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Logical models offer a simple but powerful means to understand the complex

dynamics of biochemical regulation, without the need to estimate kinetic parameters.

However, even simple automata components can lead to collective dynamics that

are computationally intractable when aggregated into networks. In previous work

we demonstrated that automata network models of biochemical regulation are

highly canalizing, whereby many variable states and their groupings are redundant

(Marques-Pita and Rocha, 2013). The precise charting and measurement of such

canalization simplifies these models, making even very large networks amenable to

analysis. Moreover, canalization plays an important role in the control, robustness,

modularity and criticality of Boolean network dynamics, especially those used to model

biochemical regulation (Gates and Rocha, 2016; Gates et al., 2016; Manicka, 2017). Here

we describe a new publicly-available Python package that provides the necessary tools

to extract, measure, and visualize canalizing redundancy present in Boolean network

models. It extracts the pathways most effective in controlling dynamics in these models,

including their effective graph and dynamics canalizing map, as well as other tools to

uncover minimum sets of control variables.

Keywords: Boolean networks, automata, canalization, python package, biochemical regulation, logical modeling,

network dynamics, complex systems

1. A TOOL TO STUDY REDUNDANCY AND CONTROL IN
BOOLEAN NETWORKS

Mathematical and computational modeling of biological networks promises to uncover the
fundamental principles of living systems in an integrative manner (Iyengar, 2009; Ideker and
Nussinov, 2017). In particular, Boolean Networks (BN), a class of logical dynamical systems,
provide an effective framework to capture the dynamics of interconnected biological systems
without the need for detailed kinetic parameters (Bornholdt, 2005; Assmann and Albert, 2009). BN
have been used to model and predict biochemical regulation in genetic networks (Li et al., 2004),
cell signaling (Helikar et al., 2008), chemical reactions in metabolic networks (Chechik et al., 2008),
anticancer drug response (Choi et al., 2017), action potentials in neural networks (Kurten, 1988),
and many other dynamical systems involved in biomedical complexity (Albert and Othmer, 2003).

Two reasons contribute to the success of BN models: (i) the reduction of complex
multivariate dynamics to a graph revealing the organization and constraints of the topology
of interactions in biological systems, and (ii) a coarse-grained treatment of dynamics
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that facilitates predictions of limiting behavior and robustness
(Bornholdt, 2008). However, more than understanding the
organization of complex biological systems, we need to derive
control strategies that allow us, for example, to intervene on
a diseased cell (Zhang et al., 2008), or revert a mature cell
to a pluripotent state (Wang and Albert, 2011). Recently,
several mathematical tools were developed to enhance our
understanding of BN control by removing redundant pathways,
identifying key dynamic modules (Marques-Pita and Rocha,
2013), and characterizing critical driver variables (Gates and
Rocha, 2016).

Here we present CANA1, a python package to study
redundancy and control in BN models of biochemical dynamics
(Correia et al., 2018). It provides a simple interface to access
computational tools for three important aspects of BN analysis
and prediction:

1. Dynamics. Python classes are included to enumerate all
attractors and calculate the full state transition graph (STG) of
BN, as described in section 2.

2. Canalization. The redundancy properties of automata
functions have been characterized as a form of canalization
(Kauffman, 1984), particularly when used to model dynamical
interactions in models of genetic regulation and biochemical
signaling (Kauffman et al., 2004; Reichhardt and Bassler, 2007;
Marques-Pita and Rocha, 2013). At the level of individual
Boolean transition functions (network nodes), canalization is
observed when not all inputs are necessary to determine a
state transition (see section 3 for formal definition). CANA
can be used to calculate all measures of canalization that
derive from removing dynamical redundancy via two-symbol
schemata re-description (Marques-Pita and Rocha, 2013):
effective connectivity, input redundancy, and input symmetry.
At the network level, CANA also calculates the effective graph,
a weighted and directed graph whose edge weights denote
their effective contribution to node transitions, as well as
the dynamics canalizing map, a parsimonious representation
of the necessary and sufficient state transitions that define
the entire dynamics of BN. All canalization measures and
network representations are applicable to synchronous and
asynchronous BN models, as described in section 3.

3. Control. From a subset of driver variables—nodes that
act as the loci of control interventions—CANA computes
the controlled state transition graph (CSTG), as well as the
controlled attractor graph (CAG) capturing all controlled
transitions between attractors possible via driver variable
interventions (Gates and Rocha, 2016). CANA also computes
measures of controllability that depend on the CSTG and
CAG:mean fraction of reachable configurations,mean fraction
of controlled configurations, and mean fraction of reachable
attractors, as described in section 4. Currently, control analysis
in CANA is applicable only to synchronous BN models.

Here we demonstrate the full functionality of the CANA package
using the BN model of floral organ development in the flowering

1CANAlization: Redundancy & Control in Boolean Networks. For documentation

and tutorials (see available online at: github.com/rionbr/CANA)

plant Arabidopsis thaliana (Chaos et al., 2006). Additionally,
we provide an interface between CANA and the Cell Collective
(Helikar et al., 2012), allowing for an extensive analysis of control
and canalization in complex biological systems.

The CANA package fills a key void in the available library
of computational software to analyze Boolean Network models.
Existing software falls into two categories: either they are
designed to reverse engineer BN models from biological
experimental data, or they focus on simulating BN dynamics.
Examples of the first category include the CellNetOptimizer
which creates BN from high-throughput biochemical data
(Terfve et al., 2012), and the Dynamic Deterministic Effects
Propagation Networks (DDEPN) package which reconstructs
signaling networks based from time-course experimental data
(Bender et al., 2010). The second category of BN simulation
packages is best exemplified by BooleanNet, a python package
that simulates both synchronous and asynchronous dynamics
(Albert et al., 2008), and PANET, a Cytoscape plugin that
quantifies the robustness of BN models (Trinh et al., 2014).
The Cell Collective, a collaborative platform and intuitive visual
interface to share and build BN models, can also be used to
simulate BN dynamics (Helikar et al., 2012). The CANA package
expands the set of available tools of the second category, by
providing Python classes to calculate measures and visualizations
of canalization (dynamical redundancy) and control of BN
models, as detailed below. CANA is designed as a toolbox for
both computational and experimental system biologists. It
enables the simplification of BN models and testing of network
control algorithms, thus prioritizing biochemical variables
more likely to be relevant for specific biological questions (e.g.,
genes controlling cell fate), and ideal candidates for knockout
experiments.

2. BOOLEAN NETWORK
REPRESENTATION AND DYNAMICS

A Boolean automaton is a binary variable, x ∈ {0, 1}, whose state
is updated in discrete time-steps, t, according to a deterministic
Boolean state-transition function of k inputs: xt+1 = f (xt1, ..., x

t
k
).

The state-transition function, f : {0, 1}k → {0, 1}, is defined by
a look-up (truth) table (LUT), F ≡ {fα : α = 1, ..., 2k}, with
one entry for each of the 2k combinations of input states and a
mapping to the automaton’s next state (transition or output), xt+1

(Figure 1A). In CANA, a Boolean automaton—a python class
denoted BooleanNode—is instantiated from the list of transitions
that define its LUT.

A Boolean Network is a graph B ≡ (X,C), where X is a set
of N Boolean automata nodes xi ∈ X, i = 1, ...,N and C is
a set of directed edges cji ∈ C : xi, xj ∈ X that represent the
interaction network, denoting that automaton xj is an input to
automaton xi, as computed by Fi. The set of inputs for automaton
xi is denoted by Xi = {xj ∈ X : cji ∈ C}, and its cardinality,
ki = |Xi|, is the in-degree of node xi. At any given time t, B is in
a specific configuration of automata states, xt = 〈xt1, x

t
2, ..., x

t
N〉,

where we use the terms state for individual automata (xti ) and
configuration (xt) for the collection of states of all automata of
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FIGURE 1 | CANA analysis of the Boolean automaton defining the dynamics of the TFL1 gene in the BN model of the floral organ arrangement in the flowering plant

Arabidopsis Thaliana. (A) Look-up-table (LUT). (B) Wildcard schema redescription, F ′(TFL1). Wildcards are denoted by gray states. As an example, schema f ′4
redescribes the subset of LUT entries ϒ4 ≡ {f5, f6}, where the input variable AP2 can be either on or off. (C) Two-symbol schema redescription, F ′′ (TFL1).

Permutation of the inputs marked with the position-free symbol (◦) in any schema of F ′′(TFL1) result in a wildcard schema in F ′(TFL1). For example, f ′′2 redescribes

2′
2 ≡ {f ′2, f

′
3}. (D) In-degree (k), input redundancy (kr ), input symmetry (ks), and effective connectivity (ke) of TFL1 automaton. Values in parenthesis are the respective

(relative) measures normalized by k, used for comparisons between automata with different number of inputs. (E) Canalizing Map (CM) of automaton TFL1, with its

two possible states, TFL1 ∈ {0, 1}, shown as circles with red contour; white (black) fill color denotes state 0 (1). Input variables and their respective state are also

shown as circles (s-units) with the same color criterion, and link to t-units shown as blue diamonds with corresponding threshold value inside; thus, TFL1 requires 3

input conditions (LFY = 0 ∧ EMF1 = 1 ∧ AP1 = 0) to turn on (TLF1 = 1), but only one (EMF1 = 0 ∨ AP1 = 1 ∨ LFY = 1) to turn off (TLF1 = 0); ∧ and ∨ denote the

logical conjunction (and) and disjunction (or), respectively. Network rendering generated with Graphviz (Ellson et al., 2002).

the BN at time t, i.e. the collective network state. The set of
all possible network configurations is denoted by X ≡ {0, 1}N ,
where |X | = 2N . The dynamics of B unfolds from an initial
configuration, x0, by a synchronous, update policy in which all
automata transition to the next state at the same time step, or
an asynchronous update policy, in which automata update their
next step in distinct time steps according to some update schedule
(e.g. stochastically). The complete dynamical behavior of the
system for all initial conditions is captured by the state-transition
graph (STG), G ≡ STG(B) = (X , T ), where each node is a
configuration xα ∈ X , and an edge Tα,β ∈ T denotes that a BN in
configuration xα at time t will be in configuration xβ at time t+1.
Under deterministic dynamics, only a single transition edge Tα,β

is allowed out of every configuration node xα . Configurations

that repeat, such that x
t+µ
α = x

t
β , are known as attractors and

differentiated as fixed-point attractors when µ = 1, and limit
cycles when µ > 1, respectively. Because G is finite, it contains
at least one attractor, as some configuration or limit cycle must
repeat in time (Wuensche, 1998).

In CANA, a python class named BooleanNetwork represents
a BN, and is instantiated from a dictionary containing the
transition functions (LUT) of all its constituent automata nodes,

or loaded from a file. We also provide several predefined example
BN models that can be directly loaded: the Arabidopsis Thaliana
gene regulatory network (GRN) of flowering patterns (Chaos
et al., 2006), a simplified version of the segment polarity GRN of
Drosophila melanogaster (Albert and Othmer, 2003), the Budding
Yeast cell-cycle regulatory network (Li et al., 2004), and the
BN motifs analyzed in Gates and Rocha (2016). Beyond the
aforementioned networks, our current release also incorporates
all publicly available networks in the Cell Collective repository
(Helikar et al., 2012). These were loaded from the Cell Collective
API and converted into truth tables that can be read by CANA2.
Our package has two built-in methods available to compute
network dynamics: for relatively small BN (N < 30) the full
state-space can be computed, whereas for larger BN, CANA
uses a Boolean satisfiability (SAT-based) algorithm, capable of
enumerating all attractors in a BN with thousands of variables
(Dubrova and Teslenko, 2011).

2Future releases will provide a direct link to the Cell Collective API for conversion

of Cell Collective models. Currently, models are converted to .CNET (truth table)

format, and subsequently imported to CANA.
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3. CANALIZATION

Important insights about BN dynamics are gained by observing
that not all inputs to an automaton are equally important
for determining its state transitions, a concept known as
canalization (Reichhardt and Bassler, 2007). Originally, the term
was proposed byWaddington (1942) and subsequently refined to
characterize the buffering of genetic and epigenetic perturbations
leading to the stability of phenotypic traits (Siegal and Bergman,
2002; Masel and Maughan, 2007; ten Tusscher and Hogeweg,
2009). Understanding how canalization occurs in a given BN
model allows us to uncover and remove redundancy present in
the pathways that control its dynamics. In CANA, we follow
Marques-Pita and Rocha (2013) by quantifying canalization
through the logical redundancy present in automata. Specifically,
we use the Quine-McCluskey Boolean minimization algorithm
(Quine, 1955) to identify those inputs of an automaton which are
redundant given the state of its other inputs, thus reducing its
LUT to a set of prime implicants. The prime implicants are in turn
combined to create wildcard schemata, F′ ≡ {f ′υ}, in which the
wildcard or “Don’t care” symbol, # (also represented graphically
in gray) denotes an input whose state is redundant given the state
of other necessary input states. In this process, the original LUT F
(Figure 1A) is redescribed by a more compressed set of schemata
F′ (Figure 1B). Every wildcard schema f ′υ ∈ F′ redescribes a
subset of entries in the original LUT, denoted by ϒυ ≡ {fα : fα 

f ′υ} ⊆ F;  means ‘is redescribed by’. Finally, CANA also
calculates the two-symbol schemata redescription, F′′ ≡ {f ′′θ },
whereby in addition to the wildcard symbol, a position-free
symbol, ◦, further captures permutation redundancy (i.e., group-
symmetry): subsets of inputs whose states can permute without
affecting the automaton’s state (Figure 1C). Every two-symbol
schema f ′′θ ∈ F′′ redescribes a set 2θ ≡ {fα : fα  f ′′θ } ⊆ F of
LUT entries of automaton x.

Several measures of canalization present in the LUT of an
automaton are also defined in CANA, and can be accessed by
function calls to both the BooleanNode and BooleanNetwork
classes. Input redundancy, kr(x), measures the number of inputs
that on average are not needed to compute the state of automaton
x. This is measured by tallying the mean number of wildcard
symbols present in the set of schemata F′(x) or F′′(x) that
redescribe the LUT F(x) (Equation 1). Effective connectivity, ke, is
a complementary measure of kr(x) yielding the number of inputs
that are on average necessary to compute the automaton’s state
(Equation 1). Whereas k(x) is the number of inputs to automaton
x present in the BN, ke(x) is the minimum number of such inputs
that are on average necessary to determine the state of x—its
effective connectivity or degree. Similarly, input symmetry, ks(x),
is the mean number of inputs that can permute without effect
on the state of x. It is measured by tallying the mean number of
position-free symbols present in F′′(x) (Equation 1):

kr(x) =

∑

fα∈F

max
υ : fα∈ϒυ

(

n#υ
)

|F|
, ke(x) = k(x)− kr(x) ,

ks(x) =

∑

fα∈F

max
θ : fα∈2θ

(

n◦θ
)

|F|
(1)

where n#υ and n◦θ are the number of inputs with a # or ◦

in schema f ′υ or f ′′θ , respectively
3. Figure 1D shows the values

of these measures for the LUT of the TFL1 gene in the
thaliana GRN model. Additional algorithmic details of the two
forms of canalization, as well as their importance to study
control, robustness, andmodularity of BNmodels of biochemical
regulation, are presented in Marques-Pita and Rocha (2013).
Next we introduce new per-inputmeasures of canalization as well
as the effective graph, which CANA also computes.

Most automata contain redundancy of one or both of the
two forms of canalization; only the two parity functions for any
k have kr = 0 (e.g., the XOR function and its negation for
k = 2), and even those can have ks > 0. Therefore, the original
interaction graph of a BN tends to have much redundancy and
does not capture how automata truly influence one another in
a BN. To formalize this idea, the CANA package computes an
effective graph, E ≡ (X,E), where X is as in section 2 and E is
a set of weighted directed edges eji ∈ [0, 1]∀xi, xj ∈ X denoting
the effectiveness of automaton xj in determining the truth value
of automaton xi, and computed via Equation 2. Specifically,
we define per-input measures of canalization for redundancy,
effectiveness, and symmetry, respectively:

rji =

∑

fα∈Fi

avg
υ : fα∈ϒ i

υ

(

j  #
)

υ

|Fi|
, eji = 1− rji ,

sji =

∑

fα∈Fi

avg
θ : fα∈2i

θ

(

j  ◦
)

θ

|Fi|
(2)

where (j  #)υ is a logical condition that assumes the truth
value 1(0) if input j is (not) a wildcard in schema f ′υ , and similarly
for (j  ◦)θ for a position-free symbol in schema f ′′θ ; avg is the
average operator. Naturally, kr(xi) =

∑

j rji, ke(xi) =
∑

j eji, and

ks(xi) =
∑

j sji.

The effective graph was shown to be important in predicting
the controllability of BN (Gates and Rocha, 2016). Furthermore,
the mean ke of BN (the mean in-degree of the effective graph) is
a better predictor of criticality than the in-degree of the original
interaction graph (Manicka, 2017), improving the existing theory
for predicting criticality in BN (Aldana, 2003). Those results
suggest that Natural Selection can select for canalization, thereby
enhancing the stability and controllability of networks with
high connectivity, that would otherwise exist in the chaotic
regime (Gates et al., 2016; Manicka, 2017). As an example,
the interaction and effective graphs of the Thaliana GRN BN
model, as computed by CANA, are shown in Figures 2A,B,
demonstrating that much redundancy exists in the original
model. The most extreme case of redundancy occurs when an
input from xj to automaton xi exists in the original interaction
graph C, cji = 1, but not in the effective graph E , eji = 0, because

3kr and ke can be computed on either set of schemata F′ (as in Equation 1) or F′′ (as

in Marques-Pita and Rocha 2013), yielding the same result; ks must be computed

on F′′.
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FIGURE 2 | BN model of the floral organ arrangement in the flowering plant Arabidopsis Thaliana. (A) Interaction graph C. (B) Effective graph E, where edge weights

denote eji (Equation 2). Some edges, originally in C, are completely removed in E (e.g., AG→AG, AP1→AG, and AP2→TFL1). Others, have very small effectiveness

(e.g., AP1→PI and CLF→AG). (C) Dynamics Canalization Map (DCM) representing the entire logic of interactions after removal of redundancy. Original BN automata

nodes appear twice in the DCM, once for each Boolean truth value and denoted as s-unit, white (0) or black (1) circles. When s-units are determined by another single

s-unit, for simplicity and without loss of generality, they are connected with a beige directed edge—a simplification to avoid the rendering of a t-unit with a threshold of

one. All other variable state determinations occur via t-units with larger threshold values. Red edges represent outputs from t-units to s-units: a state determination of

the receiving s-unit, after the logical condition of the t-unit is met.All other (blue or green) edges denote inputs from s-units to t-units, that is, the sufficient conditions

for a state determination. Blue edges denote group disjunction constraints, whereby conditions captured by s-units can merge because any one of the merging

conditions is sufficient [e.g., (TFL = 0 ∨ EMF1 = 0) → LFY = 1]. Green edges denote independent and necessary conditions. Directed edges into s-units are

denoted by arrows, while directed edges into t-units are denoted by small circles. Network rendering by Graphviz (Ellson et al., 2002).

it is fully redundant and does not affect the automaton’s transition
(see several such cases in Figures 2A,B).

The canalizing logic of an automaton provided by the
schemata set F′′, can also be represented as a McCulloch and
Pitts (1943) threshold network, named a Canalizing Map (CM)
in Marques-Pita and Rocha (2013). Figure 1E depicts the CM

for the TFL1 gene. It consists of two types of nodes: state
units (s-unit, denoted by circles), which represent automata in
one of the Boolean truth values (xi = 0, white, or xi = 1,
black), and threshold units (t-unit, denoted by diamonds), which
implement a numerical threshold condition on its inputs. When
the CM of all automata of a BN are linked, we obtain the
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Dynamics Canalization Map (DCM), as shown in Figure 2C

for the Thaliana GRN. Directed fibers connect nodes and
propagate an activation pulse; fibers can merge and split, but
each end-point always contributes one pulse to an s-unit. The
DCM is a highly parsimonious representation of the dynamics
of a BN. It contains only necessary information about how
(canalizing) control signals determine network dynamics. It
enables inferences about control, modularity and robustness to
be made about the collective (macro-level) dynamics of BN
(Marques-Pita and Rocha, 2013). Because it is assembled using
solely the micro-level canalizing logic of individual automata,
its computation scales linearly with the number of nodes of the
network, and thus it can be computed for very large networks.
The computational bottleneck can only be the number of inputs
(k) to a particular automaton, since the Quine–McCluskey
algorithm grows exponentially with the number of variables.
Functions with a large number of variables have to be minimized
with heuristic methods such as Espresso (Brayton et al., 1984).
Because all measures of canalization, as well as the effective graph
and the DCM, derive from removing dynamical redundancy
at the level of individual automata, they are independent from
the updating regime chosen for the network. In other words,
the canalization analysis is applicable to synchronous and
asynchronous BN models.

4. CONTROL

The discovery of control strategies in BN models is a
central problem in systems biology; theoretical insights

about controllability can enhance experimental turnover by
focusing experimental interventions on genes and proteins
more likely to result in the desired phenotype output. It
is well-known that when the set of automata nodes X of
a BN is large, enumeration of all configurations x ∈ X

of its STG becomes difficult, making the controllability of
deterministic BN an NP-hard problem (Akutsu et al., 2007).
Thus control methodologies which leverage the interaction
graph or remove the redundancy in canalizing automata
are highly desirable, since they can greatly simplify BN
complexity.

CANA contains Python functions designed to provide a
testbed for the development of BN control strategies, and to
investigate the interplay between canalization, control, and other
dynamics properties. Specifically, we study the control exerted
on the dynamics of a BN, B = (X,C), by a subset of driver
variables D ⊆ X—a subset of automata nodes of B. Control
interventions are realized by instantaneous bit-flip perturbations
to the state of the variables inD (Willadsen andWiles, 2007). This
results in a controlled state transition graph, CSTG(B) ≡ GD ≡

(X , T ∪ TD), which is an extension of the STG that captures all
possible trajectories due to controlled interventions on D (Gates
and Rocha, 2016). The additional edges TD denote transitions
from every configuration to a set of 2|D| − 1 configurations in the
STG, which are reachable given the bit-flip perturbations of the
driver variables. A BN is controllable when every configuration is
reachable from every other configuration in GD (Sontag, 1998), a
condition equivalent to requiring that the CSTG GD be strongly
connected.

FIGURE 3 | (A) Control of the BN model of gene regulation involved in the floral organ development in the Arabidopsis thaliana plant for all driver variable subsets of

size |D| = 1, |D| = 2, |D| = 3, and |D| = 4. (inset) The mean fraction of reachable attractors AD for each singleton drive variable set. The driver variable subsets

predicted by structural controllability to fully control the network are highlighted in red and labeled T 1 and T 2. The three variable subset with all three root variables is

highlighted in yellow and labeled T 0. Reproduced from Gates and Rocha (2016) under Creative Commons Attribution 4.0 International (CC BY 4.0) license. (B) The

CAG with driver variables D = {UFO, LUG,CLF, SEP, TFL1}. Each large blue node A1, . . . , A10 represents an attractor of the network dynamics. The BN

configurations for steady-state attractors A3 and A5 are shown as interaction graphs with node variables colored white or black for states xi = 0 and xi = 1,

respectively; driver variables are shown with a yellow contour.
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CANA computes the CSTG of B given a driver set D,
which in turn is used to calculate the mean fraction of
reachable configurations, RD, and the mean fraction of controlled
configurations, CD, (Gates and Rocha, 2016):

RD =
1

2N

∑

xα∈X

r(GD, xα) , CD = RD − R∅ . (3)

where, for each configuration xα , r(GD, xα) is the fraction
of reachable configurations, defined as the number of other
configurationsXβ lying on all directed paths from xα , normalized
by the total number of other configurations 2N−1. Similarly,
the fraction of controlled configurations counts the number of
new configurations that are reachable due to interventions to
D, but were not originally reachable in the STG: c(GD, xα) =

r(GD, xα) − r(G, xα). When a BN is fully controlled by D, RD =

1.0, but for partially controlled BNs RD ∈ [0.0, 1.0); note that
CD ≤ RD.

In Systems Biology applications, typically only the attractors
of BN are meaningful configurations, used to represent different
cell types (Kauffman, 1969, 1993; Müller and Schuppert, 2011),
diseased or normal conditions (Zhang et al., 2008), and wild-
type or mutant phenotypes (Albert and Othmer, 2003). In this
context, a more relevant control measure is the extent to which
driver variables can steer dynamics from attractor to attractor. To
quantify such control, CANA computes the controlled attractor
graph (CAG) of a BN B : CD = (A,ZD). The nodes of this graph,
Aκ ∈ A, represent an attractor of B, and each edge zκγ ∈ ZD,
denotes the existence of at least one path from attractor Aκ to
attractor Aγ in the CSTG GD (Figure 3B). The mean fraction of
reachable attractors is then given by

AD =
1

|A|

∑

Aκ∈A

r(CD,Aκ ) (4)

where κ = 1 . . . |A| (Gates and Rocha, 2016). Since this notion
of control depends only on the enumeration of attractors, CANA
can leverage a SAT-based bounded model algorithm to quantify
the mean fraction of reachable attractors in a BN with thousands
of variables (Dubrova and Teslenko, 2011). Figure 3A shows the
values of RD and AD for various sizes of driver sets D in the
Thaliana GRN.

Finally, CANA also provides the functionality to approximate
the minimal driver variable subset using two prominent network
control methodologies: Structural Controlability (SC) (Lin, 1974;
Liu et al., 2011) and Minimum Dominating Set (MDS) (Nacher,
2012; Nacher and Akutsu, 2013).

5. SUMMARY AND CONCLUSION

We presented a novel, open-source and publicly-available
software platform that integrates the analytic methodology
used to study canalization in automata network dynamics.
This methodology can now be used by others to simplify
large automata networks, especially those in models of
biochemical regulation dynamics. In addition to the extraction
and visualization of specific effective pathways that regulate
key phenotypic outcomes in a sea of redundant interaction,
CANA includes functionality to measure canalization, uncover
control variables, and study dynamical modularity, robustness,
and criticality. We hope that the consolidation of redundancy
and control algorithms into one package encourages other
researchers to build upon our work on canalization, thus adding
additional algorithms to CANA.
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