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Objective: To characterize the multifractal behavior of the beat to beat heart-period

or RR fluctuations in fibromyalgia patients (FM) in comparison with healthy-matched

subjects.

Methods: Multifractral detrended fluctuation analysis (MDFA) was used to study

multifractality in heartbeat times-series from 30 female healthy subjects and 30 female

patients with fibromyalgia during day and night periods.The multifractal changes as

derived from the magnitude and sign analysis of these RR fluctuations were also

assessed.

Results: The RR fluctuations dynamics of healthy subjects showed a broad multifractal

spectrum. By contrast, a noticeable decrease in multifractality and non-linearity was

observed for patients with fibromyalgia. In addition, the spectra corresponding to FM

subjects were located on the average to the right of the spectra of healthy individuals,

indicating that the local scaling exponents reflect a smoother behavior compared to

healthy dynamics. Moreover, the multifractal analysis as applied to the magnitude and

sign heartbeat series confirmed that, in addition to a decreased nonlinearity, fibromyalgia

patients presented stronger anticorrelation in directionality, which did not remain invariant

for small or rather larger fluctuations as it occurred in healthy subjects.

Conclusion: When compared to healthy controls, fibromyalgia patients display

decreased nonlinearity and stronger anticorrelations in heart period fluctuations. These

findings reinforce the hypothesis of the potential role of the dysfunctional autonomic

nervous system in the pathogenesis of fibromyalgia.

Keywords: heart rate variability, scaling, magnitude and sign analysis, complexity theory, dysautonomia,

multifractaility, fibromyalgia
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1. INTRODUCTION

Diverse methods derived from non-linear dynamics and
statistical physics have been used to characterize the
spatiotemporal organization displayed by complex signals
from different living systems (Ashkenazy et al., 2002; Hu et al.,
2004; Ivanov et al., 2001, 2009; Bassingthwaighte et al., 2013).
Frequently, many of these signals exhibit power law scaling
when analyzed by techniques which are capable to detect a single
scaling exponent; but for other signals, a better description
is given in terms of a set of local exponents as it is the case
of multifractals (Goldberger et al., 2002; Bunde et al., 2012).
The multifractal formalism was introduced in the context of
turbulence studies (Kolmogorov, 1941; Frisch, 1995) and velocity
fluctuations (Frisch and Parisi, 1985). Since Mandelbrot (1974)
introduced the concept of multifractality in the context of
geometric objects; many different systems have been described
using a broad multifractal spectrum, indicating that a wide
range of local exponent values are needed to characterize the
irregularity in the original signal (Mandelbrot, 1977; Ivanov
et al., 1999a, 2001; Feder, 2013). The traditional procedure to
perform a multifractal analysis is derived from the construction
of a standard partition function, and only applies to normalized
stationary signals (Wang et al., 2014). At the beginning of the
90s, the wavelet transform modulus maxima (WTMM) method
was introduced to determine the multifractal spectrum based on
wavelet transform over different scales (Daubechies, 1992; Bacry
et al., 1993; Muzy et al., 1993, 1994; Arneodo et al., 1995a,b;
Ivanov et al., 1996).

Later, in 2002 Kantelhardt et al. (2002) introduced the
multifractral detrended fluctuation analysis (MDFA), as an
extension of the monofractal detrended fluctuation analysis
(DFA) method (Peng et al., 1994). One of the advantages of
the MDFA is that it provides a stable spectrum of a range
of multifractal signals, with a reliable estimation of the set of
local Hurst exponents. Besides, the MDFA has been tested to
extract a reliable multifractal spectrum when it is applied within
time scales corresponding to low frequencies (Galaska et al.,
2008).

On the other hand, the RR fluctuations or heart rate variability
has been the object of study by means of nonlinear methods
during past decades (Nunes Amaral et al., 2001; Ivanov et al.,
2001, 2009; Peña et al., 2009; Hernández-Pérez et al., 2011).
One of the most important features extracted by means of these
methods is the presence of power-law fractal organization under
healthy circumstances, while a degradation of the fractal scaling is
frequently observed for pathologic conditions (Guzmán-Vargas
et al., 2003). A more detailed assessment of the complex RR
fluctuations have revealed that healthy interbeat dynamics is well
described by a broad mutifractal spectrum, and a reduction in
the multifractality was detected for patients with congestive heart
failure (Ivanov et al., 1996; Guzmán-Vargas and Angulo-Brown,
2003; Guzmán-Vargas et al., 2005; Bojorges-Valdez et al., 2007;
Galaska et al., 2008).

Given the need to elucidate the etiology of fibromyalgia (FM),
identifying alterations in its RR fluctuations complexity has
gained particular interest. In this pathology, chronic pain and

other symptoms affect multiple systems extensively (Martinez-
Lavin et al., 2008). The pathophysiology of FM remains
uncertain, and no specific mechanisms can be pinpointed to
explain the dynamical changes observed in the heart rate
variability of these patients. However, there is strong evidence
about the involvement of the autonomic nervous system both,
in the etiology and the multifaceted alterations of this disease.
The main affliction of the syndrome (chronic pain) seems to
be maintained by the chronic sympathetic hyperactivity that
is associated with altered connections between the sensory
neurons and the sympathetic nervous system (Martinez-Lavin,
2004). In addition, the fact of having defective catecholamine
clearing enzymes appears to increase the susceptibility to pain
(Diatchenko et al., 2004). We have previously hypothesized that
the understanding of FM requires an approach in which the
autonomic nervous system is considered as a complex adaptive
system, which in itself constitutes the main element of the stress
response system (Martinez-Lavin et al., 2008). From this point
of view, we would expect that the alterations in this complex
adaptive system become manifested in the dynamical properties
of the physiological variables that such system regulates (such
as the beat to beat heart-period or RR fluctuations). The first
evidence of an altered complexity of RR fluctuations in FM
was the observation of a larger monofractal short-term scaling
exponent in FM patients compared to healthy subjects (Lerma
et al., 2016). Yet, it is not known if the multifractal spectrum
of these patients also shows a reduction or other alterations.
Here, we studied RR time series of patients with FM during day
and night periods. Our aim was to characterize the multifractal
behavior of the RR fluctuations in FM patients and in carefully
selected healthy-matched subjects, using the MDFA method. In
addition, the multifractal changes as derived from the magnitude
and sign analysis of these RR fluctuations were also assessed.

2. METHODS AND DATA

2.1. Multifractal Detrended Fluctuation
Analysis (MFDFA)
The multifractal detrended fluctuation analysis was introduced
by Kantelhardt et al., which is a robust method to detect the
scaling properties of the fluctuactions related with multifractilty
of a given signal. We briefly explain the main steps of the
multifractal detrended fluctuation analysis (Kantelhardt et al.,
2002):

• Step 1: Given the time series xk of lengthN. First, we determine
the profile

Y(i) ≡
i

∑

k=1

[xk − 〈x〉], i = 1, ...,N, (1)

where 〈x〉 represents the mean value.
• Step 2: Next, the profile Y(i) is divided into Ns ≡ int(N/s)

segments of size s. To make more robust the statistics, the
same procedure is applied but starting from the end of the time
series, and in this way, 2Ns segments are considered for the
calculations.
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• Step 3: A least-square fit is applied to the 2Ns segments of the
integrated data. Then the variance is calculated,

F2(v, s) ≡
1

s

s
∑

i=1

{Y[(v− 1)s+ i]− yv(i)}
2, (2)

for, v = 1, ...,Ns, where yv represents the fitting polynomial,
which can be linear, quadratic, or a higher order polynomial.

• Step 4: Now the qth-values are considered in the fluctuation
function

Fq(s) ≡

{

1

2Ns

2Ns
∑

v=1

[F2(v, s)]
q
2

}

1
q

(3)

with q a parameter that modifies the behavior of Fq(s).
Particularly, the cases of q < 0 characterize small fluctuations
whereas q > 0 refer to larger ones (Kantelhardt et al., 2002).
The steps 2–4 are repeated for different time scales s in order
to construct the log-log plot of Fq(s) vs. s.

• Step 5: Finally, the scaling behavior is described by,

Fq(s) ∼ sh(q), (4)

where h(q) is an exponent that may depend on q and it is
called the generalized Hurst exponent. For instance, when
q = 2, h(2) is related to the standard Hurst exponent.
For monofractal time series, it is expected that h(q) remains
constant as the value of q is changed.

The use of different moments (q-values) permits to stablish a
relationship between the generalized Hurst exponent h(q) and
the scaling exponent τ (q), which is defined via an appropriate
partition function in the standard multifractal formalism (Feder,
1988; Kantelhardt et al., 2002). This relationship is given by,

τ (q) = qh(q)− 1. (5)

The singularity spectrum f (α) can be constructed to characterize
themultifractal properties of the time series. Specifically, f (α) can
obtained from τ (q) via the Legendre transform, by taking

α = τ ′(q) and F(α) = qα − τ (q), (6)

where α represents the singularity strength of Holder exponent
and F(α) is the dimension of the subset of the time series that is
characterized by α. We also recall that sometimes the multifractal
properties are described in terms of the generalized dimensions:

D(q) =
τ (q)

q− 1
. (7)

In order to characterize the multifractal spectrum f (α), we resort
to the following quantities (Makowiec et al., 2006; Galaska et al.,
2008):

• Width of the spectrum: distance between the maximum and
minimum Holder exponents,

1α = αmax − αmin. (8)

• Left-side width of the spectrum: distance between α∗ [which
corresponds to Fmax(α∗)] and minimum α value

1αleft = αFmax − αmin. (9)

• Right-side width of the spectrum: distance between
maximum α and α∗

1αrigth = αmax − αFmax . (10)

• Global Hurst exponent:

HG =
1

2
(1+ τ (2)), (11)

where τ (2) represents the value of the scaling exponent for
q = 2.

• Left-slope and right-slope in τ : linear approximation to
the behavior of τ for negative (left) and positive (right)
moments q.

To further explore the multifractal changes in healthy and FM
conditions, we also resort to the magnitude and sign analysis of
the RR sequences. Ashkenazy et al. (2001) have reported that
scaling properties of the magnitude series are related to the
multifractal structure of the origial signal (non-linear properties),
whereas scaling sign analysis reveal mostly information about
linear correlation of the time series. Briefly, from the increment
1RR series, two new series are constructed: the magnitude series
|1RR| and sign(1RR), where the function sign(1RR) is defined
to be+1 for 1RR > 0,−1 for 1RR < 0 and 0 for 1RR = 0. The
magnitude and sign analysis of heart rate variability have been
proved to be useful to deferentiate between pathological changes
and certain clinical conditions (Ashkenazy et al., 2001; Schmitt
and Ivanov, 2007; Reyes-Lagos et al., 2016).

2.2. Patients and Data
As previously described (Lerma et al., 2016), we studied 30
women with fibromyalgia. Eligibility criteria for patients were
the following: (1) to have fibromyalgia according to the 1990
American College of Rheumatology guidelines; (2) to be free
of any medication that could affect autonomic performance
including tranquilizers or antidepressants; (3) to be 18–50 years
old; (4) to be in the fertile period of their lives with active
menstrual cycles, but not to be in their menstrual period the
day of the study; (5) to have no comorbid conditions; and (6)
to freely agree to participate in the study. Patients were sourced
from different rheumatology private practices in Mexico City.
For each patient, a control of similar age (±2 years) was recruited.
Eligibility criteria for controls were the following: (1) to consider
themselves healthy and to have five or fewer fibromyalgia tender
points; and (2) Not to be in their menstrual period the day of
the study. Controls were medical or paramedical personnel. A
rheumatologist examined all prospective participants to ascertain
the diagnosis of FM or the healthy status of controls. All
participants filled out validated spanish questionnaires for a
systematic and comprehensive assessment of their symptoms,
including the Fibromyalgia Impact Questionnaire (FIQ) and
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the Composite Autonomic Symptom Scale (COMPASS). The
fibromyalgia group had higher scores of the symptoms than the
control group (total FIQ score: 63 ± 16 vs. 10 ± 10, p < 0.0001;
total COMPASS score: 55±16 vs. 15±11, p < 0.0001). A detailed
description of all symptoms is described elsewhere (Lerma et al.,
2016). FM patients had similar age and body mass index (age =
31±8 years old, bodymass index = 23.8±4.4 Kg/m2) than healthy
participants (31 ± 8 years old, and body mass index (24.4 ± 3.2
Kg/m2). All participants signed a written consent form. The study
was approved by the Research Committee and by the Bioethics
Committee of the Instituto de Cardiología de Mexico.

The RR fluctuations time series of each participant were
obtained from an ambulatory 24 h electrocardiogram recording
with a Holter monitor (model DMS-307, DMS Inc.). An
automated computer program was used to identify the time
of occurrence of each heartbeat. Then the difference in time
between consecutive heartbeats was calculated (RR interval), and
an adaptive filtering method was used to identify and replace
the RR intervals that were not originated during normal sinus
rhythm (Wessel et al., 2000). The RR fluctuations time series
had a mean RR interval of 0.806 ± 0.082 in the FM group and
0.770± 0.074 s in the healthy group (p = 0.070).

2.3. Statistical Analysis
Kolmogorov–Smirnov tests were applied to all variables to assess
their normal distributions. Variables with normal distribution
were compared between groups by Student t-tests; variables
with no normal distributions were compared by Mann–Withney
U-tests. Regression analyses of h(q) vs. q were performed to
compare values of h(q) between FM and control groups. For each
group, the 95% confidence intervals of each model parameter
were estimated in a second order polynomial model [h(q) =

β0 + β1q + β2q
2]. The statistical analysis was performed with

SPSS version 21.0.

3. RESULTS

For both, healthy and FM patients, we performed the multifractal
analysis of RR time series from two 5-h segments of the ECG
recordings: nighttime (0.00 p.m.–5:00 a.m.) and daytime (2:00
p.m.–7:00 p.m.). These series are illustrated in the Figures 1A,B.
First, we explored the behavior of the fluctuactions in the plane
Fq(s) vs. s for different values of q and for different segment
lenghts (from 30 min to 5 h) as shown in the Figure 1C. It is
very important to consider the proper range selection of scales
s, for which the fittings in the fluctuactions Fq(s) are calculated.
In our case, we selected the scale range 6 < s < 100 and the
length of the segment 1t = 1, 500 ≈ 30 min to apply MFDFA.
The values of the local scaling exponents of all subjects are
averaged over all segments of the 5 h interval (either at daytime
or nighttime). The behavior of h(q) vs. q was determined for q-
values within the interval [−5, 5], and the multifractal spectrum
was then constructed. Figure 2 shows the results of the MFDFA
for the healthy and FM groups for daytime records. We observe
that theHurst exponent h(q) is not independent of q, i.e., a similar
variation in the average scaling-exponent values as a function of
q is observed for both groups ( the confidence intervals of β1 and

FIGURE 1 | Representative RR time series during timeday of a (A) healthy

subject and (B) patient with FM. Plot of (C) Fq(s) vs. q of a RR sequence

(healthy subject) for several values of q.

β2 from both groups are overlapped). This is a manifestation of
multifractal properties in the time series (Figure 2A). However,
the confidence intervals of β0 from both groups do not overlap,
indicating that the h(q) values from FM data are consistently
higher (i.e., smoother) than the corresponding values of the
healthy group. These results are in good concordance with a
previous report about monofractal estimation of the scaling
exponent [h(2)] based on the standard two-point correlation
DFA method (Lerma et al., 2016). For healthy subjects, we
observe that the behavior of τ (q) vs. q exhibits slightly more
nonlinearity (Figure 2B) than the FM patients, which showmore
linear τ (q) behavior. This indicates that under healthy conditions
the dynamics seems to showmore multifractal features (Table 1).
We find significant differences in Right-slope in τ (p < 0.05)
between healthy and FM groups, but not significant differences
were found for Left-slope in τ (p > 0.5). Figure 2C shows the
spectra of both groups. We observe that, for healthy subjects,
the local Holder exponents cover the range 1 < α < 1.62,
while for FM patients the dominant exponents fall within the
interval 1.1 < α < 1.7. These results indicate that FM signals
are similar to Brownian-type fluctuactions because the interval
of the dominant exponents are closer to the 1.5 value.
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FIGURE 2 | Results of the MFDFA for all healthy and FM subjects. (A) Plot of

h(q) vs. q. The values of h(q) are derived from fittings within the interval

6 < s < 100 and a time window of 1, 500 RR values during daytime. The

estimated regression models were h(q) = 1.295− 0.039q+ 0.003q2 (for FM

patients), and h(q) = 1.261− 0.042q+ 0.002q2 (for healthy group). In both

models, β0, β1, and β2 6= 0 with p < 0.001 and R2 > 0.55. The confidence

intervals of β1 and β2 are overlapped in both groups, while there was no

overlap in β0 of the FM group (1.281, 1.309) with the healthy group

(1.226, 1.256). (B) Behavior of τ (q) for data showed in (A). (C) Multifractal

spectrum F (α) vs α. Error bars represent the standard error of the mean.

Next, we also repeated the calculations for nighttime periods.
We find that during this period, there are not significant
differences between healthy and FM groups regarding the

TABLE 1 | Characteristics of the multifractal spectrum in patients with FM and

healthy subjects during daytime.

Parameters Healthy Fibromyalgia p-value

1α 0.6324 ± 0.1809 0.6136 ± 0.1291 0.6565

1αleft 0.4317 ± 0.1567 0.4320 ± 0.1150 0.9947

1αrigth 0.2006 ± 0.1095 0.1816 ± 0.0813 0.4638

HG 1.1595 ± 0.1108 1.2302 ± 0.1089 0.01947

Left-slope in τ 1.5389 ± 0.2122 1.6031 ± 0.2871 0.3459

Right-slope in τ 1.0904 ± 0.1515 1.1770 ± 0.1257 0.0236

The values of the parameters (mean ± SD) were obtained from fittings within the interval

6 < s < 100 in the log Fq (s) vs. log s plane. HG stands for global Hurst exponent.

multifractal properties (data not shown). To endorse our
findings, we also performed the same analysis on two surrogate
data sets derived from each group. First, we shuffled the RR
intervals to destroy temporal correlations while preserving the
probability distribution. Second, the Fourier transform is applied
to the RR intervals sequences, then we randomize the Fourier
phases and the inverse Fourier transform is performed to get
the surrogate time series. This process preserves the linear
properties of the signal (the same power spectrum) but changes
the probability distribution of the RR intervals (see Figure 3).
We observe that when the temporal two-point correlations are
destroyed, the dominant local scaling exponents are close to the
0.5 value for both groups (Figures 3A,C). For phase-randomized
data, we found that the width of the multifractal spectrum of
the healthy group is narrower than the width corresponding to
FM patients (Figures 3B,D), confirming that the contribution
of phase correlations to the multifractality is more important in
healthy subjects compared to FM patients where the multifractal
spectrum suffered a small change, as described above.

Next, we apply the MDFA to the magnitude and sign series
derived from the daytime or nighttime intervals. As it is shown
in Figure 4A, the average values of h(q) of magnitudes series are
higher for healthy subjects compared to the FM group.Moreover,
the width of the multifractal sprectrum of healthy data is slightly
larger than the width of the FM case, confirming that the
contribution of nonlinearities is more important under healthy
dynamics compared to the FM dynamics (Figure 4B). Figure 5
shows the results of the sign series. We observe that, unlike
the previous cases, here FM data lead to a wider multifractal
spectrum compared to healthy group. We also remark that the
FM group is characterized by a more anticorrelated scaling
exponents while the dominant exponents for healthy subjetcs are
less anticorrelated. For a better comparison of both groups, the
above description of the differences in the multifractal structure
between healthy subjects and FM patiens allow us to construct
a scatter plot of the generalized Hurst exponent hRR(q) of the
original RR time series vs. the corresponding Hurst exponent of
magnitude hmag(q) [or hRR(q) vs. sign hsign(q)] (Figure 6). We
find that, for hRR(q) vs. hmag(q), two different tendencies are
observed for positive and negative moments with a steeper slope
in the case of negative moments and both groups are clearly
differentiated (Figure 6A). For hRR(q) vs. hsign(q), sign scaling
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FIGURE 3 | (A) Average behavior of h(q) vs. q for healthy subjects, patients with FM and their corresponding shuffled version. (B) As in (A) but for the phase

randomized data. The exponents were calculated for the scaling region 6 < s < 100. (C) Multifractal spectrum F (α) vs α for healthy and FM groups and their

corresponding shuffled version. (D) As in (C) but for the phase randomized data, all during timeday. Error bars represent the standard error of the mean.

exponents of healthy data are almost constant for both negative
and positive moments while FM patients exhibit variations in
both type of scaling exponents and again both groups are
separated, specially for positive moments (Figure 6B).

4. DISCUSSION

This work presents a thorough exploration of the dynamic
behavior of heart rate variability in FM patients from
the point of view of multifractality, nonlinearity and
directionality. Our main findings are decreased multifractality
and non-linearity as well as stronger anticorrelation in
FM patients during daytime compared to matched-healthy
subjects.

The differences during daytime between groups were mainly
identified in two characteristics of the multifractal spectrum
(HG and the right slope in τ ) as well as in a larger effect of
the phase randomization that provoked a narrower width of
the resulting multifractal spectrum for the healthy group. This
implied a reduced nonlinearity of heart rate variability in FM
patients, which was also confirmed by the multifractal structure
of the magnitude series because the generalized hmag(q) values
of the healthy group were consistently larger for all qth values.
Moreover, the generalized hsign(q) showed consistently smaller
values in FM patients, which implies a stronger anticorrelated
behavior for all qth values (q > −4). The multrifractal approach
also exhibited that in FM patients, the value of hsign(q) changes
at different qth values, while this variation does not occur in

healthy subjects. From a dynamical point of view, whereas
a narrower and shifted multifractal spectrum in FM patients
reveals smoother Brownian-like fluctuations, in accordance
with previous results based on a monofractal analysis (Lerma
et al., 2016), their stronger anticorrelated behavior indicates
that the fluctuations in heart rate variability tend to alternate
the increments and decrements of the RR interval at several
scales. Given the well-known effects of periodic trends on
the scaling properties (Hu et al., 2004; Schmitt and Ivanov,
2007; Perakakis et al., 2009), such smoother fluctuations in FM
patients may arise, among other factors, from the occurrence
of periodic breathing patterns that have been observed in
FM (Sergi et al., 1999). Future studies are required to asses
the potential influence of periodic breathing patterns upon
multifractality HRV properties in FM. FM is characterized by a
wide range of symptoms and inter-subject variability is usually
very high. A strength of our study is the carefully selected
patient and control groups. All patients had well-established
fibromyalgia, without comorbid conditions and were free of
any medication that could affect autonomic nervous system
performance. Expert rheumatologists examined all prospective
participants to ascertain the diagnosis of FM or the healthy status
of controls according to the American College of Rheumatology.
Further studies with large samples are needed to assess the
generalization of the present findings in more heterogeneous
samples of patients

Previous studies have used both time domain and frequency
domain heart rate variability analysis. The majority of studies
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FIGURE 4 | Multifractal detrended fluctuation analysis of magnitude increment

sequences of healthy and FM patients during timeday. (A) Behavior of h(q) vs.

q for scaling exponents obtained from fittings in the scaling region

15 < s < 100. F (α) vs. α for data showed in (B). Error bars represent the

standard error of the mean.

observed lower heart rate variability in FM patients compared to
healthy control persons, as well as increased sympathetic activity
and a blunted autonomic response to stressors (Meeus et al.,
2013). The power spectral analysis of heart rate variability in FM
patients have actually shown a sympathetic predominance during
all phases of the circadian cycle (Martínez-Lavín et al., 1998), and
the time domain analysis indicated a decreased overall variability,
which correlated with some FM symptoms (Lerma et al., 2011).
In our study, representative multifractality indexes were different
between patients and controls during daytime but not at night.
A hypothetical explanation for this finding could be that the
blunted response to stressors of fibromyalgia patients degrade
the multifractal dynamics exhibited by heart rate variability
when confronted to the daytime chores. Concerning patients
with congestive heart failure, a disease that compromise the
cardiovascular dynamics more severely than FM, a monofractal
analysis of healthy dynamics vs. patients with congestive heart
failure showed scaling exponents of both groups that are closer
to each other during sleep phases with a noticeably similar
irregular behavior compared to daytime periods (Ivanov et al.,
1999b). Far from the reductionist vision of FM as a disease solely
caused by chronic sympathetic hyperactivity, we consider that
FM and related conditions may result from an overall degraded
performance of the autonomic nervous system, which is a

FIGURE 5 | Multifractal detrended fluctuation analysis of sign time series from

healthy and patients with FM during timeday.(A) Plot of h(q) vs. q for scaling

exponents obtained from fittings in the scaling region 15 < s < 100. (B) F (α)

vs. α for data showed in (A). Error bars represent the standard error of the

mean.

complex adaptive system that constitutes the main orchestrator
of the stress response system (Martinez-Lavin et al., 2008).
From this point of view, previous findings of smoother heart
rate variability are consistent with the hypothesis of an altered
and more “rigid” autonomic response to stress (Lerma et al.,
2016). The current work provides further evidence of this
decreased complexity in the autonomic nervous system because
the multifractal analysis showed less nonlinearity in FM patients
than in healthy subjects. This was observed by a larger HG and
larger right slope in τ (Table 1), which was also confirmed by
the surrogate analysis and multifractal analysis of the magnitude
series as explained above. Moreover, the multifractal analysis
of the sign series showed that FM patients have an increased
anticorrelated behavior, which is consistent with the sympathetic
predominance of FM according to the stochastic feedback
model for random walks (Ivanov et al., 1998). In this model,
an increment of anticorrelations is achieved by introducing a
dominant attracting factor to set the main heart rate (i.e., instead
of concurrent influences from several factors, one modulating
factor becomes predominant).
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FIGURE 6 | (A) Scatter plot of the generalized Hurst exponents hRR (q) vs.

hmag(q), for healthy and FM groups during daytime periods. For both groups,

symbols with error bars represent the mean value, and the error bars the

corresponding standard error of the mean. We observe that both groups are

well separated for the different values of q. (B) As in (A) but for the generalized

Hurst exponents hRR(q) vs. hsign (q), for healthy and FM groups during daytime

periods. In this case, both groups are close each other for negative moments

while tend to be more separated as q increases.

There are other hypotheses beyond the autonomic
modulation that have motivated the exploration of changes
in the anatomical or functional complexity, which both could
be associated with the hyperactivity of the nociceptive system in
FM patients. For example, morphometric analysis of different
subcortical brain regions in FM patients showed a reduction in
the total brainstem volume, which was significantly correlated
with the clinical score of tender points (Fallon et al., 2013). From
a functional point of view, the interaction between brain areas
of FM patients has been assessed through network sensitivity
analysis of electroencephalogram data. Two properties of such
networks (node degree and frequency) showed significant
correlation with chronic intensity pain, suggesting that the

central nervous system of these patients has an altered network
configuration that may increase hypersensitivity to pain (Lee
et al., 2018). However, it remains uncertain if such changes of
the central nervous system participate in functional alterations
of other regulatory systems, and if this participation modifies
effector variables such as the heart rate period.

The multifractal detrended analysis as applied here
to magnitude and sign heart rate variability sequences
indicated a potential route to evaluate the impairment of
the regulatory adaptability because, regardless of characterizing
the directionality in small (q < 0) or rather large fluctuations
(q > 0), the level of anticorrelation remained invariant for
healthy subjects. Given that our healthy subjects were carefully
selected (see section 2), this finding could then imply that such
invariance reveals stability because the interplay of different
attracting factors (Ivanov et al., 1998) are similar manifested
during the course of small or large fluctuations. The current
work provides further evidence of this decreased complexity
in the autonomic nervous system because the multifractal
analysis showed less nonlinearity in FM patients than in healthy
subjects. Future studies associating the severity of the disease
will determine if this new information has clinical implications
and additional analyses remain to be performed to assess this
consideration.

5. CONCLUSIONS

Themultifractal analysis of heart rate variability revealed a loss of
complexity (i.e., less nonlinearity) and increased anticorrelated
dynamical behavior in FM patients, which reinforces the
hypothesis of the crucial role of the impaired autonomic nervous
systems in the etiology and diverse alterations of FM.
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