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Inflammasomes are high molecular weight protein complexes in the cytosol of immune
and other cells that play a critical role in the innate immune system in response to
cellular stress. NLRP3 inflammasome, the best-understood inflammasome, is known
to mediate the maturation (activation) of caspase-1 from pro-caspase-1, causing the
maturation and release of cytokines (e.g., interleukin-1β) and potentially leading to a form
of inflammatory programmed cell death called pyroptosis. Previous work has shown
that the NLRP3 components are expressed in cardiomyocytes and cardiac fibroblasts
and recent studies have identified the NLRP3 inflammasome as a key nodal point in the
pathogenesis of cardiomyopathies and atrial fibrillation, which may create an opportunity
for the development of new therapeutic agents. Here we review the recent evidence for
a role of NLRP3 inflammasome in the cardiomyocytes and discuss its potential role in
the evolution of cardiac remodeling and arrhythmias and new opportunities created by
these very recent developments.

Keywords: NLRP3 inflammasome, innate immune system, cardiomyocytes, cardiac fibroblasts, cardiomyopathy,
atrial fibrillation

THE INNATE IMMUNE SYSTEM, INFLAMMATION AND
INFLAMMASOME SIGNALING

Inflammation is a vital biological process involving an acute response to infection and tissue
damage aiming to prevent harmful influence to the host (Medzhitov, 2008; Buckley et al., 2013).
The mammalian innate immune system plays an important role in recognizing foreign pathogen-
or damage-associated molecular patterns (PAMPs and DAMPs, respectively) and defending the
host against infection or injury caused by other pathological organisms (Matzinger, 1994).

Inflammasome acts as an intracellular innate immune sensor (Martinon et al., 2002). The
inflammasome is a multi-protein signaling platform that generally involves 3 proteins: (1) a NOD-
like receptor (NLR), (2) an adaptor protein like apoptosis-associated speck-like protein containing
a CARD (ASC), and (3) a cysteine protease such as caspase-1 or caspase-5 (Kanneganti, 2015).
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NLRs are a class of pattern recognition receptors (PRRs)
that act as a sensor for the inflammasome. At least 22
different NLR proteins have been identified in humans
and 34 in mouse (Ting et al., 2008). Most NLRs consist
of a tripartite structure that includes: (1) a N-terminal
caspase-recruitment domain (CARD) or pyrin domain that
mediates downstream protein-protein assembly, (2) a centrally
located nucleotide-binding-and-oligomerization domain
that facilitates self-oligomerization, and (3) a C-terminal
leucine-rich repeats (LRRs) that are thought to be involved
in stimuli sensing (Martinon et al., 2002). To date, the
best investigated and validated inflammasome type is the
“NACHT, LRR and PYD domain containing protein 3”
(NLRP3) inflammasome (He et al., 2016). Upon recognizing
a series of inflammation-inducing stimuli (e.g., PAMPs and
DAMPs), NLRP3 inflammasomes in the innate immune cells
activate caspase-1 (Casp-1) which promotes the production
of proinflammatory cytokines (IL-1β and pro-IL-18) and
may lead to cell death known as pyroptosis (Schroder and
Tschopp, 2010; Davis et al., 2011). The activation of the NLRP3
inflammasome requires two primary signals (Figure 1): (1)
a priming step in which the toll-like receptor (TLR)-nuclear
factor-κB (NFκB) signaling pathway promotes the transcription
of NLRP3 and precursor ILs (pro-IL1β or pro-IL-18); and
(2) a triggering step in which a series of stimuli (K+ efflux,
increase in cytosolic Ca2+, generation of reactive oxygen species
[ROS], mitochondrial dysfunction, and lysosomal rupture)
(He et al., 2016) can facilitate the assembly of the NLRP3
inflammasome components by recruiting precursor-caspase-1
(pro-Casp-1) into the complex via the adaptor protein ASC.
This promotes the autocleavage of pro-Casp-1 to Casp-1
containing the active p20/p10 heterodimer proteins (Wilson
et al., 1994). Alternatively, NLRP3 inflammasome may also
activate caspase-11 or human orthologues caspase-4/caspase-5
(casp-4/5), which is also known as “non-canonical” NLRP3
inflammasome pathway (Kanneganti, 2015). Activated Casp-
1 holoenzyme further cleaves pro-IL-1β and pro-IL-18 to
form their respective mature forms (Li et al., 1995; Gu et al.,
1997). Mature IL-1β is a potent proinflammatory mediator
in many immune reactions, including the recruitment of
innate immune cells to the site of infection and modulation of
adaptive immune cells, whereas mature IL-18 is important
for the production of interferon-γ and potentiation of
cytotoxic activity of natural killer and T cells (Dinarello,
2009).

In addition, active Casp-1 may promote pyroptosis, which
is characterized by increased membrane permeability with
extracellular release of pro-inflammatory signaling molecules and
cell swelling and eventually cell membrane rupture (Fink et al.,
2008; Toldo and Abbate, 2018). Oligomerization of N-terminal
fragments resulting from the cleavage of gasdermin D by Casp-
1 lead to formation of membrane pores, which are permeable
for mature IL-1β, IL-18, and active Casp-1 (Liu et al., 2016).
Furthermore, cleavage of several proteins involved in the Krebs
cycle by Casp-1 leads to a significant decrease in cell energy
production which results in cell swelling and rupture (Shao et al.,
2007).

NLRP3 INFLAMMASOME SIGNALING IN
THE HEART

Cardiomyocytes (CMs) make up approximately 75% of normal
adult myocardial tissue (Camelliti et al., 2005). Although
non-cardiomyocytes occupy a relatively small fraction of
myocardial volume, they are essential for normal cardiac
function by providing extracellular matrix (ECM), intercellular
communication, and vascular supply needed for efficient
function and survival of CMs (Travers et al., 2016). The
NLRP3 inflammasome components have been identified in both
CMs and cardiac fibroblasts (CFs), which are the two most
abundant cell populations in the mammalian heart (Baudino
et al., 2006). An augmented function of NLRP3 inflammasome
has been proposed to play a role in multiple human diseases,
such as auto-inflammatory disease (Hoffman and Wanderer,
2010), diabetes (Vandanmagsar et al., 2011), atherosclerosis
(Duewell et al., 2010; Baldrighi et al., 2017), and ischemic
cardiomyopathy (Kawaguchi et al., 2011; Mezzaroma et al., 2011;
Sandanger et al., 2013; Liu et al., 2014; Toldo et al., 2016).
The innate immune system functions as the primary cardiac
defense against pathogens and tissue damage (Askevold et al.,
2014). Myocardial infarction is the most common cause of
cardiac injury (Jennings et al., 1990), resulting from coronary
atherosclerosis-mediated plaque rupture and involving acute
loss of CMs. Necrotic cardiac cells can trigger inflammatory
cascades to get rid of dead cell debris in the infarcted area
(Pfeffer and Braunwald, 1990; Opie et al., 2006). Conversely,
cell death can also release intracellular components, which
further stimulate innate immune mechanisms to facilitate the
inflammatory responses. Endogenous ligands released after
injury can be recognized as danger signals by cell surface
receptors, thereby activating cellular inflammatory signaling
(Beg, 2002). TLR-mediated pathways can trigger post-infarction
inflammatory responses by activating toll-like receptor (TLR)-
nuclear factor-kB (NFκB) and related signaling (Lawrence,
2009). Chemokines recruit inflammatory leukocytes to the
infarcted area, and cytokines promote leukocyte-endothelial cell
adhesions. Moreover, transforming growth factor-β (TGF-β) and
interleukin-10 (IL-10) can promote cardiac repair by suppressing
inflammation, enhancing fibroblast-to-myofibroblast transition,
and promoting ECM deposition (Kaur et al., 2009; Frangogiannis,
2014). Compared to the well-established canonical function of
the NLRP3 inflammasome in the innate immune cells, the
putative role of the NLRP3 inflammasome in non-immune
cells including cardiac cells is poorly defined. NLRP3 and
other important components of the inflammasome may not
be constitutively expressed in healthy mouse and human heart
but expression is induced in leukocytes, endothelial cells, CFs
in the granulation tissue and CMs in the infarct border zones
in a mouse model of acute MI (Yin et al., 2009; Mezzaroma
et al., 2011). NLRP3, IL-1β, and IL-18 mRNA levels were
shown to be increased in both left ventricle CMs and CFs
in a post-MI mouse model (Sandanger et al., 2013). ASC is
constitutively expressed in mouse CMs and CFs (Kawaguchi
et al., 2011). The entire signaling cascade appears to be operative
in CFs: NLRP3 inflammasome activation by DAMP molecule
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FIGURE 1 | Putative mechanisms of NLRP3 inflammasome activation in cardiomyocytes and cardiac fibroblasts. Question marks indicated the mechanisms that
need to be investigated. ASC, apoptosis-associated speck-like protein containing a CARD; ATP, adenosine triphosphate; Casp-1, caspase-1; DAMP,
damage-associate molecular pattern; IL-1β, interleukin-1β; IL-1R, interleukin-1 receptor; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells;
NLRP3, NACHT, LRR and PYD domain containing protein 3; ROS, reactive oxidative species; pro-Casp-1, precursor Caspase-1; P2X7R, P2X7 receptor; TLR4,
toll-like receptor 4.

ATP, TLR ligand specific activation in a NFκB dependent
manner, assembly of the NLRP3/ASC inflammasome, and
activation of Casp-1 (Kawaguchi et al., 2011; Sandanger et al.,
2013). ASC was highly expressed in the inflammatory infiltrate
cells and weakly expressed in CMs and the interstitial cells
obtained from patients who had died after an acute myocardial
infarction (Kawaguchi et al., 2011). Figure 1 illustrates the
putative mechanisms potentially underlying the activation of the
NLRP3 inflammasome and the postulated interaction patterns
between CMs and CFs through complex autocrine and paracrine
mechanisms (Figure 1). In this review, we will focus on the very
recently established role of the NLRP3 inflammasome in cardiac
cells and its potential involvement in cardiac diseases, such as
cardiomyopathies and atrial fibrillation (AF).

ROLE OF NLRP3 INFLAMMASOME IN
CARDIOMYOPATHIES

Cardiomyopathies are cardiac diseases that severely impact
patient morbidity and mortality (Wexler et al., 2009). They
can be induced by myocardial injury that is often accompanied
by transient or persistent local inflammatory responses. This
type of inflammation is deemed as sterile inflammation due
to the lack of a microbial pathogen. A number of studies
have illustrated a central role of NLRP3 inflammasome in
murine models of ischemic and non-ischemic cardiomyopathies
(Mezzaroma et al., 2011; Bracey et al., 2013; Liu et al.,
2014; Toldo et al., 2016; Valle Raleigh et al., 2017). NLRP3

inflammasome can be activated by several signals generated
during the initial ischemia-induced myocardial injury: dsDNA,
RNA, and ATP released from dying cells. DAMPs including
dsDNA and RNA can activate the TLR-NFkB signaling pathway
and promote the “priming” of NLRP3 and pro-IL1β. On the
other hand, ATP can activate P2X purinoceptor 7 (P2X7R)
in CMs thereby enhancing the K+ efflux and subsequently
facilitating the assembly of NLRP3 inflammasome complex,
which promotes the autocatalytic activation of Casp-1. The
mature Casp-1 further perpetuates myocardial remodeling via
two established mechanisms. On one hand, mature Casp-1
can increase the production of IL-1β and IL-18 by cleaving
their precursor proteins into the mature forms. An increased
release of IL-1β and IL-18 will spread and amplify the
local inflammation and promote fibrosis, a major factor
contributing to the structural remodeling of myocardium
(Nguyen et al., 2017). On the other hand, mature Casp-1
cleaves gasdermin-D (GSDMD), another crucial component
of the NLRP3 inflammasome, resulting in the formation of
the N-terminal proteolytic fragment of GSDMD (GSDMD-
Nt), which can promote inflammatory cell death known
as “pyroptosis” (He et al., 2015; Shi et al., 2015), further
deteriorating the function of the remaining myocardium.
Moreover, GSDMD-Nt is not only a potential executor of
pyroptosis, but is also a requirement for the release of
IL-1β, because genetic deletion of GSDMD precluding the
GSDMD membrane pore formation eliminates the ability of
the cells to release IL-1β (He et al., 2015; Sborgi et al., 2016).
Although it is unclear which degree of NLRP3 inflammasome
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activation is associated with pyroptosis induction, Mezzaroma
et al. (2011) has demonstrated that the Casp-1-mediated
cell death is restricted to the granulation tissue and CMs
located to the infarct border zone following acute myocardium
infarction.

The NLRP3 inflammasome might also be implicated in the
pathogenesis of non-ischemic cardiomyopathy. Bracey et al. have
shown that the development of cardiac hypertrophy, apoptosis
and ventricular dilatation in the cardiac-specific calcineurin
transgenic mice (CN-Tg) (Bracey et al., 2013) is associated
with increased protein levels of NLRP3 in cardiac tissue and
IL-1β in serum, which suggest that both the “priming” and
“triggering” steps are activated during the development of
heart failure with reduced ejection fraction (HFrEF). Most
importantly, administration of IL-1 receptor antagonist (IL-1-
ra) prevented the progressive reduction of cardiac contractility,
reduced infiltration of inflammatory cells in the myocardium,
and decreased apoptosis in CN-Tg mice.

The pathogenesis of diabetic cardiomyopathy has also been
linked to the activation of NLRP3 inflammasome (Shaw
et al., 2010). Diabetic cardiomyopathy often manifests as heart
failure with preserved ejection fraction (HFpEF), and is a
consequence of increased ventricular wall stiffness leading to
left ventricular diastolic dysfunction. It is well established that
hyperglycemia increases the production of ROS, which is a
known trigger for the assembly of the NLRP3 inflammasome
complex. Glucose itself has also been reported to be an
effective activator of the NLRP3 inflammasome (Shi et al.,
2015; Zu et al., 2015). In a type-2 diabetic rat model induced
by high fat diet and low dose streptozotocin, the expression
of NLRP3, ASC, Casp-1, and IL-1β was increased in the
heart. Genetic inhibition of Nlrp3 by a small interfering RNA
in vivo improved left ventricular diastolic function in these
diabetic rats (Luo et al., 2014), which was attributed to a
reduction in cell death, an improvement of myofilament and
mitochondria structures, and a reduction in cardiac fibrosis.
Thus there is accumulating evidence pointing to a critical role of
NLRP3 inflammasome activation in ischemic and non-ischemic
cardiomyopathy.

ROLE OF NLRP3 INFLAMMASOME IN AF

AF is the most frequent clinical arrhythmia which is associated
with an increased risk of stroke and worsening heart failure
(Andrade et al., 2014; Freeman et al., 2017). The development of
AF often involves ectopic triggers acting on an arrhythmogenic
substrate to initiate AF-maintaining reentry (Heijman et al.,
2014). The current therapeutic approaches are moderately
effective perhaps because of critical gaps in current knowledge
about arrhythmia mechanisms and important translational
challenges of available therapeutic concepts (Heijman et al., 2016,
2018).

An enhanced inflammatory response is frequently associated
with AF development (Aviles et al., 2003; Harada et al.,
2015) and increased levels of circulating IL-1β and IL-18
positively correlated with progression from paroxysmal AF (pAF)

to long-lasting persistent AF (perAF), along with left atrial
dilatation (an independent risk factor of AF) in AF patients
(Luan et al., 2010; Gungor et al., 2013). We recently showed
that the activity of the NLRP3 inflammasome is increased in
CMs from patients with pAF and perAF (Yao et al., 2018). In
atrial CMs from pAF patients, protein levels of active Casp-1-
p20 were significantly increased, despite the unchanged protein
levels of NLRP3 and pro-Casp-1, likely reflecting the fact that
the increase in NLRP3 inflammasome activity in pAF might be
due to an increased “triggering” (enhanced assembly), rather than
“priming” (increased gene transcription) processes. In contrast,
atrial CMs from perAF patients showed not only higher protein
levels of Casp-1-p20, but also an upregulation of NLRP3, ASC,
and pro-Casp-1 proteins, indicating that both “priming” and
“triggering” processes contribute to the activation of the NLRP3
inflammasome in CMs of these patients. To the best of our
knowledge this study is the first to show that the NLRP3
inflammasome is expressed and upregulated in non-immune
cardiac cells (CMs) from pAF and perAF patients and that its
activity in human CMs correlates with the progression of AF to
more persistent forms.

To determine whether CM-restricted activation of the NLRP3
inflammasome plays a causative role in AF pathogenesis,
a CM-specific knockin mouse model expressing a gain-of-
function mutation of NLRP3 (NLRP3A350V) mimicking the
constitutive NLRP3 activation seen in CMs from AF patients,
was established by crossing a previously established conditional
allele (Brydges et al., 2009) to the CM-specific Cre transgenic
mouse (Myh6Cre:Nlrp3A350V/+, CM-KI). In this CM-KI mouse
model, total protein levels of NLRP3, ASC and pro-Casp-
1 remained unchanged, whereas Casp-1-p20 protein levels
were increased, recapitulating the changes we observed in
pAF patients. Electrophysiological studies have demonstrated
that the constitutive activation of NLRP3 inflammasome in
CMs only increased the AF susceptibility by producing both
ectopic (triggered) activity and reentry-promoting electrical
remodeling in CM-KI mice (Yao et al., 2018). Moreover,
the enhanced AF susceptibility was associated with abnormal
diastolic sarcoplasmic reticulum (SR) Ca2+ releases due to
increased protein levels of ryanodine receptor type-2 (RyR2),
which might represent the molecular correlates of ectopic
activity as reflected by the higher incidence of premature
atrial contractions. In addition, the atrial effective refractory
period (AERP) was abbreviated most likely because of an
enhanced function of the ultra-rapid delayed-rectifier K+-
current (Kv1.5) in CMs. Genetic inhibition of Nlrp3 in CM-
KI mice using the adeno-associated virus type 9 (AAV9)-
mediated gene transfer of a short-hairpin RNA (shRNA),
reduced the incidence of inducible AF episodes. Thus, this
study clearly validated the causal relationship between the CM-
specific NLRP3 inflammasome activation and the susceptibility
to AF (Yao et al., 2018). Figure 2 summarizes the putative
molecular mechanisms associated with AF development due
to the activation of the NLRP3 inflammasome in CMs only.
Since NLRP3 inflammasomes exist also in CFs and CFs
play an important role in atrial fibrosis, a well-recognized
substrate for AF maintenance, future studies should address
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FIGURE 2 | Putative molecular mechanisms underlying the development of atrial fibrillation due to constitutive activation of NLRP3 inflammasome in mouse cardiac
myocytes only. Question marks indicated the mechanisms that need to be investigated. APD, action potential duration; DADs, delayed afterdepolarizations; IKur,
ultra-rapid delayed rectifier potassium current; SR, sarcoplasmic reticulum.

the potential role of the CF NLRP3 inflammasome for AF
pathophysiology.

TARGETING OF THE NLRP3
INFLAMMASOME AS A THERAPEUTIC
OPTION

Based on available experimental evidence, targeting the NLRP3
inflammasome-signaling pathway may represent a unique
therapeutic opportunity for patients with cardiomyopathy and/or
AF. Most of the agents described below have been tested only
pre-clinically in animal models and their potential translation
into clinical practice will require prospective clinical trials in the
suitable patient populations. The multiple players involved in the
NLRP3 inflammasome signaling cascade offer a variety of viable
options for therapeutic exploitation. Targeting the upstream
regulators of NLRP3 inflammasome function, selective inhibition
of different members of NLRP3 inflammasome complex,
interruption of the complex preventing maturation of Casp-
1, and selective blockade of the downstream effectors (mature
caspase-1 and IL-1β) of NLRP3-inflammasome activation, may
all be viable therapeutic interventions. An inhibition of the
upstream regulators could be achieved by inhibition of K+

efflux with the antidiabetic drug glyburide (Haque et al., 2016)

or the application of a ROS-scavenger (Liu et al., 2014).
The inhibition of individual NLRP3 inflammasome members
could be accomplished by genetic silencing of Nlrp3, ASC,
or pro-Casp-1 using specific shRNAs (Dai et al., 2011; Yao
et al., 2018) or CRISP/Cas9-mediated non-homologous end
joining (NHEJ) (Zhang et al., 2014) via the AAV-mediated
gene transfer system. Disruption of inter–domain interaction
between NLRP3 and ASC can be achieved using the MCC950
compound (Coll et al., 2015). The blockade of IL-1β functions
is currently the most advanced strategy with two agents
being clinically available: the IL-1 receptor antagonist anakinra
(Mitroulis et al., 2010) and the neutralizing IL-1β antibody
canakinumab (Jesus and Goldbach-Mansky, 2014; Ridker et al.,
2017). Moreover, several Casp-1 inhibitors (e.g., Ac-WEHD-
Cho and Ac-YVAD-cho) are currently under development
for patients with auto-inflammatory diseases (Howley and
Fearnhead, 2008; MacKenzie et al., 2010). Interestingly, the
recently completed large-scale clinical trial “The Canakinumab
Anti-inflammatory Thrombosis Outcomes Study” (CANTOS)
showed that selective targeting of the IL-1β pathway can
significantly reduce the rate of recurrent cardiovascular events
including myocardial infarction, and that this effect was
independent of lipid levels lowering (Ridker et al., 2017).
This study provides a promise that targeting of the NLRP3-
inflammasome could potentially be a viable therapeutic option
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for cardiomyopathies, AF, and perhaps other cardiovascular
diseases including heart failure. Prospective randomized clinical
trials including suitable clinical patient populations are needed
to prove and validate the therapeutic potential of NLRP3
inflammasome inhibition for the management of cardiovascular
diseases.
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