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The mammalian body is a complex physiologic “ecosystem” in which cells compete
for calories (i.e., nutrient-energy). Axiomatically, cell-types with competitive advantages
acquire a greater number of consumed calories, and when possible, increase in
size and/or number. Thus, it is logical and parsimonious to posit that obesity is the
competitive advantages of fat-cells (adipocytes) driving a disproportionate acquisition
and storage of nutrient-energy. Accordingly, we introduce two conceptual frameworks.
Asymmetric Nutrient-Energy Partitioning describes the context-dependent, cell-specific
competition for calories that determines the partitioning of nutrient-energy to oxidation,
anabolism, and/or storage; and Effective Caloric Intake which describes the number
of calories available to constrain energy-intake via the inhibition of the sensorimotor
appetitive cells in the liver and brain that govern ingestive behaviors. Inherent in
these frameworks is the independence and dissociation of the energetic demands
of metabolism and the neuro-muscular pathways that initiate ingestive behaviors and
energy intake. As we demonstrate, if the sensorimotor cells suffer relative caloric
deprivation via asymmetric competition from other cell-types (e.g., skeletal muscle- or
fat-cells), energy-intake is increased to compensate for both real and merely apparent
deficits in energy-homeostasis (i.e., true and false signals, respectively). Thus, we
posit that the chronic positive energy balance (i.e., over-nutrition) that leads to obesity
and metabolic diseases is engendered by apparent deficits (i.e., false signals) driven
by the asymmetric inter-cellular competition for calories and concomitant differential
partitioning of nutrient-energy to storage. These frameworks, in concert with our
previous theoretic work, the Maternal Resources Hypothesis, provide a parsimonious
and rigorous explanation for the rapid rise in the global prevalence of increased body
and fat mass, and associated metabolic dysfunctions in humans and other mammals
inclusive of companion, domesticated, laboratory, and feral animals.
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INTRODUCTION

“Frustra fit per plura, quod potest fieri per pauciora” [It is futile to
do with more that which can be done with less].

William of Occam (Thorburn, 1918)

Although obesity is described as a complex phenomenon
of disputed etiology (Archer et al., 2018), the defining
characteristic is an excess of body-fat mass (Schwartz et al.,
2017) attributable to a greater number and/or size of fat-cells
(adipocytes) relative to other cell-types (Brook et al., 1972;
Salans et al., 1973; Knittle et al., 1979; Sjostrom and William-
Olsson, 1981). Thus, it is logical and parsimonious to posit
that the etiology of obesity is simply the result of physiologic
processes that increase fat-cell number, size, or both. Since
it is well-established that in utero development and positive
energy balance are two such processes (Greene, 1939; Ingle,
1949; Mayer et al., 1954, 1956; Hill and Peters, 1998; Hill
et al., 2003; Hill, 2006; Sun et al., 2011; Archer et al., 2013b,
2018; Archer, 2015a,b,c, 2018; Shook et al., 2015; Archer and
McDonald, 2017), in this paper we extend our previous theoretic
work, the Maternal Resources Hypothesis (Archer, 2015a,b,c,d;
Archer and McDonald, 2017), by introducing two conceptual
frameworks. The first, Asymmetric Nutrient-Energy Partitioning
describes the context-dependent, cell-specific competition for
calories that determines the partitioning of nutrient-energy
to oxidation, anabolism, and/or storage. The second, Effective
Caloric Intake describes the quantity of calories (i.e., nutrient-
energy) available to constrain energy-intake via the inhibition
of the sensorimotor cells that initiate ingestive behaviors (i.e.,
energy-sensing appetitive neuro-muscular networks in the liver
and brain) (Langhans, 1996; Schwartz et al., 2000; Friedman,
2008; Allen et al., 2009; Woods, 2009). These frameworks are
extensions of the ecological principles of exploitative and/or
interference competition (Case and Gilpin, 1974; Weiner, 1990;
Bourlot et al., 2014), and are founded upon well-established
physiologic principles.

Briefly, we posit that the context-dependent inter-cellular
competition for calories results in an asymmetric nutrient-energy
partitioning that reduces the effective caloric intake of each meal.
The relative lack of calories available to the energy-sensing,
sensorimotor cells in the liver and brain initiates ingestive
behaviors and energy intake. Inherent in this conceptualization
is the independence and dissociation of the energetic demands
of metabolism and the neuro-muscular networks that initiate
ingestive behaviors and concomitant energy intake. The de-
coupling of the initiation of ingestive behaviors from metabolic
demands explains why individuals with substantial amounts of
stored energy continue to chronically consume calories in excess
of metabolic demands (i.e., over-nutrition).

While there are numerous phenomena that reduce effective
caloric intake and lead to chronic increments in energy intake
(e.g., exercise, puberty, and pregnancy), we posit that excessive
fat-cell hyperplasia and physical inactivity are unique in that
they unbalance metabolic-flux (i.e., the flow of nutrient-energy
into and out cells) and by doing so, engender false signals of
short-term energy homeostasis that cause more energy to be

consumed and stored than expended. This leads to diminished
insulin sensitivity, and increments in both body and fat mass,
and metabolic diseases. Thus, our frameworks in concert with
the Maternal Resources Hypothesis provide a parsimonious and
physiologically rigorous explanation for the rapid rise in the
global prevalence of increased body and fat mass, and/or
metabolic dysfunction in humans and other mammalian species,
inclusive of companion, laboratory, farm, and feral animals
(Herberg and Coleman, 1977; Flather et al., 2009; Klimentidis
et al., 2011; Ertelt et al., 2014; Hoenig, 2014; Sandoe et al., 2014;
NEHS, 2015).

THE CONCEPTUAL FRAMEWORK OF
ASYMMETRIC NUTRIENT-ENERGY
PARTITIONING

Ecological Science
Competition is fundamental to the evolution of biological
organisms (Darwin, 1859), and the asymmetric acquisition of
energy and other resources via exploitative and interference
competition are well-established phenomena (Case and Gilpin,
1974; Weiner, 1990; Bourlot et al., 2014). For example, in
exploitation competition, organisms acquire and use (i.e., exploit)
resources directly so that they are no longer available for use by
other organisms. Thus, competitive advantages allow “individuals
[to] obtain a disproportionate share of the resources. . .and
suppress the growth of smaller individuals” (Weiner, 1990, p. 360).
Given this foundation, our framework of asymmetric nutrient-
energy partitioning extends the ecologic concept of resource
competition from individual organisms to the inter-cellular
competition for calories within the mammalian body.

To be precise, we do not use the competitive acquisition and
exploitation of resources in the natural world as a mere analogy;
rather, we posit that the cell-specific asymmetric competition and
concomitant partitioning of nutrient-energy resources is central
to understanding the rapid rise in global prevalence of obesity
and metabolic disease in human and non-human animals. The
essential element of this framework is the characterization of the
mammalian body as an “ecosystem” in which disparate cell-types
employ a diverse set of context-dependent competitive strategies
to meet their unique demands for nutrient-energy.

Body-as-Ecosystem and the
Competition for Calories
We posit that the mammalian body is a complex, physiologic
“ecosystem” in which survival and health are determined by
metabolic-flux (i.e., the flow of energy through living cells)
(Archer, 2015c, 2018; Archer and McDonald, 2017; Archer et al.,
2018). An organism’s metabolic-flux is determined primarily by
the energetic demands of the constituent populations of cells,
energy-intake behaviors, and the availability of nutrient-energy to
meet metabolic demands. Significant disturbances to metabolic-
flux such as starvation (i.e., insufficient energy-intake relative
to metabolic demands), exhaustion (i.e., excessive metabolic
demands relative to energy intake), and physical inactivity
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(i.e., insufficient metabolic demands relative to energy intake)
increase morbidity and mortality (Mayer, 1953; Mayer et al.,
1954, 1956; Archer and Blair, 2011; Shook et al., 2015; Archer
et al., 2017a, 2018; Archer, 2018).

Within each mammalian body, each cell must compete for
nutrient-energy, and cell-types with competitive advantages will
exploit (i.e., acquire, oxidize, and/or store) a greater percentage
of consumed calories and serum energy substrates (e.g., glucose,
amino and fatty acids) at the expense of less advantaged cell-
types. As a result of the enhanced acquisition, advantaged
cell-types (e.g., skeletal muscle- or fat-cells) will increase in
size and/or number when possible. As discussed in subsequent
sections, competitive strategies are context-dependent and
therefore contingent upon inter- and extra-cellular environments
[e.g., level of serum insulin and energy substrates, glycogen
saturation and/or cellular 5′ adenosine monophosphate-activated
protein kinase (Baron et al., 1988; Claret et al., 2007; Jensen et al.,
2011; Friedrichsen et al., 2013; O’Neill, 2013)].

Furthermore, because the initial populations of the
mammalian ecosystem (i.e., type, number, and quality of
cells) are established during gestation, we posit that early
development (e.g., in utero through puberty) is the critical period
for the construction of the competitive milieu and concomitant
partitioning of nutrient-energy that determine body mass and
metabolic health trajectories from infancy to senescence (Archer,
2015c; Archer and McDonald, 2017).

Asymmetric Competition and Partitioning
The asymmetric inter-cellular competition and concomitant
partitioning of nutrient-energy in mammals are well-established
(Bauman and Currie, 1980; Bell et al., 1987; Ivy, 1987; Baron
et al., 1988; Heymsfield et al., 2006; Halas et al., 2007; Thyfault
et al., 2007; Peters, 2011). Yet with notable exceptions [e.g.,
see (Peters, 2011; Archer, 2015a,b,c,d; Archer and McDonald,
2017)], energy metabolism is not recognized as a cell- and
context-specific competitive process. We argue that because
competition is an essential feature of all levels of biology (i.e.,
from cells to societies), our conceptualization is essential for the
understanding and treatment of obesity and energy-contingent
metabolic diseases (e.g., type 2 diabetes mellitus, T2DM).

The asymmetric competition and partitioning of nutrient-
energy in mammals follows from several physiologic facts. First,
all living cells exhibit metabolic-flux, and therefore require
energy intake to meet metabolic demands. Second, because the
availability of nutrient-energy in the mammalian body is finite,
undulating, and zero-sum (i.e., only one cell can dispose of
any given molecule of an energy substrate), all cells compete to
acquire the nutrient-energy necessary to meet their metabolic
demands. Third, because cells differ in metabolic activity (Elia,
1992), context-dependent cell-specific strategies evolved to meet
the unique energy demands of each cell type (e.g., insulin and
contraction-mediated processes) (Ivy, 1987, 2004; Baron et al.,
1988; DeFronzo, 1988; Ivy and Kuo, 1998; Jensen, 2003; Aas
et al., 2005; Jensen and Richter, 2011; Peters, 2011). Fourth,
because homeostasis and survival necessitated meeting the
energy demands of all cells, the evolution of complex organisms,
such as mammals required the development of sensorimotor (i.e.,

neuro-muscular) networks linking energy-sensing cells in the
liver and brain to the musculoskeletal system. These networks
maintain adequate levels of metabolic-flux by initiating energy-
intake behaviors to meet chronic whole-body metabolic demands
(i.e., the sum of cell-specific energy expenditures over time).
Fifth, a large body of research demonstrates that chronic whole-
body energy expenditure, which is comprised chiefly of the
energetic demands of basal metabolism and physical activity,
is the primary driver of habitual energy-intake (Mayer et al.,
1954; Edholm et al., 1955; Blundell et al., 2003, 2015; Shook
et al., 2015). Therefore, because both basal and physical activity
energy expenditures are driven by cell-specific metabolic activity,
it is logical to conclude that habitual energy-intake is driven
primarily by the asymmetric, cell-specific competition for calories
and the asymmetric partitioning of nutrient-energy to oxidation,
anabolism, and/or storage.

Thus, we posit that in mammals there is an evolutionarily
conserved relation between the sum of cell-specific metabolic
activity over time (i.e., chronic basal and physical activity energy
expenditure) and habitual energy intake. This relation was
implied over two thousand years ago when Aristotle wrote that
the defining characteristic of animals was the necessity of bodily
movement (i.e., physical activity) in order to eat (i.e., energy
intake), and contrasted the daily physical activity of animals with
that of plants, which have the luxury of energy acquisition and
survival despite stasis (Aristotle, 1943).

Cell-Specific Competitive Strategies
While all living cells require and compete for nutrient-
energy, herein we focus primarily on fat- and skeletal muscle-
cells because these cell-types have the greatest influence
on the competitive milieu and concomitant metabolic and
health trajectories of the mammalian body. First, the defining
characteristic of obesity is an excess of body-fat mass (Schwartz
et al., 2017) attributable to a greater number and/or size
of fat-cells (adipocytes) relative to other cell-types (e.g.,
myocytes) (Brook et al., 1972; Salans et al., 1973; Knittle
et al., 1979; Sjostrom and William-Olsson, 1981). Second, unlike
other cell-types, the storage of nutrient-energy in fat-cells is
independent of their metabolic demands. Third, fat-cell plasticity
(i.e., hypertrophic/hyperplastic potential) and capacity to store
nutrient-energy is greater than other cell-types. Fourth, in healthy
(i.e., physically active and insulin sensitive) individuals, the most
successful competitors for serum glucose in the post-prandial
period, and lipids in the post-absorptive period are skeletal
muscle-cells (Baron et al., 1988; Dube et al., 2008; DeFronzo
and Tripathy, 2009; Rabøl et al., 2011). Fifth, the competitive
strategies and storage capacity of skeletal muscle-cells are variable
and dependent on the chronic metabolic demands induced via
physical activity (Ivy and Holloszy, 1981; Ivy, 1987; Jensen
et al., 2011). Sixth, skeletal muscles-cell metabolism is a major
determinant of resting energy expenditure (Zurlo et al., 1990)
and in confluence with cardiac myocytes, is responsible for
nearly 100% of physical activity energy expenditure. Seventh,
alterations in the competitive advantages in skeletal muscle-
cells (e.g., decrements in insulin sensitivity) are the major driver
of metabolic diseases (DeFronzo, 1988; DeFronzo et al., 1992;
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DeFronzo and Tripathy, 2009). Finally, we posit that socio-
environmental evolution over the past century induced the
greatest phenotypic changes in fat- and skeletal muscle-cells
compared with other cell-types (Archer and Blair, 2011; Church
et al., 2011; Archer et al., 2013b,c, 2018; Archer, 2015a,b,c,d, 2018;
Archer and McDonald, 2017).

Competitive Advantages of Skeletal
Muscle-Cells (Myocytes)
Insulin-Induced Competitive Advantages
Numerous context-dependent competitive strategies exist for the
acquisition and storage of nutrient-energy in mammalian skeletal
muscle-cells (myocytes) (Ivy, 1987; Baron et al., 1988; Jensen,
2003). For example, under hyperinsulinemia, the skeletal muscle-
cells of insulin-sensitive individuals dispose of 70–90% of serum
glucose at the expense of other tissues (Thiebaud et al., 1982;
Baron et al., 1988; DeFronzo, 1988; Shulman et al., 1990). In
fact, supra-physiologic doses of insulin (i.e., overdoses) induce
such extreme competitive advantages in skeletal muscle-cells
that neurons in the central nervous system cannot compete and
are deprived of serum glucose. This exploitation competition
results in neuroglycopenia, seizures, coma, and death (Cryer,
2007; Russell et al., 2009). Thus, insulin-dependent (i.e., context-
specific) competitive advantages allow skeletal muscle-cells to
exploit serum glucose at a rate that can deprive non-insulin
dependent cells of nutrient-energy. In the context of starvation,
this competitive advantage increases substantially (Goodman and
Ruderman, 1979; Brady et al., 1981).

Conversely, the skeletal muscle-cells of insulin-resistant
individuals fail to gain competitive advantages under
hyperinsulinemia and dispose of significantly less serum
glucose (DeFronzo, 1988; DeFronzo and Tripathy, 2009),
thereby increasing the availability of glucose to other cell-types.
These results demonstrate that the competitive advantages
and partitioning of nutrient-energy to skeletal muscle-cells are
context-dependent (e.g., serum insulin levels or dose of physical
activity), and exemplify the ecological principles of exploitation
and interference applied to the intercellular competition for
nutrient-energy.

Physical Activity-Induced Competitive Advantages
Physical activity is the major modifiable determinant of the
competitiveness and concomitant asymmetric partitioning of
nutrient-energy to both hepatic (liver) and skeletal muscle-
cells across mammalian species (Ivy and Holloszy, 1981; Ivy,
1987, 2004; Ivy and Kuo, 1998; Galassetti et al., 1999; Powell
et al., 2002; Stewart-Hunt et al., 2006; Pratt et al., 2007; Krogh-
Madsen et al., 2014). Specifically, physical activity induces
contractions of skeletal muscle-cells that are metabolically costly
and deplete stored nutrient-energy (e.g., glycogen and lipids) in
a dose-dependent manner (i.e., frequency, intensity, duration,
and mode/type of activity). The decrement in stored nutrient-
energy causes increments in the uptake of serum glucose and
lipids by skeletal muscle-cells via insulin-dependent and insulin-
independent (e.g., contraction-induced) mechanisms (Ivy, 1987;
Jensen, 2003). The increased disposal of serum glucose by
skeletal muscle-cells stimulates hepatic-cell gluconeogenesis and

glycogenolysis to maintain blood sugar levels. These endogenous
glucose-producing processes are metabolically costly and reduce
hepatic nutrient-energy stores (e.g., glycogen and lipids). Note:
the metabolic costs of gluconeogenesis explain the effects of
exercise on non-alcoholic fatty liver disease (Magkos, 2010;
Chalasani et al., 2012).

Thus, the reductions in stored nutrient-energy due to physical
activity lead to competitive advantages in both skeletal muscle-
and hepatic-cells with concomitant increments in nutrient-
energy disposal in these cells during the post-prandial and post-
absorptive periods (Ivy and Holloszy, 1981; Ivy, 1987, 1991, 2004;
Ren et al., 1994; Friedman, 1995; Perseghin et al., 1996; Boulé
et al., 2001; Powell et al., 2002; Holloszy, 2005; Bergouignan
et al., 2006, 2009, 2010, 2013, 2014; Stewart-Hunt et al., 2006;
Thyfault et al., 2007; Dube et al., 2008; Krogh-Madsen et al.,
2010; Jensen and Richter, 2011; Jensen et al., 2011; Thyfault
and Krogh-Madsen, 2011; Davis et al., 2012; Friedrichsen et al.,
2013; O’Neill, 2013). There is a great deal of heterogeneity
in competitive strategies within skeletal muscle-cell sub-groups
[e.g., glycolytic and oxidative (James et al., 1985)]; therefore, the
effects of physical activity on metabolic-flux and partitioning
of nutrient-energy to oxidation, anabolism, or storage will be
dependent on the training status of the individual in concert with
the dose of physical activity (i.e., frequency, intensity, duration,
and mode).

All physical activity training protocols of sufficient dose
induce competitive advantages and attendant increments
in nutrient-energy disposal in both skeletal muscle- and
hepatic-cells (Krogh-Madsen et al., 2014). Furthermore,
exercise protocols of sufficient intensity and volume in
concert with nutritional support (Phillips, 2011) (e.g.,
“bodybuilding” training) also induce skeletal muscle-cell
hypertrophy and satellite cell activation with significant
increments in nutrient-energy (e.g., amino acids, lipids,
and glucose) disposal and oxidation, and metabolic control
(Frontera et al., 1988; Phillips et al., 2005; Phillips, 2014;
Snijders et al., 2015). Thus, exercise training increases the
competitive advantages of skeletal muscle-cells via multiple
mechanisms (e.g., insulin, contraction, and hypertrophic related
processes). Therefore, both increased physical activity and
greater muscle mass induce competitive advantages (Borghouts
and Keizer, 2000; Boulé et al., 2003; Van Der Heijden et al.,
2010; Srikanthan and Karlamangla, 2011; Shih and Kwok,
2018).

Conversely, physical inactivity (i.e., low whole-body
metabolic-flux) causes dose-dependent decrements in hepatic-
and skeletal muscle-cell metabolic-flux that drive decrements
in the competitiveness of these cells via reductions in insulin
sensitivity and total glycogen storage capacity (Ivy, 1991;
Ren et al., 1994; Dube et al., 2008; Bergouignan et al., 2009,
2013; Krogh-Madsen et al., 2010; Jensen and Richter, 2011;
Thyfault and Krogh-Madsen, 2011). Nevertheless, increases
in physical activity restore the competitiveness of insulin
resistant skeletal muscle cells (Devlin et al., 1987; Thyfault et al.,
2007). Even a single bout of exercise is sufficient to enhance
insulin sensitivity and the resultant competitiveness of skeletal
muscle-cells while limiting the fuel available for increments
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in fat mass, hepatic and adipose tissue de novo lipogenesis,
and ectopic fat deposition (Maehlum et al., 1978; Devlin et al.,
1987; Larson-Meyer et al., 2006; Thyfault et al., 2007; Dube
et al., 2008; Rabøl et al., 2011; Krogh-Madsen et al., 2014).
Thus, the glycogen and lipid depletion-repletion cycles (i.e.,
metabolic-flux) induced via physical activity are essential for
the maintenance of insulin sensitivity, metabolic flexibility [i.e.,
the ability to alter substrate oxidation as substrate availability
changes (Galgani et al., 2008)], and concomitant metabolic
health across species (Devlin et al., 1987; Ivy, 1987; Perseghin
et al., 1996; Brooks, 1998; Ivy and Kuo, 1998; Powell et al., 2002;
Stewart-Hunt et al., 2006; Pratt et al., 2007; Dube et al., 2008;
Bergouignan et al., 2009, 2013; Jensen et al., 2011; Thyfault and
Krogh-Madsen, 2011; Egan and Zierath, 2013; Friedrichsen et al.,
2013; O’Neill, 2013; Hawley et al., 2014; Goodpaster and Sparks,
2017).

In summary, the ability of hepatic and skeletal muscle-cells
to compete for nutrient-energy is dependent on metabolic-flux
(i.e., substrate depletion-repletion cycles). Increments in physical
activity induce dose-dependent competitive advantages, whereas
physical inactivity decreases metabolic-flux, and concomitant
nutrient-energy disposal. Thus, our framework of asymmetric
nutrient-energy partitioning suggests that physical activity is the
key to the prevention and treatment of metabolic dysfunction,
and offers a comprehensive answer to the question of why
physically active individuals exhibit a reduced risk of T2DM and
other energy-contingent chronic non-communicable diseases
(e.g., cardiovascular disease and non-alcoholic fatty liver disease)
compared to inactive individuals (Irwin et al., 2003; Sigal et al.,
2006; Hallsworth et al., 2011; Davis et al., 2012; Keating et al.,
2012; Archer et al., 2013a; Fedewa et al., 2014; Krogh-Madsen
et al., 2014).

Competitive Strategies of Fat-Cells
(Adipocytes)
The primary role of fat-cells in the mammalian “ecosystem” is to
acquire and store nutrient-energy. While both fat- and skeletal
muscle-cells use context-dependent competitive strategies such
as insulin and gain substantial competitive advantages in the
context of negative energy balance (Goodman and Ruderman,
1979; Arner et al., 1981; Brady et al., 1981), hyperplasia
(i.e., increments in the number of a cell-type) is the main
competitive strategy of fat-cells. Thus, ceteris paribus, the amount
of energy partitioned to fat-cells will increase as a function of
the number of fat-cells. This argument is supported by several
facts. First, adipocyte number is the primary distinguishing
feature of obesity across species (Brook et al., 1972; Salans
et al., 1973; Knittle et al., 1979; Hager, 1981; Sjostrom and
William-Olsson, 1981; Bjorntorp, 1996; Spalding et al., 2008;
McLaughlin et al., 2014; Archer, 2015c). Second, a strong inverse
relationship exists between the partitioning of dietary fat in
obese versus lean humans and other mammals (Hocquette et al.,
1999, 2007; Jackman et al., 2006; Westerterp, 2009). Third,
increments and decrements in fat mass are functions of existing
adiposity (i.e., fat-cell number and size) (Bell et al., 1987;
Elia et al., 1999; Forbes, 2000; Kozusko, 2002). Fourth, early
development is a major determinant of both fat-cell number

and obesity (Spalding et al., 2008; Chandler-Laney et al., 2011;
Adamo et al., 2012); and fifth, monozygotic twins concordant
for birth weight exhibit similar fat-cell numbers, while in
those discordant for birth weight, the smaller twin displays
both lower body mass and fat-cell number (Ginsberg-Fellner,
1981).

Yet, the strongest evidence for the cellularity-based
competitive strategy of adipocytes comes from experimental
studies across species (Häger et al., 1978; Yukimura and
Bray, 1978; Jackman et al., 2008). For example, after a dietary
intervention in prepubescent girls, Häger et al. (1978) found
that “obese girls who were most successfully treated had the
lowest increase in fat-cell number.” In other words, greater
increments in the number of fat-cells (i.e., hyperplasia) resulted
in asymmetric competition and an increase in the partitioning
of nutrient-energy to fat-cells with concomitant decrements in
treatment success. Häger et al.’s (1978) findings were consistently
replicated, and in a review of the literature, Arner and Spalding
(2010) stated, “hyperplastic obese individuals have a poorer
treatment outcome following diet-induced weight loss than
hypertrophic individuals. . ..” Similarly, in rodents Jackman
et al. (2008) found that fat-cell “hyperplasia occurring early in
relapse persists throughout the regain process and that the small,
presumably new, adipocytes preferentially accumulate fat relative
to their large adipocyte counterparts.”

Mechanisms of Fat-Cell Hyperplasia
While a detailed discussion of the mechanisms of fat-cell
hyperplasia is beyond the scope of this paper, it plays a pivotal
role in the development of obesity and metabolic diseases.
Hyperplasia results from the recruitment and differentiation
of mesenchymal/progenitor cells and mitotic clonal expansion
(Asakura et al., 2001; Tang et al., 2003; Laharrague and Casteilla,
2010; Shoham and Gefen, 2012; Tang and Lane, 2012; Gavin
et al., 2016). Hyperplasia is both a normal component of fetal
development (Archer, 2015c; Archer and McDonald, 2017), and a
compensatory mechanism in response to chronic positive energy
balance (i.e., overnutrition) (Archer et al., 2018). As described
in subsequent sections, excessive fat-cell hyperplasia during
gestation is principal phenomena leading to inherited obesity
(Archer, 2015c; Archer and McDonald, 2017; Archer et al., 2018),
whereas the hyperplasia induced via physical inactivity-induced
positive energy balance (i.e., low metabolic-flux) is responsible for
acquired obesity, increments in visceral adiposity, and ectopic fat
deposition (Archer et al., 2018).

In our frameworks, ectopic fat deposition is a compensatory
mechanism in response to the inability of skeletal muscle-
cells and adipocytes within adipose tissue to dispose of excess
serum lipids at the rate at which they are supplied via
dietary fat consumption or de novo lipogenesis. As we posited
previously, chronic positive energy balance at any point from
gestation through senescence leads to a “training effect for fat
cell development” (Archer, 2015b) because as existing fat-cells
reach their hypertrophic potential (or maximum), hyperplasia is
induced (Shoham and Gefen, 2012; Tang and Lane, 2012). Ectopic
fat deposition is a serious manifestation because it exacerbates
the competitive dominance of fat-cells by limiting the number of
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stem cells available for differentiation to muscle or bone while
simultaneously increasing the number of fat-cells in non-adipose
tissues.

In summary, a large body of prior research into hyperplastic
obesity across species (Häger et al., 1978; Jackman et al., 2008)
supports the hypothesis that increased adipocyte cellularity is
the main competitive strategy of fat-cells, and that increments
in adipocyte cellularity result in increasingly asymmetric and
adipogenic nutrient-energy partitioning (Archer, 2015c,d; Archer
and McDonald, 2017; Archer et al., 2018). Thus, for any given
level of caloric intake, a larger number of fat-cells will acquire
and sequester a larger percentage of total energy intake, leading
to increments in both adiposity and body mass.

Cooperative Strategies
The survival of complex social organisms (e.g., humans,
canines, and rodents) required the evolution of both cooperative
and competitive strategies at all levels of socio-biological
organization (i.e., from cells to societies). In contrast to
competitive strategies, cooperative mechanisms increase
the availability of nutrient-energy to other cells, or at the
societal level, conspecifics. For example, societal-level strategies
allow the survival of the group by constraining dominant
individuals from monopolizing nutrient-energy resources to
the exclusion of conspecifics (e.g., preventing alpha males from
consuming all available food). These cooperative strategies
include both long and short term physiological signals (e.g.,
satiety hormones) such as leptin, cholecystokinin, and pancreatic
poly-peptides (Austin and Marks, 2009) that cause decrements
in ingestive behaviors as energy intake and energy storage
increase.

At the cellular level, we posit that insulin resistance is the
predominant cooperative strategy and operates by increasing
the availability of serum glucose to other cells. For example, as
the level of stored energy within hepatic- and skeletal muscle-
cells increases (e.g., glycogen saturation and lipid accumulation),
insulin sensitivity and the ability to store serum glucose as
glycogen decline (Devlin et al., 1987; Ivy, 1987, 2004; Roden
et al., 1996; Thyfault et al., 2007; Dube et al., 2008; Jensen
et al., 2011). The concomitant reduction in the competitiveness of
insulin-resistant cells increases the availability of nutrient-energy
substrates to other cells, especially those that remain insulin
sensitive.

Hepatic- and skeletal muscle-cell insulin resistance is induced
in numerous contexts including the elevated levels of fatty-acid
oxidation induced via hypo-caloric feeding, fasting, or starvation
(Newman and Brodows, 1983; Björkman and Eriksson, 1985;
Cigolini et al., 1985; Svanfeldt et al., 2003). This cooperative
strategy diverts nutrient-energy substrates to other cells (e.g.,
neurons), and allows for the survival of all cells in the body. As
we posited previously, the naturally occurring insulin resistance
of pregnancy is a cooperative strategy that drives nutrient-energy
to the fetus (Archer, 2015c; Archer and McDonald, 2017; Archer
et al., 2018). Thus, in contrast to the current consensus on the
pathological nature of insulin resistance, we posit that insulin
resistance is an essential feature of mammalian metabolism, and
our frameworks of competitive and cooperative strategies explain

the evolutionary benefits of this cooperative strategy in the
mammalian ecosystem. Nevertheless, in the context of elevated
and incomplete fatty-acid oxidation due to obesity (Jensen et al.,
1989; Kelley et al., 1999) or physical inactivity (Bergouignan et al.,
2010, 2013, 2014), hepatic-insulin resistance leads to a decrement
in metabolic flexibility with subsequent declines in metabolic
health over time (Galgani et al., 2008; Goodpaster and Sparks,
2017).

With respect to fat-cell specific cooperative strategies, the
nutrient-energy stored in fat-cells (e.g., glycerol and fatty-acids)
is sequestered and not available to other cell-type until conditions
of negative energy balance (e.g., fasting or elevated physical
activity), hypoinsulinemia, and/or beta-adrenergic stimulation.
Thus, akin to the competitive strategies, the cooperative strategies
of fat-cells are also context-specific. Conversely, the nutrient-
energy stored in skeletal muscle-cells as glycogen is never
available to other cell-types due to the lack of glucose-6-
phosphatase (i.e., the glycogen molecule is too large to leave the
cell). Thus, the nutrient-energy partitioned to “selfish” skeletal
muscle-cells is “lost” to other cells in the body and is not
available to constrain ingestive behaviors. From an evolutionary
perspective, the sequestering of nutrient-energy in mammalian
skeletal muscle-cells is adaptive given the necessity of physical
activity for the survival of both the individual and the species
(e.g., fight-flight and mating behaviors, acquisition of nutrient-
energy).

In the following section, we introduce the conceptual
framework of effective caloric intake to explain how the
asymmetric inter-cellular competition and partitioning of
nutrient-energy drives increments in ingestive behaviors and
energy intake.

THE CONCEPTUAL FRAMEWORK OF
EFFECTIVE CALORIC INTAKE

The framework of effective caloric intake describes the amount
of nutrient-energy available to constrain energy-intake via
the inhibition of the sensorimotor cells that govern ingestive
behaviors (i.e., energy-sensing appetitive neuro-muscular
networks in the liver and brain) (Langhans, 1996; Schwartz et al.,
2000; Friedman, 2008; Allen et al., 2009; Woods, 2009). We posit
that the availability of nutrient-energy to each cell is constrained
not only by ingestive behaviors and total energy-intake, but also
by the context-dependent, asymmetric competition between
individual cells. Thus, when energy-sensing, appetitive cells
in the liver and brain are “outcompeted” by other cell-types
(e.g., fat and/or muscle-cells), the effective caloric intake of a
meal is diminished, and total energy-intake will be increased
to compensate for the deficit (Archer, 2015c, 2018; Archer and
McDonald, 2017; Archer et al., 2018).

Inherent in this framework is the independence and
dissociation of the energetic demands of metabolism and the
sensorimotor (i.e., neuro-muscular) pathways that initiate
ingestive behaviors. We posit that eating and drinking
can be stimulated by either real or apparent deficits in
energy homeostasis (i.e., true or false signals). Thus, when
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ingestive behaviors are stimulated by real deficits, such as
those induced by starvation or increments in physical activity,
energy-intake will be increased to maintain homeostasis and
ensure survival. In contrast, when ingestive behaviors are
chronically initiated via merely apparent deficits in energy
homeostasis (i.e., false signals) induced via excessive fat-
cell hyperplasia or physical inactivity (i.e., low metabolic
flux), energy-intake is increased above metabolic demands,
leading to positive energy balance, acquired obesity,
and/or metabolic diseases (Archer, 2015c, 2018; Shook
et al., 2015; Archer and McDonald, 2017; Archer et al.,
2018).

The independence and dissociation of deficits in energy
homeostasis and the initiation of ingestive behaviors can be
illustrated by a simple example. If after fasting for 48 h, you
find several large insects crawling in your food, your ingestive
behaviors and energy intake will be diminished while your body’s
metabolic demand for nutrient-energy is unaffected. In time, the
deficit in nutrient-energy sensed by the sensorimotor appetitive
cells in the liver and brain will result in renewed eating and
drinking. There is a large body of literature delineating the
dissociation of ingestive behaviors and nutrient-energy surpluses
and deficits (Leibowitz et al., 1981; Elmquist et al., 1999). We
think the failure to distinguish these processes and speculations
based of non-observable phenomena (i.e., mental states; e.g.,
appetites, perceptions, drives, needs, wants, etc.) contributes to
the current confusion and lack of progress surrounding obesity
and metabolic diseases (Archer et al., 2018).

Physical Activity, Fat-Cell Hyperplasia,
and Effective Caloric Intake
Physical activity and fat-cell hyperplasia reduce the effective
caloric intake of meals because both lead to a reduction
in the nutrient-energy available to inhibit the sensorimotor
appetitive cells in the liver and brain that govern ingestive
behaviors. For example, as explained previously, physical activity
induces skeletal muscle-cells to exploit (i.e., acquire and use)
nutrient-energy at the expense of other less-advantaged tissues
(e.g., adipocytes, neurons, and hepatocytes). Thus, because
the nutrient-energy partitioned to skeletal muscle-cells is not
available to constrain ingestive behaviors, total energy-intake
will be increased to compensate for the real deficit in energy
homeostasis. Therefore, reductions in effective caloric intake from
physical activity lead to an increase in eating and drinking and a
necessary increment in total energy-intake over time.

Thus, decrements in effective caloric intake from physical
activity provide a true signal of deficits in energy homeostasis;
and because physical activity induced increments in energy-
intake are driven in parallel with dose-dependent increases in
skeletal muscle-cell energy expenditure, the overall effect on
whole body energy-balance is neutral. As such, and as explained
in detail in a later section, increments in exercise or physical
activity in active (i.e., non-sedentary) individuals will not lead
to significant long-term weight-loss because body mass will be
maintained at a higher level of metabolic-flux (i.e., greater caloric
intake and energy expenditure).

Conversely, increments in fat-cell hyperplasia lead to
reductions in effective caloric intake and increments in energy-
intake that are not matched by parallel increases in energy
expenditure. This occurs because, in contrast to muscle-cells,
the competitive advantages and storage capacity of fat-cells are
driven by number and size, and not their metabolic demands.
As stated, a larger number of fat-cells will acquire and store a
larger percentage of total energy-intake independent of their
metabolic demands. Therefore, in contrast to physical activity,
increments in fat-cell hyperplasia lead to apparent deficits (i.e.,
false signals) in short-term energy homeostasis that cause more
energy to be consumed and stored than expended. This leads to
increments in both body and fat mass with concomitant weight-
dependent decrements in physical activity and insulin sensitivity.
Our arguments are supported by research demonstrating
that appetitive processes are more sensitive to stimuli from
nutrient-energy metabolism and related hormones and cytokines
than total fat mass per se (e.g., serum glucose, insulin, leptin,
hepatic metabolic-flux and adenosine triphosphate/adenosine
diphosphate ratio, gut peptides) (Woods et al., 1985; Langhans,
1996; Friedman et al., 1999; Schwartz et al., 2000; Friedman,
2008; Allen et al., 2009; Woods, 2009).

In summary, physical activity and fat-cell hyperplasia lead
to the asymmetric competition and partitioning of nutrient-
energy to skeletal muscle- and fat-cells, respectively. The
disproportionate disposal of nutrient-energy reduces the effective
caloric intake of each meal by lessening the absolute amount of
nutrient-energy available to inhibit the sensorimotor cells in the
liver and brain that govern ingestive behaviors. This reduction in
available energy leads to compensatory increases in energy-intake
to overcome real or merely apparent deficits. While physical
activity engenders a real perturbation in energy homeostasis
(i.e., a true signal) that necessitates an increase in total energy-
intake to ensure survival, excessive fat-cell hyperplasia leads
to an apparent deficit (i.e., false signal) that drives increments
in ingestive behaviors and the overconsumption of calories.
This leads to chronic positive energy balance and subsequent
increments in body and fat mass, and metabolic diseases. Thus,
an individual’s nutrient-energy consumption over time will equal
or exceed the sum of chronic cell-specific metabolic activity (i.e.,
basal and physical activity energy expenditure) plus the nutrient-
energy sequestered in fat-cells and other low metabolically active
tissues.

To be precise, we do not argue that decrements in effective
caloric intake are the only mechanism that drives energy intake.
However, we argue that the asymmetric competition for nutrient-
energy and concomitant reductions in the inhibition of energy-
sensing appetitive cells in the liver and brain are the primary
drivers of habitual energy-intake above basal metabolic energy
requirements.

THE ETIOLOGIES OF INHERITED AND
ACQUIRED OBESITY

In the following sections, we provide empirical support for our
hypothesis that the habitual overconsumption of nutrient-energy
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and concomitant elevated serum energy substrates (e.g., glucose,
fatty-acids, and cholesterol) characteristic of both inherited
and acquired obesity and metabolic diseases (e.g., T2DM) are
caused by the asymmetric nutrient-energy partitioning driven
primarily via in utero engendered increments in fat- and beta-
cell hyperplasia and/or physical inactivity induced decrements in
metabolic-flux.

Inherited Obesity: Accumulative
Maternal Effects and the Maternal
Resources Hypothesis
In the Maternal Resources Hypothesis (Archer, 2015a,b,c,d;
Archer and McDonald, 2017), we posited that inherited obesity
was the result of the irreversible competitive dominance of fat-
cells engendered during gestation via non-genetic evolutionary
processes known as accumulative maternal effects (Archer, 2015c;
Archer and McDonald, 2017). Briefly, we argued that the rapid
rise in the population prevalence of increased body and fat
mass, and metabolic dysfunction in the latter half of the 20th
century were engendered by the effects of socio-environmental
evolution over the past century (e.g., reduced pathogenic load,
decreased physical activity, and improved nutrition) (Church
et al., 2011; Archer et al., 2013b,c). These phenomena led to
cumulative increments in maternal energy resources (i.e., body
mass and adiposity) and decrements in maternal physical activity.
When a mother’s physical activity fell below her “Metabolic
Tipping Point” (Archer et al., 2018), the competitive advantages
of her skeletal muscle-cells were reduced. This decrement altered
the competitive relation between mother and conceptus thereby
increasing the availability of nutrient-energy to the fetus. This
fetal “over-nutrition” induced several allometric, physiologic,
and behavioral inheritances that irreversibly engendered a
competitive dominance of fat-cells for the lifespan of the offspring
(Archer, 2015c).

First, the excess nutrient-energy caused increments in fetal
cellularity (Szabo and Szabo, 1974; Kalkhoff, 1991; Catalano and
Hauguel-De Mouzon, 2011), with disproportionate increments
in fetal fat- and pancreatic beta-cells (Szabo and Szabo, 1974;
Kervran et al., 1978; Kalkhoff, 1991; Herrera and Amusquivar,
2000; Martens and Pipeleers, 2009; Chandler-Laney et al., 2011;
Portha et al., 2011; Long et al., 2012) while negatively altering
skeletal muscle-cell development (e.g., decreased contractile
proteins with increased collagen accumulation and crosslinking)
(Tong et al., 2009; Huang et al., 2012). These latter alterations
permanently reduced the competitiveness of skeletal muscle-
cells by altering the quality of fetal skeletal muscle-cells (e.g.,
force production), leading to decrements in physical activity and
cardio-respiratory fitness from infancy to adulthood. These latter
arguments have strong support (Tomkinson et al., 2003, 2012;
Olds et al., 2006; Malina and Little, 2008; Archer and Blair, 2011;
Church et al., 2011; Archer et al., 2013b,c, 2017a).

Second, the intensified insulin response (via enhanced beta-
cell mass and function) and fat-cell hyperplasia in concert with
reduced competition from inactive and dysfunctional skeletal
muscle-cells exponentially increased the asymmetric partitioning
and sequestering of nutrient-energy in fat-cells (i.e., a larger

number of fat-cells acquiring and storing a larger percentage of
total energy intake). The asymmetric partitioning of nutrient-
energy to storage in fat-cells reduced the effective caloric intake of
meals and drove increased energy intake, positive energy balance,
and increments in both body mass and adiposity. The increased
body mass further reduced physical activity via diminished
strength-to-weight ratio [i.e., bigger or weaker individuals
move less than smaller or stronger (Chirico and Stunkard,
1960; Archer et al., 2013a)] with additional decrements in the
competitiveness of skeletal muscle-cells. These permanent and
irreversible allometric, physiologic, and behavioral alterations
were critical to the etiology of the inherited (i.e., childhood)
obesity epidemic (Archer, 2015c; Archer and McDonald, 2017;
Archer et al., 2018).

Racial and Socio-Economic Disparities in Obesity
The Maternal Resources Hypothesis suggests that disparities in
obesity in the US that vary by race and socio-economic status
are in fact driven by differences in matrilineal pre-conception
and pre-natal physical activity, body cellularity, and metabolic-
flux (Archer, 2015c,d; Archer and McDonald, 2017; Archer et al.,
2018). For example, black girls decrease their physical activity to
a greater degree than white girls during adolescence (Kimm et al.,
2002) and black mothers as a group are less physically active,
less affluent, less well-educated (Evenson et al., 2004; Schmidt
et al., 2006; Haakstad et al., 2007; Archer et al., 2013b,c; Most
et al., 2018), and have children with greater adiposity and risk of
metabolic diseases (Archer, 2015c; Archer and McDonald, 2017).
Thus, what appears to be genetic or socially mediated processes,
are in fact driven by non-genetic evolutionary processes induced
via low levels of matrilineal/maternal physical activity and
concomitant loss of metabolic control and overconsumption.

Other Developmental Pathologies Related to
Maternal Effects
There are numerous developmental pathologies (e.g., increased
fetal mortality, congenital deformities, low birth-weight, and
reduced neonate survival) that we posit are caused by the negative
effects of excessive fat-cell mass and the overconsumption of
nutrient-energy induced by low-levels of physical activity and
concomitant low skeletal muscle- and hepatic-cell metabolic-
flux (Archer et al., 2018). For example, the physical space
constraints and increments in intrathoracic pressure engendered
via excessive fat-cell mass (i.e., fat mass compressing the
uterus, placenta, and/or supporting vasculature) and sedentary
behavior reduce blood flow to both the placenta and fetus
(i.e., placental and fetal ischemia). It was demonstrated
that both higher body mass and sitting generated greater
intraabdominal pressure (Cobb et al., 2005) and increased
pressure correlated with comorbidities (Sugerman et al., 1997).
Thus, we posit that a portion of obese, sedentary mothers
risk “starving” their fetuses of both oxygen and nutrient-
energy.

Similarly, if pregnancy fails to induce sufficient increments
in nutrient-energy intake, the fetus may be spontaneously
aborted, exhibit intrauterine growth restriction and/or
developmental defects. The mechanism is simple; if the
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naturally occurring insulin resistance of pregnancy is over-
whelmed by the preexisting insulin resistance and poor
metabolic control induced via low physical activity, low
metabolic-flux, and excessive fatty acid oxidation (Archer, 2015c;
Archer and McDonald, 2017; Archer et al., 2018), ingestive
behaviors and energy intake will not be stimulated in parallel with
the increased nutrient-energy demands of fetal development.
Thus, the fetus receives an inadequate nutrient supply because
the mother’s cells outcompete the placenta and fetus’ ability to
compensate. This conceptualization is supported by a large body
of experimental evidence demonstrating that restrictions of the
nutrient supply to the intrauterine milieu induce numerous
fetal pathologies (Wallace, 2000; Hay, 2006; Long et al., 2012;
Limesand et al., 2013).

Thus, alterations in the competitive milieu (e.g., over-
nourished or restricted) may explain the high rate of negative
birth outcomes in populations that experience low physical
activity, low metabolic flux, and high levels of obesity (e.g.,
African-American women) (Hogue and Hargraves, 1995; Lu and
Halfon, 2003). Evidence suggest that these pathologies occur
in populations with similar socio-economic status (Schoendorf
et al., 1992), medical care (Barfield et al., 1996), and use of assisted
reproductive therapies (Feinberg et al., 2006; Seifer et al., 2008;
Mukherjee et al., 2013). Therefore, we contend that disparities in
obesity, metabolic diseases, and birth outcomes are not driven
primarily by genetic or socio-economic factors (Archer et al.,
2018).

Iatrogenic Artificial Selection
In the Maternal Resources Hypothesis, we posited that the
increased use of Cesarean sections over multiple generations
led to the artificial selection for progressively larger, increasingly
physically inactive, and metabolically compromised offspring
predisposed to obesity and metabolic diseases (Archer,
2015c; Archer and McDonald, 2017). Prior to the 20th
century, morbid and super-morbid obese individuals were
extremely rare, in part because macrosomic fetuses and
their metabolically compromised mothers were subject to
greater selection pressures (e.g., suffocation and hemorrhage)
from cephalo-pelvic disproportion (i.e., incongruity of fetal
head size and birth canal capacity) (Wells et al., 2012).
Stated simply, the fetuses were too large to exit the birth
canal. Thus, advances in obstetric care over the past century
were a primary driver of increments in the frequency of
larger humans in general but especially obese, inactive,
metabolically compromised phenotypes in populations
that had access to medicalized childbirth over multiple
generations.

The strongest evidence for this iatrogenic artificial selection
is the extremely rapid and disproportionate increases in severe
and morbid obesity (i.e., Class II and III) among children and
adolescents (Skelton et al., 2009), and adults varying by race,
sex, and socio-environmental contexts (Sturm, 2007; Skelton
et al., 2009). The Maternal Resources Hypothesis is the only
theory that offers a mechanistic and physiologically rigorous
explanation for the population shifts in both body and fat mass
distribution.

Accumulative Maternal Effects in Non-human
Animals
While the Maternal Resources Hypothesis focused principally on
the inheritance of obesity in humans (Archer, 2015c; Archer
and McDonald, 2017), the non-genetic evolutionary mechanisms
of accumulative maternal effects are applicable to all mammals
that experienced a recent, rapid rise in the prevalence of
increased body mass, adiposity, and/or metabolic dysfunction
(Archer and McDonald, 2017; Archer et al., 2018) [e.g., dogs,
cats, horses, rodents, monkeys, deer, and elk (Herberg and
Coleman, 1977; Flather et al., 2009; Klimentidis et al., 2011;
Ertelt et al., 2014; Hoenig, 2014; Sandoe et al., 2014; NEHS,
2015; Montoya-Alonso et al., 2017)]. Accumulative maternal
effects in mammals for body cellularity (e.g., adiposity), body
mass, behavior (e.g., physical activity), and/or risk of disease
were demonstrated consistently over the last century. In the
1930s, Walton and Hammond (1938) demonstrated unequivocal
“maternal effects” for growth and body mass in horses and
ponies, and in the 1950s Falconer demonstrated accumulative
maternal effects for cellularity, body mass, and disease in
mice (Falconer, 1965, 1967, 1973; Falconer et al., 1978). These
non-genetic effects were replicated repeatedly across species
(Rossiter, 1996; Fox and Mousseau, 1998; Mousseau and Fox,
1998; Bonduriansky and Day, 2009; Mousseau et al., 2009)
inclusive of rodents (Garg et al., 2013), chickens (Liu et al.,
1993), sheep (Maria et al., 1993), free-ranging cervids (Freeman
et al., 2013), horses (Allen et al., 2002, 2004), and humans
(Brooks et al., 1995; Archer, 2015c; Archer and McDonald,
2017).

Given the parallel increases in body mass, adiposity, and/or
metabolic disease across diverse species existing in disparate
environments, current anthropocentric theories positing diet-
centric influences (Bray et al., 2004; Swinburn et al., 2011),
thrifty genes (Neel, 1962) and predation release (Speakman,
2007) in the etiology of obesity and metabolic disease are
inadequate. Thus, our frameworks in confluence with the
Maternal Resources Hypothesis subsume or refute dietary
and genetic speculations and provide a comprehensive and
mechanistic evolutionary theory that explains the inheritance and
familial resemblance for body mass, adiposity, physical activity,
and metabolic dysfunction in both human and non-human
animals.

Obesity: A Homeorhetic Condition
Our frameworks in concert with the Maternal Resources
Hypothesis explain why inherited obesity is a homeorhetic and
not a homeostatic condition. As depicted in Figure 1, after a
dietary or “lifestyle” intervention the body and fat mass quickly
return to the initial trajectory engendered via the fat-cellularity
created during gestation and early development (i.e., in utero
through puberty) (Archer, 2015c; Archer and McDonald, 2017).
Thus, body and fat mass trajectories are neither a set-point,
nor a settling point and the slope will be determined by the
initial populations of cell-types (e.g., ratio of fat-cells to skeletal
muscle cells) and physical activity. Importantly, our frameworks
explain the often-insurmountable physiological barriers to long-
term weight loss in those suffering from morbid or severe obesity.
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First, the negative energy balance induced via hypocaloric dieting
and/or exercise merely reduces the stored energy and size of
fat-cells without altering the competitive advantage of increased
fat-cell number. Second, smaller fat-cells have a competitive
advantage over larger fat-cells (e.g., greater surface area to
volume ratio). Third, as depicted in Figure 2, exercise merely
decreases the slope of body and fat mass trajectories (i.e., rate
of gain). Therefore, greater adipocyte cellularity increases the
rate of both weight gain and regain (as per Figure 1), and
increases the effort required to achieve and maintain weight
loss (as per Figure 2). Thus, both fat-cell number and the
physical activity-induced metabolic demands of skeletal muscle-
cells determine the percentage of calories partitioned to fat-
and muscle-cells, respectively. The reduction in the slope is
why exercise ameliorates the regain of both fat and body
mass after hypo-caloric interventions when compared to diet-
alone.

Thus, our frameworks explain why the majority of obese
children become obese adolescents and adults, and why greater
than 95% of individuals suffering from inherited obesity fail to
achieve and maintain a body-mass index (BMI) under 30 (Fildes
et al., 2015), despite extreme interventions (Fothergill et al.,
2016).

In summary, we posited that the fat and body mass trajectories
of inherited obesity were engendered by accumulative maternal
effects leading to metabolically compromised human (and non-
human) infants with intensified insulin secretion, excessive
adipocyte cellularity, and dysfunctional muscle-cell development
predisposing to physical inactivity. These alterations irreversibly
altered the competitive milieu of the body and permanently
established the dominance of fat-cells in the acquisition, storage,
and sequestering of nutrient-energy.

The Etiology of Acquired Obesity
Acquired obesity is the excessive hypertrophy of existing fat-
cells and recruitment of new fat-cells (hyperplasia) driven by the
chronic positive energy balance induced by physical inactivity.
This differs from inherited obesity in which the disturbance in
metabolic-flux is driven primarily by fat and beta-cell hyperplasia
and dysfunctional skeletal muscle-cells engendered in utero
via non-genetic evolutionary forces (i.e., accumulative maternal
effects) (Archer, 2015a,b,c; Archer and McDonald, 2017; Archer
et al., 2018). As explained below, in contrast to the rapidity with
which inherited obesity develops (i.e., 9 months of gestation),
acquired obesity is incrementally instantiated over years and
decades.

Physical Inactivity, Low Metabolic-Flux, and the
“Metabolic Tipping Point”
In the 1950s, it was established experimentally and
observationally in rodents and humans (Mayer, 1953; Mayer
et al., 1954, 1956), that the inter-relations between changes in
body mass, energy intake, and physical activity were curvilinear.
These results were replicated in a variety of settings (Stubbs
et al., 2004; Shook et al., 2015). As shown in the center of
Figure 3, there is a range of physical activity (denoted as
“Physically Active”), in which habitual appetitive processes

and energy-intake parallel physical activity energy expenditure
such that body mass is maintained (Mayer, 1953; Mayer et al.,
1954, 1956; Shook et al., 2015). For example, as Beaulieu et al.
(2017) found, “higher habitual PA [physical activity] improves
acute homeostatic appetite control.” Our frameworks render
the underlying mechanisms of these results unambiguous. As
explained previously, increments in physical activity induce
dose-dependent competitive advantages that allow skeletal
muscle-cells to exploit nutrient-energy resources at the expense
of less advantaged cells. This asymmetric partitioning leads to
reductions in the effective caloric intake of subsequent meals
with concomitant increments in energy-intake via reductions
in inter-meal periods and/or increased energy density per meal.
Yet, despite the increased energy intake, body mass remains
stable across a wide-range of doses of physical activity because
the increased skeletal muscle-cell energy expenditures are
compensated by parallel increments in energy intake. Thus,
increments in physical activity merely lead to greater metabolic-
flux with no changes in body mass. Importantly, if the increment
in physical activity is large, basal energy expenditures will
decrease because less energy is available to non-skeletal muscles
cells (e.g., neurons in the central nervous system) inducing
reductions in basal metabolic demands. These decrements in
basal energy expenditures reduce the increment in energy-intake
necessary to maintain energy homeostasis and body mass
(Westerterp, 1998; Speakman and Selman, 2003; Westerterp and
Plasqui, 2004).

Nevertheless, as depicted on the left side of Figure 3 when an
individual’s physical activity falls below their “Metabolic Tipping
Point” (Archer, 2015c, 2018; Archer and McDonald, 2017; Archer
et al., 2018) (denoted as “Sedentary”), energy-intake becomes
dissociated from energy expenditure (Mayer, 1953; Mayer et al.,
1954, 1956; Stubbs et al., 2004; Shook et al., 2015; Beaulieu et al.,
2017). As Westerterp and Plasqui (2009) stated, “The change
from a physically active to a more sedentary routine does not
induce an equivalent reduction of energy intake.” Over time,
small increments in energy-intake coupled with low physical
activity lead to gains in fat mass and concomitant decrements
in insulin sensitivity. The increased body and fat mass lead
to further declines in physical activity from reduced strength-
to-weight ratio [i.e., bigger or weaker individuals move less
than smaller or stronger (Chirico and Stunkard, 1960; Archer
et al., 2013a)]. The lack of hepatic- and skeletal muscle-
cell metabolic-flux induced via physical inactivity initiates a
cascade of metabolic dysfunction that drives both peripheral
and central insulin resistance, positive energy balance, and
increments in both fat-cell number and size. Over time, these
physical inactivity-induced phenomena lead to acquired obesity
and/or metabolic disease (e.g., T2DM) (Archer, 2015c; Archer
et al., 2017a, 2018; Archer and McDonald, 2017). Thus, there
is a minimum amount of physical activity-induced hepatic
and skeletal muscle-cell metabolic-flux (i.e., substrate depletion-
repletion cycles) necessary to maintain energy homeostasis and
metabolic health.

It is important to note that if the chronic positive
energy balance and reduced metabolic-flux characteristic of
acquired obesity continues over time, existing fat-cells eventually
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FIGURE 1 | Body and fat mass trajectories of individuals varying in adipocyte cellularity. Body and fat mass trajectories return to the initial slope (i.e., rate of gain)
after diet-induced weight loss. The initial slope was determined by fat-cell number.

FIGURE 2 | Body and fat mass trajectories (i.e., rate of gain) differ as a function of both fat-cell number and exercise.

reach their hypertrophic potential (or maximum) and there
will be a “training effect for fat cell development” (Archer,
2015b) via the enhanced recruitment of mesenchymal cells
(Sjostrom and William-Olsson, 1981; Archer and McDonald,
2017). The resulting fat-cell hyperplasia renders the distinction
between inherited and acquired obesity after sexual maturity
equivocal.

Individual Differences
Individuals vary in both inherited and acquired ratios of
skeletal muscle-cells to fat-cells. For example, during pubescence,
sexual dimorphism in adipogenesis and shifts in the ratio of
skeletal muscle-cell to fat-cell mass are well established. In

humans, as body-cell mass is increased, males gain a greater
proportion of skeletal muscle-cell mass relative to fat-cell mass,
whereas females exhibit the converse (Butte et al., 2007). In
adulthood, it is well-established that increments in fat mass
are a function of the individual’s existing adiposity (Bell et al.,
1987; Elia et al., 1999; Forbes, 2000; Kozusko, 2002). Thus, the
amount of physical activity necessary to inhibit chronic positive
energy balance and the asymmetric partitioning of nutrient-
energy to storage in fat-cells varies. Individuals with low fat-
cell numbers or high skeletal muscle- to fat-cell ratio (e.g.,
lean muscular males) require less physical activity to maintain
metabolic-flux and offset adipogenic nutrient partitioning and
weight gain (see Figure 2). Individuals born with an excessive
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FIGURE 3 | Relations between physical activity (PA), body mass, and energy intake (adapted from Archer, 2018). As physical activity declines below the “Metabolic
Tipping Point” (i.e., into the “Sedentary” range), energy intake and energy expenditure become dissociated due to insufficient metabolic-flux, and as a result, body
mass will begin to increase as energy balance becomes positive.

number of fat cells relative to skeletal muscle-cells will need
a dose of physical activity that may be beyond their capacity.
For these individuals, increments in body and fat mass are
inevitable because as energy-intake is stimulated by physical
activity induced decrements in effective caloric intake, the larger
number of fat-cells “outcompete” other cell-types and sequester
a larger amount of total energy intake. This conceptualization
provides a rigorous, mechanistic explanation for the ubiquitous
failure of non-surgical treatments of obesity. Nevertheless,
at some point, the absolute caloric intake is sufficient to
inhibit the sensorimotor appetitive cells and constrain energy
intake so that body and fat mass stabilize at a new, higher
level.

In summary, as individuals reduce their physical activity below
their “Metabolic Tipping Point” (Archer et al., 2018), reductions
in both hepatic and skeletal muscle-cell metabolic-flux engender
positive feedback loops that lead to increments in energy intake,
chronic positive energy balance, and the asymmetric competition

and partitioning of nutrient-energy. The ensuing “high storage
but low triglyceride removal promotes fat tissue accumulation and
obesity” (Arner et al., 2011).

TYPE-II DIABETES MELLITUS:
DIMINISHED METABOLIC-FLUX AND
THE COMPETITIVE FAILURES OF
SKELETAL MUSCLE AND FAT-CELLS

A large body of research over the past 50 years demonstrates
that the “primary defect” (DeFronzo and Tripathy, 2009) driving
T2DM is a decrement in skeletal muscle-cell insulin sensitivity
leading to both peripheral and central insulin resistance
(DeFronzo, 1988; Shulman et al., 1990; DeFronzo et al., 1992;
Holloszy, 2005; DeFronzo and Tripathy, 2009). While these
findings suggest that T2DM is simply the result of the inability
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of skeletal muscle-cells to dispose of excess serum glucose, our
frameworks instruct otherwise. Since all cell-types compete for
nutrient-energy and the main function of fat-cells is the storage of
excess energy, T2DM can be most precisely characterized as the
failure of both skeletal muscle- and fat-cells to compete for and
dispose of the nutrient-energy consumed in excess of metabolic
demands.

When physical activity falls below the “Sedentary” metabolic
tipping point (as per Figure 3), energy intake begins to
increase despite the decreasing energy expenditure (Mayer, 1953;
Mayer et al., 1954, 1956; Shook et al., 2015). We posit this
occurs because as hepatic-cell metabolic-flux declines, these cells
become saturated with glycogen and metabolites from fatty-
acid oxidation (Koves et al., 2008). This leads to decrements
in insulin sensitivity and metabolic flexibility [i.e., the ability to
alter substrate oxidation as substrate availability changes (Kelley
et al., 1999; Galgani et al., 2008; Bergouignan et al., 2011;
Goodpaster and Sparks, 2017)]. As discussed previously, the only
contexts in mammalian evolutionary history in which hepatic-
cells experienced elevated levels of fatty-acid oxidation would
be starvation and/or chronic elevated physical activity. Given
the fact that these contexts induce the initiation of ingestive
behaviors and energy intake and a reduction in basal energy
expenditure to ensure survival, we posit that physical inactivity
(i.e., low metabolic-flux) provides a false signal that drives
increments in energy intake with concomitant decrements in
energy expenditure (Mayer, 1953; Mayer et al., 1954; Stubbs et al.,
2004; Shook et al., 2015). The positive energy balance increases
the availability of serum energy substrates for hepatic and adipose
tissue de novo lipogenesis, increments in fat-cell mass, and ectopic
fat deposition (Strawford et al., 2004; Larson-Meyer et al., 2006;
Dube et al., 2008; Rabøl et al., 2011).

Nevertheless, as long as the capacity to expand fat-cell mass
and/or recruit new, smaller adipocytes from the mesenchymal
stem-cell pool is maintained, whole body insulin sensitivity
will not decline significantly. Thus, fat-cell hyperplasia and
hypertrophy allow for the disposal of excess serum glucose
and lipids (Heilbronn et al., 2004; Roberts et al., 2009).
This compensatory mechanism allows individuals to remain
metabolically healthy despite increasing body and fat mass.
This conceptualization suggests that skeletal muscle- and fat-
cells act as energy “sinks” that prevent the increase in serum
energy substrates that lead to metabolic diseases such as
T2DM. Nevertheless, because increments in body mass reduce
physical activity [i.e., heavier individuals move less than lighter
individuals (Chirico and Stunkard, 1960; Archer et al., 2013a;
Archer and McDonald, 2017)], many “metabolically healthy
but obese” individuals (Mathew et al., 2016) will progress
toward metabolic disease (Short and Joyner, 2002; Soriguer
et al., 2013) as physical activity declines over time. This is
especially true with older individuals whose strength-to-weight
ratio is already in decline (McGlory et al., 2017). Thus, when
individuals are physically inactive and have limited fat-cell
plasticity, serum energy substrates rise over time. This occurs
because as physical inactivity drives increased energy-intake
in concert with decrements in skeletal muscle-cell insulin
sensitivity, the ability of pancreatic beta-cells to compensate

for the reduced disposal of serum glucose declines. Over
time, this leads to T2DM as pancreatic-beta cells become
overloaded/exhausted and/or lose their sensitivity to serum
glucose (DeFronzo, 1988; DeFronzo et al., 1992; DeFronzo and
Tripathy, 2009).

In summary, our frameworks and existing evidence suggest
that there is a minimum amount of physical activity metabolic-
flux (e.g., glycogen and lipid depletion-repletion cycles) that
is necessary to maintain energy homeostasis and prevent
acquired obesity and metabolic diseases (Colberg et al., 2016). In
conclusion, T2DM is caused by habitual physical inactivity (i.e.,
low metabolic-flux) driving decrements in the competitiveness of
hepatic and skeletal muscle-cells in concert with the long-term
failure of fat-cell plasticity and beta-cell function (DeFronzo,
1988; DeFronzo et al., 1992; Heilbronn et al., 2004; Galgani et al.,
2008; DeFronzo and Tripathy, 2009).

THE LACK OF EXPLANATORY AND
PREDICTIVE POWER OF GENE- AND
DIET-CENTRIC PARADIGMS

Science can be defined as the discovery of valid knowledge of the
observable world. In contrast to other domains (e.g., philosophy
and religion), science is distinguished by the capacity to explain,
predict, and (where possible) control natural phenomena. Thus,
the true test of scientific theories is how well they explain
extant evidence. In this section we demonstrate that because the
processes that lead to mammalian obesity and metabolic diseases
are in fact well-established, anthropocentric speculations based
on dietary and genetic correlations are inadequate [e.g., gene- and
diet-centric models; see (Neel, 1962; Bray et al., 2004; Speakman,
2007; Swinburn et al., 2011)].

Gene-Centric Paradigms Versus
Non-genetic Evolutionary Processes
We posit that accumulative maternal effects are causal to variance
in obesity and metabolic diseases independent of genotype
(Archer, 2015c; Archer and McDonald, 2017). And because these
non-genetic evolutionary processes mimic the alleged genetic
effects, they provide a rigorous, mechanistic explanation for
familial resemblance in metabolic and behavioral phenotypes
(Archer, 2015a,b,c; Archer and McDonald, 2017; Archer et al.,
2018). We previously commented on the lack of explanatory
and predictive power of gene-centric paradigms (Archer et al.,
2018), inclusive of epigenetics (Archer, 2015a,b,c). We stated
that the “missing heritability. . .will not be found in the genome”
(Archer, 2015c) but is explained almost entirely by accumulative
maternal effects in the pre- and post-natal periods (Archer, 2015c;
Archer and McDonald, 2017). These non-genetic evolutionary
processes have significant and unequivocal effects on body and
fat mass, and metabolic and behavioral phenotypes in offspring
across species (Walton and Hammond, 1938; Falconer, 1965,
1967, 1973; Falconer et al., 1978; Liu et al., 1993; Maria et al.,
1993; Brooks et al., 1995; Rossiter, 1996; Fox and Mousseau,
1998; Mousseau and Fox, 1998; Allen et al., 2002, 2004;
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Bonduriansky and Day, 2009; Mousseau et al., 2009; Freeman
et al., 2013; Garg et al., 2013; Archer, 2015c; Archer and
McDonald, 2017).

To extend our previous commentaries (Archer, 2015a,b,c;
Archer and McDonald, 2017; Archer et al., 2018), we present
several arguments. First, while the presence and initial location
of mammalian fat-cells is clearly genetic (Raff, 2012), variation
in the initial population of fat-cells (i.e., body cellularity) is
determined almost exclusively by the amount of nutrient-energy
reaching the placenta, intrauterine milieu, and fetus; which
is controlled by the competition between maternal and fetal
metabolic demands (Archer, 2015a,b,c,d; Archer and McDonald,
2017). A large body of observational and experimental research
supports this argument. For example, monozygotic twins
concordant for birth weight exhibit similar fat-cell numbers,
while in those discordant for birth weight, the smaller twin
displays both lower body mass and fat-cell number (Ginsberg-
Fellner, 1981). Clearly, this effect is not genetic and is explained
by chorionic status (Ramos-Arroyo et al., 1988; Cordero et al.,
2005) and the intra-uterine competition for calories between the
twins. The effect of intrauterine competition for energy substrates
on fetal body and fat mass is extremely well-established in non-
human animals, and inter-fetus competition due to litter size
is the “single greatest influence on birth weight” (Gardner et al.,
2007).

Second, as presented herein, obesity, and insulin resistance
result from positive energy balance driven by fat-cell hyperplasia
and/or physical inactivity (i.e., low metabolic-flux). Thus, we
contend that the genes associated with obesity and metabolic
disease are necessary but are not causal or predisposing factors.
Association studies support our argument. For example, trends
in physical activity over the past 50 years (Church et al., 2011;
Archer et al., 2013b,c) explain cohort-specific associations of
the FTO gene and obesity (Kilpelainen et al., 2011; Ahmad
et al., 2013). Third, association studies are merely descriptive
and provide no evidence of causality, whereas numerous
experimental studies demonstrated the unequivocal and large
consequences of accumulative maternal effects on metabolic
outcomes (e.g., body and fat mass) and physical activity across
species (Walton and Hammond, 1938; Falconer, 1965, 1967,
1973; Falconer et al., 1978; Liu et al., 1993; Maria et al., 1993;
Brooks et al., 1995; Rossiter, 1996; Fox and Mousseau, 1998;
Mousseau and Fox, 1998; Allen et al., 2002, 2004; Bonduriansky
and Day, 2009; Mousseau et al., 2009; Freeman et al., 2013; Garg
et al., 2013; Archer, 2015c; Archer and McDonald, 2017). For
example, ovum transfer, animal breeding, and cross-fostering
studies clearly demonstrated that the intrauterine milieu and
early post-natal periods can induce obesity and metabolic
dysfunction in a single generation, independent of genotype.
Embryo transfer studies demonstrate that the inheritance
of pathological metabolic phenotypes can be ameliorated or
potentially abolished when the embryo is transferred and
“gestated in a normal metabolic environment” (Garg et al., 2013).
There are no studies that demonstrate similar genetic effects.

Fourth, as demonstrated over the past century, intrauterine
exposure to reduced maternal metabolic control has significant
effects on the health and metabolic trajectories of offspring

(Freinkel and Goodner, 1962; Pedersen, 1967/1977; Whitelaw,
1977; Kervran et al., 1978; Catalano et al., 1998, 2003; Aerts
and Van Assche, 2006; Egeland and Meltzer, 2010; Catalano
and Hauguel-De Mouzon, 2011; Adamo et al., 2012; Cisse
et al., 2013; Ferraro, 2013). For example, in siblings discordant
for intrauterine exposure to T2DM, Dabelea et al. (2000,
p. 22208) demonstrated that exposure “conveys a high risk for
the development of diabetes and obesity in offspring in excess of
risk attributable to genetic factors alone”. Similarly, Kral et al.
(2006) showed that maternal weight-loss surgery reduced the
prevalence of obesity and severe obesity in offspring by 52 and
45%, respectively. These studies show that maternal effects via
altered maternal metabolism (i.e., altered metabolic-flux and
inter-cellular competition) are causal to both obesity and T2DM.
There are no similar studies demonstrating causal genetic effects.
Finally, there is “a great deal of biology” between a nucleotide
sequence and a phenotype, and there are myriad processes that
render the associations between any given DNA sequence and
a phenotype irrelevant [please see our prior work for a review
(Archer et al., 2018)]. For example, alternative splicing and post-
translational mechanisms can produce peptides with opposing
physiological properties [e.g., the “Ghrelin Gene” (Zhang et al.,
2005)].

In summary, these results support our contention that with
respect to obesity and T2DM, genetic/epigenetic research is an
incongruous level of analysis because “genes” are the “tools of
the [species-specific cell], and their use (i.e., expression) is strictly
environment-dependent” (Archer, 2015b, p. 556). Thus, we posit
that obesity and adult-onset metabolic diseases are exclusively
environmentally induced phenotypes. These phenotypes have
evolutionary consequences because in females, accumulative
maternal effects induce the progressive inheritance of acquired
characteristics, independent of changes to the genome.

Diet-Centric Paradigms
Diet-centrism is the tendency to attribute a wide-range of
negative health outcomes exclusively to dietary factors while
neglecting the essential role of individual differences (Archer,
2018; Archer et al., 2018). The fundamental error of “diet-
centrism” is the conflation of “diet” with nutritional status and
health, in concert with the failure to acknowledge that identical
diets consumed by different individuals result in divergent
metabolic effects (Krogh-Madsen et al., 2014; Zeevi et al.,
2015). The explicit conflation of diet with nutritional status
and health contravenes the fact that the mammalian body is a
complex ecosystem in which the effects of dietary factors are
wholly dependent on the current state and compensatory fluxes
of that ecosystem (e.g., metabolic phenotype and nutritional
status). For clarity, an individual’s metabolic phenotype is
influenced by factors, such as body cellularity and composition,
nutritional status, physical activity and fitness levels, age, sex,
reproductive, and disease status, and the state of the cellular
systems responsible for metabolic control (i.e., skeletal muscle-,
hepatic-, and pancreatic beta-cells) (DeFronzo, 1988; Archer,
2018).

Thus, it is not what is eaten (i.e., diet) that engenders
health or disease, but what one’s body does with what

Frontiers in Physiology | www.frontiersin.org 14 August 2018 | Volume 9 | Article 1053

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01053 August 9, 2018 Time: 16:28 # 15

Archer et al. Competition for Calories

was eaten (i.e., nutrient metabolism). Therefore, macro- and
micronutrients cannot have health-effects independent of the
metabolic phenotype of the consuming individual, and dietary
components per se cannot be the determining factor in obesity
and metabolic health (Archer, 2018). Thus, obesity and T2DM are
not dietary concerns but are metabolic ones. Evidence in support
of our argument is found across disciplines.

First, most diet-centric speculations are based on associations
derived from data and methods previously demonstrated to
be wholly invalid and scientifically “inadmissible” for the
purposes of establishing causal relationships between dietary
intake and health (Archer et al., 2015a,c, 2017b). Second, simple
carbohydrates (e.g., dietary sugars and starches) and fats are often
presumed to be causal factors, yet there are populations that
consume substantial amounts of these macro-nutrients with very
low prevalence of obesity and metabolic diseases (Ichikawa, 1981;
Hill et al., 1984; WHO, 1995; Matsumura, 2001; Onywera et al.,
2004; Marlowe et al., 2014). Therefore, “diet” is merely necessary,
but not sufficient. Third, the prevalence of human obesity
increased significantly across the globe in populations displaying
dietary patterns differing in nutrient composition. Thus, dietary
patterns are not causal. Fourth, there is no evidence that chronic
positive energy balance is driven by the widespread availability
of inexpensive, highly palatable foods and beverages. If this
speculation was true, all humans in high income nations would
be obese because these foods and beverages were ubiquitous
for multiple generations. As such, fat-cell hyperplasia and/or
physical inactivity (i.e., low metabolic-flux) induced increments
in energy-intake behaviors provide a more rigorous, mechanistic
explanation for over-nutrition.

Fifth, some of the strongest evidence to support our
contention that dietary patterns and dietary components have no
causal effect on the prevalence of obesity and metabolic diseases
is inferential. Human dietary patterns cannot have caused the
parallel increases in body and fat mass, obesity, and metabolic
diseases in feral, laboratory, farm, and companion animals (i.e.,
rodents, horses, cats, and dogs) over the last half of the 20th
century. Given the disparate environments and dietary patterns
of these species, and the fact that all are placental mammals,
accumulative maternal effects provides a more mechanistically
rigorous explanation than diet-centric speculations based on
mere associations.

Sixth, the strongest evidence supporting our contention that
the diet-centric paradigm is mistaken is the well-established
finding that over several generations, both obesity and metabolic
diseases (e.g., T2DM, gestational diabetes) developed in non-
human primates living in highly controlled environments with
“little to no change in diet, particularly in the rhesus and
cynomolgus macaque species” (Bauer et al., 2010). The “close
genetic relatedness to humans” (Bauer et al., 2011), make these
species “excellent models for [obesity] in humans” (Bauer et al.,
2011). These results provide an unequivocal refutation of the diet-
centric paradigm with respect to obesity and metabolic diseases
(Archer et al., 2018).

Finally, diet-centric speculations cannot explain the rapid
and differential increases in severe and morbid obesity (i.e.,
Class II and III) in adults and offspring during the late 20th

century that vary by race, sex, and socio-environmental contexts
(Sturm, 2007; Skelton et al., 2009). Conversely, the Maternal
Resources Hypothesis and our frameworks provide a detailed,
mechanistic, and parsimonious explanation for these population-
specific trends.

Unfounded and Unchallenged
Conjecture Impede Progress
Scientific progress necessitates bold conjectures coupled with
rigorous supporting evidence and comprehensive attempts
at refutation. Nevertheless, within the domains of obesity
and metabolic diseases, the sheer volume of unfounded and
unchallenged conjecture threatens to obscure well-established
evidence. Recently, we presented a review of the evidence
that is contrary to the major etiologic paradigms and stated
“that progress in the understanding, prevention, and treatment
of obesity and metabolic diseases requires moving beyond the
epidemiologic ‘association-game’ in which mere correlations are
cited as rigorous support for conjectures on causation” (Archer
et al., 2018). Nevertheless, there are hundreds of published
speculations on the etiology of obesity and metabolic diseases
ranging from air conditioning and vending machines, to
viruses, mosquitos, and microbiota (Downey, 2015). These
published putative “causes” rarely demonstrate any predictive or
explanatory value, and none offer biologically plausible and non-
trivial mechanisms in conjunction with rigorous experimental
support. In fact, many speculations rely upon “prescientific
thought” (Olesen and Alm, 2016) or tenuous correlations
generated from “pseudoscientific methods” (Archer et al., 2015a,c,
2018), and are often demonstrative of “physiologic illiteracy”
(Archer, 2018). Thus, we think the failure to distinguish between
established causal mechanisms and mere speculations based on
statistical associations continues to engender the proliferation of
misleading and demonstrably false research programs and failed
public health initiatives (Archer et al., 2017b, 2018; Archer, 2018).

In contrast, our novel frameworks in concert with our
prior theoretical work represent a detailed, mechanistic,
and comprehensive synthesis of rigorous experimental and
observational results that spans the continuum from proximate
to ultimate causation (i.e., physiologic and evolutionary,
respectively). As such, this paper is a productive, albeit
controversial step forward in constraining conjecture to
hypotheses supported by well-established mechanisms.

FUTURE DIRECTIONS

Our Maternal Resources Hypothesis and frameworks of
asymmetric nutrient-energy partitioning and effective caloric
intake are both retrodictive and predictive. Thus, unlike most
conjectures, the ideas presented herein can be used to re-interpret
and/or “predict” prior results while providing fodder for future
investigations across myriad domains. Since all theories should
be tested and have their foundational assumptions, background
knowledge, and predictions challenged, we are currently
planning a number of in vivo and in silico experiments to test
our “body-as-an-ecosystem” and “cell-centric” approaches.
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Furthermore, given that our work spans multiple levels of
analysis, we think empirical ventures targeting the evolutionary
consequences of accumulative maternal effects on offspring
cellularity and body mass over multiple generations are
warranted. Additionally, we think examinations of the effects
of body cellularity (e.g., ratio of high to low metabolically
active cells) on cell-specific partitioning of lipids and glucose are
potentially productive avenues for future research efforts.

CONCLUSION

In this paper we presented the conceptual frameworks of
asymmetric nutrient-energy partitioning and effective caloric
intake. These frameworks, in concert with our previous theoretic
work, the Maternal Resources Hypothesis, provide a parsimonious
and physiologically rigorous explanation for the rapid rise of the

global prevalence of obesity and metabolic diseases in human and
other mammalian species.
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