in neural development and brain function (Keverne, 2014; Sen,
2015). Histone modifications encompass a vast variety of post-
translational modifications to the tails of histone proteins, and
these give rise to varying cellular outcomes. In particular, histone
modification by acetylation, which involves the addition of
an acetyl group to lysine residues present at the N-terminal
tails of the nucleosome, is the most extensively studied one in
neuroscience. Generally, acetylated histones are associated with
increased transcriptional activity, whereas deacetylated histones
are associated with decreased transcriptional activity. Histone
acetylation is mediated through histone acetyltransferases (HATs)
and histone deacetylases (HDACs), each family comprised of
several isoforms. HDACs reverse the activity of HATs and cause
a decrease in transcription through the removal of acetyl groups
from histone tails. HDACs are typically grouped into four classes:
class I HDACs (1–3 and 8), class II HDACs (4–7, 9, and 10),
class III HDACs (also known as sirtuins, which are structurally
NAD+ dependent for enzymatic activity) and class IV HDACs
(referred to as HDAC11). Unfortunately, dysregulation of the
HATs/HDACs balance may lead to pathologies which have been
implicated in anesthesia-induced neurological disorders.

As histone acetylation is typically associated with an increase
in the expression of numerous neural genes and in turn, plays
an important role in synaptic plasticity, learning and memory,
it is generally considered favorable for memory and cognition.
As well as enhancing HAT activity, HDAC inhibitors, which
are predominantly used as anticancer drugs, have recently been
suggested to act as neuroprotective agents and are emerging as
powerful cognitive enhancers. HDAC inhibitors are therefore a
novel therapy to treat cognitive impairments that are linked to a
wide range of neurodegenerative and psychiatric disorders (Graff
and Tsai, 2013; Ganai et al., 2016).

In previous studies, rodents exposed to anesthetics during
the gestational or neonatal period exhibited long-term
developmental neurocognitive abnormalities and alterations
in histone acetylation. For example, hippocampal levels of
HDAC3 and HDAC8, but not HDAC1 and HDAC2, were
elevated in adult rats that were exposed to sevoflurane in
the neonatal period. Moreover, sevoflurane-exposed rats
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showed reduced hippocampal levels of acetylated H3K9/14 and
H4K5/12 and reduced expression of several genes involved
in neurodevelopment and neuroplasticity including BDNF,
c-Fos, and postsynaptic density protein 95 (Psd-95). It is
worth noting that sevoflurane exposure was associated with
changes in specific brain regions, such as decreased H3K9
and H4K5/12 acetylation in the hippocampal CA1 region, as
well as decreased H2K14 acetylation in both that hippocampal
CA1 and dentate gyrus (DG) regions. Moreover, impaired
hippocampus-dependent spatial and associated memory is
observed, rather than explorative behaviors. Upregulation of
histone acetylation pharmacologically, using the HDAC inhibitor
sodium butyrate (NaB), ameliorated the developmental side
effects caused by sevoflurane exposure (Jia et al., 2016). Increased
HDAC2 activity and decreased acetylation of H3 but not H4
is observed in the hippocampus of isoflurane-exposed rats
and in isoflurane-exposed hippocampal neurons, along with
decreased histone acetylation of hippocampal neurons in the
promoter regions of GLT-1 and mGLuR1/5. NaB improves
cognitive impairments in vivo by restoring a decrease in histone
acetylation of glutamatergic systems, which has been confirmed
in hippocampal neurons (Liang and Fang, 2016). Trichostatin
A (TSA) has also been shown to offer protection against
neurocognitive impairment and abnormal hippocampal histone

acetylation in isoflurane-exposed mice during the neonatal
period by enhancing histone acetylation and downstream c-Fos
gene expression (Zhong et al., 2015).

The cyclic-AMP-response element binding protein (CREB)
signaling pathways have been implicated in anesthesia-induced
neurodegenerative changes in basic experimental studies (Bi
et al., 2016; Ding et al., 2017). CREB-binding protein, also known
as CBP, functions by activating transcription, as a co-activator
of the transcription factor CREB. CBP is also characterized as a
HAT, regulating the degree of histone acetylation via its intrinsic
HAT domain. A general anesthetic (a sedative dose of midazolam
followed by a combination of nitrous oxide and isoflurane)
causes fragmentation of CBP with decrease in its HAT activity.
Hypoacetylated H3 results in down-regulated transcription and
expression of BDNF and c-Fos (Dalla Massara et al., 2016).
ChIP assays have revealed that the levels of acetylated H3 in
CREB binding sites at the promoter regions of BDNF and c-Fos
genes are decreased in the hippocampus, which in turn inhibits
their transcription. Reversal of histone hypoacetylation with
NaB blocks the morphological and functional impairments of
neuronal development and synaptic communication observed
(Dalla Massara et al., 2016). A decrease in the interaction
between CBP and CREB has also been reported in the brains of
postnatal mice with isoflurane-induced cognitive impairments,

FIGURE 1 | Schematic representation of epigenetic alterations in anesthesia-induced neurotoxicity in the developing brain.
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resulting from an increase in nuclear translocation of HDAC4.
HDAC4 interacts with CREB in the nucleus, which results
in an impairment in transcriptional activation of CREB and
a decrease in the expression levels of BDNF and c-Fos (Sen
and Sen, 2016). In an isoflurane-exposed maternal-fetal rat
model, overexpression of HDAC2 induced the subsequent
downregulation of CREB and was associated with spatial learning
and memory impairments in the offspring (Luo et al., 2016).
These changes were reversed by suberoylanilide hydroxamic acid
(SAHA), a HDAC inhibitor marketed as Vorinostat which is
FDA-approved for the treatment of leukemia (Witt et al., 2012),
which was administered to the offspring before assessing learning
and memory tested by the Morris water maze (Luo et al., 2016).

Non-coding RNAs
Non-coding RNAs (ncRNAs) (Hombach and Kretz, 2016)
represent a large and heterogeneous family of RNA molecules
that do not encode proteins. Non-coding RNAs are loosely
classified into two major classes: short (<200 nucleotides) and
long (>200 nucleotides) ncRNAs. The description of multiple
kinds of ncRNAs is exponentially increasing and it is now
widely accepted that ncRNAs play major biological roles in
a myriad of processes, ranging from embryonic development
to aging. Micro RNAs (miRNAs) and long non-coding RNAs
(lncRNAs) represent the best-characterized of the ncRNAs.
Since they function as crucial regulators in gene expression,
it is not surprising that dysregulations in miRNAs and/or
lncRNAs activity are associated with many complicated human
disorders including functional cognitive disorders caused by
anesthetics.

Alterations in miRNA and lncRNA activity have been reported
after inhaled and/or intravenous anesthetic exposure (Sun and
Pei, 2015; Chen et al., 2016; Ye et al., 2016). These alterations may
change the expression of related pathological intermediates in
anesthetic-induced developmental neurotoxicity, suggesting that
ncRNA-based signaling may be a novel target for preventing this
neurotoxicity. One example is the neuronal microRNA, miR-124,
which is upregulated in ketamine-induced neurodegeneration
in mouse hippocampus (Xu et al., 2015). Knocking down
miR-124 in vitro reduces ketamine-induced apoptosis in
hippocampal CA1 neurons through upregulating α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor
phosphorylation and activating PKC/ERK pathway (Xu et al.,
2015). Mice subjected to hippocampal miR-124 inhibition
in vivo showed improved memory performance (Xu et al.,
2015). Another example is miR-21 which is down-regulated in
propofol-treated human embryonic stem cell-derived neurons
and regulates Sprouty 2 expression (Twaroski et al., 2014).
A signal transducer and activator of transcription 3/miR-
21/Sprouty 2/Akt-dependent mechanism is considered to be
involved in propofol-induced cell death (Twaroski et al., 2014).
BDNF antisense RNA (BDNF-AS) is one discovered functional
lncRNA which inhibits the expression of BDNF (Modarresi
et al., 2012). BDNF-AS is upregulated in ketamine-injured mouse
embryonic neural stem cell-derived neurons, while BDNF is
downregulated (Zheng et al., 2016). Downregulation of BDNF-
AS protects neurons against apoptosis and promotes neurite

outgrowth, possibly via the activation of the BDNF-TrkB
signaling pathway (Zheng et al., 2016). Additional changes to
ncRNAs are also reported in various models of anesthesia-
induced neurotoxicity (Jiang et al., 2014; Cao et al., 2015; Sun and
Pei, 2016; Song et al., 2017; Zhou et al., 2017).

Additionally, circular RNAs (circRNAs) belong to a new class
of ncRNA molecules that are highly abundant in the brain and
influence the regulation of gene expression (Hansen et al., 2013).
Many circRNAs change their abundance abruptly corresponding
to the timing of synaptogenesis (You et al., 2015). Studies have
suggested that circRNAs may regulate synaptic plasticity and
neuronal function (Szabo et al., 2015; van Rossum et al., 2016).
Some studies have provided an insight into the function of
circRNAs in neurodegenerative diseases, such as Alzheimer’s
disease and Parkinson’s disease (Floris et al., 2016), and the
neurotoxic effects observed in animals exposed to anesthetics.
Evidence includes histological changes in neurodegenerative
changes. These provide new insights into the possible association
of circRNA dysregulation with anesthesia-induced neurotoxicity,
although to date the literature is limited. For example, circRNAs
can function as miRNA sponges (Hansen et al., 2013) and
miRNAs involved in anesthesia-induced neurotoxicity may get
inhibited by some unknown circRNAs.

Epigenetic Crosstalk
In addition to the independent regulation by individual
epigenetic mechanisms, it is interesting that an epigenetic
crosstalk, i.e., interplay between DNA methylation and histone
methylation (Du et al., 2015), may be involved in the processes of
modulating disease-associated genomic loci and gene products.
Collaborative activities of different epigenetic modifications
could result in a common outcome, gene transcription or gene
silencing. For example, methyl-CpG-binding protein 2 (MeCP2)
is believed to function as a transcriptional repressor by binding
to methyl-CpG, recruiting chromatin remodeling proteins, and
further suppressing the expression of genes. MeCP2 integrates
DNA methylation and histone acetylation at the BDNF gene
suppression induced by anesthesia in neonatal rats via enhanced
interaction with DNMT1 and HDAC2 (Wu et al., 2016).

CONCLUSION

So far, conflicting data exist about the effect of anesthetic
agents on neurodevelopment in humans and no definite
conclusion has been given yet. Although general anesthetics
have been considered neuroprotective in pre-clinical studies
(Nunes et al., 2013; Zaugg et al., 2014), the effect of anesthesia-
related neurotoxicity remains an area of concern. The most
recent studies suggest a novel epigenetic-related mechanism by
which anesthetic-induced neuronal toxicity in developing human
neurons and animal models (Figure 1). Success of therapeutic
intervention using epigenetic modifiers such as DNMT inhibitors
and HDAC inhibitors implicates that the epigenetic intervention
is promising as potential targeted therapies aimed at mitigating
neurotoxic effects of anesthetics in developing brain (Figure 1).
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Further research is needed to fully elucidate the epigenetic basis
and its role in this field.
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