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Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and
morbidity. Impaired cerebral autoregulation following SAH has been reported owing to
effects on sympathetic control, endothelial function, myogenic response, and cerebral
metabolism. Impaired cerebral autoregulation is associated with early brain injury,
cerebral vasospasm/delayed cerebral ischemia, and SAH prognosis. However, few
drugs have been reported to improve cerebral autoregulation after SAH. Melatonin
is a powerful antioxidant that is effective (easily crosses the blood brain barrier) and
safe (tolerated in large doses without toxicity). Theoretically, melatonin may impact the
control mechanisms of cerebral autoregulation via antioxidative effects, protection of
endothelial cell integrity, suppression of sympathetic nerve activity, increase in nitric oxide
bioavailability, mediation of the myogenic response, and amelioration of hypoxemia.
Furthermore, melatonin may have a comprehensive effect on cerebral autoregulation.
This review discusses the potential effects of melatonin on cerebral autoregulation
following SAH, in terms of the association between pharmacological activities and the
mechanisms of cerebral autoregulation.

Keywords: melatonin, cerebral autoregulation, subarachnoid hemorrhage, antioxidant, sympathetic nerve,
endothelial function

INTRODUCTION

Cerebral autoregulation is defined as the mechanism by which constant cerebral blood flow is
maintained, despite changes in arterial blood pressure (Guo et al., 2016). In the cerebral arterial
system, cerebral autoregulation has been reported to be involved in all types of stroke and is related
to secondary brain injury and prognosis (Vavilala et al., 2003; Chen et al., 2014b; Guo et al., 2014;
Ma et al., 2016). In the reviews of Paulson and Strandgaard in 1984 and 1990, they concluded that
the regulating mechanisms of cerebral autoregulation are including sympathetic control, cerebral
metabolism, endothelial function and myogenic response (Strandgaard and Paulson, 1984; Paulson
et al., 1990). Later, Bailey proposed that oxidative stress is also associated with impaired cerebral
autoregulation and blood-brain barrier leakage (Bailey et al., 2011).

Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and significant
morbidity. Delayed cerebral vasospasm and delayed cerebral ischemia are among the primary
causes of poor prognosis following SAH. Cerebral autoregulation has been reported to be
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impaired after SAH, and this phenomenon is associated with
cerebral vasospasm/delayed cerebral ischemia (Budohoski et al.,
2012, 2013; Otite et al., 2014; Calviere et al., 2015; Guo
et al., 2016; Santos et al., 2016; Gaasch et al., 2018). Thus,
cerebral autoregulation may be a potential therapeutic target for
improving prognosis after SAH.

Melatonin is a hormone secreted by the pineal gland during
the dark phase of the light-dark cycle, which is modulated by
light-dark cycle (Bruls et al., 2000). Besides the pineal gland,
melatonin was also produced in bone marrow (Tan D.X. et al.,
1999). In addition, Tan D. et al. (1999) found high levels of
melatonin in the bile of mammals of unknown origin. Previous
studies reported that melatonin is a powerful antioxidant, which
is known to be effective (it easily crosses the blood brain barrier)
and safe (non-toxic in high doses) (Reiter et al., 2000). It
has been studied in several cerebrovascular diseases, including
ischemic stroke (Beker et al., 2015; Feng et al., 2017), intracerebral
hemorrhage (Li et al., 2009; Lekic et al., 2010), and SAH (Table 1)
(Fang et al., 2009; Wang et al., 2012, 2013; Chen et al., 2014a,c,
2015; Dong et al., 2016; Zhao et al., 2016), with respect to the
mechanisms of antioxidation (Garcia et al., 2014; Zhang and
Zhang, 2014; Manchester et al., 2015) and anti-inflammation
(Agil et al., 2013; Mauriz et al., 2013; Chen et al., 2014a;
Yang et al., 2014; Liu et al., 2015; Dong et al., 2016). These
pharmacological activities of melatonin also potentially improve
cerebral autoregulation after SAH. The present review discusses
the potential effect of melatonin on cerebral autoregulation after
SAH with respect to the association between pharmacological
activities and mechanisms regulating cerebral autoregulation.

CEREBRAL AUTOREGULATION
DYSFUNCTION AFTER SAH

Clinical Findings
Recently, an increasing number of studies have focused on the
relationship between cerebral autoregulation and SAH and have
reported that the impairment of cerebral autoregulation is related
to poor prognosis after SAH. Otite et al. (2014) reported that
patients who developed delayed cerebral vasospasm and delayed
cerebral ischemia after SAH had worse cerebral autoregulation
than did those who did not develop either of the conditions.
Budohoski et al. (2015) conducted a study to determine the
underlying consequences of unilateral and bilateral cerebral
autoregulation damage on outcomes in SAH patients. They found
that unilateral and bilateral cerebral autoregulation damage was
related to delayed cerebral ischemia and unfavorable outcomes,
respectively (Budohoski et al., 2015). Santos et al. (2016) analyzed
the pathophysiological basis of the impairment of cerebral
autoregulation in SAH and its relationship to prognosis. They
found that cerebral autoregulation was significantly impaired
in SAH patients who developed delayed cerebral ischemia
compared with those who did not develop secondary brain injury
or cerebral vasospasm alone (Santos et al., 2016). Similar results
were reported by several studies (Table 2) (Lang et al., 2001;
Soehle et al., 2004; Tseng et al., 2006; Budohoski et al., 2012, 2013,
2016; Calviere et al., 2015; Gaasch et al., 2018).

Mechanisms
Impaired cerebral autoregulation after SAH is possibly caused by
oxidative stress, endothelial dysfunction, sympathetic activation,
myogenic response disorder, and abnormal cerebral metabolism.
A detailed study of these mechanisms might lead to future
therapeutic possibilities.

Oxidative Stress After SAH
After SAH, oxidative stress is implicated in the etiology of
at all stages of SAH (early brain injury, cerebral vasospasm,
and delayed cerebral ischemia) (Ersahin et al., 2010; Zhang
et al., 2015; Li et al., 2016; Ye et al., 2018). The high
concentration of reactive oxygen species (ROS)/reactive nitrogen
species (RNS) is considered to be associated with impaired
cerebral autoregulation (Choi et al., 2001; Shin et al., 2002)
(Figure 1). One important mechanism has been reported to
result in impaired cerebral autoregulation is because of the
direct and indirect actions of ROS/RNS on K+ channels.
The K+ channels, including ATP-sensitive K+ channels and
large conductance Ca2+-activated K+ channels, can regulate
the activation and contraction of cerebral arterial muscle cells,
and subsequently change the smooth muscle tone (Lee et al.,
1993; Nelson and Quayle, 1995; Shin and Hong, 2004; Zagorac
et al., 2005). Moreover, the high concentration of free radicals
may cause impaired cerebral autoregulation in several other
pathways, including damaged endothelial cells function (followed
by integrity destroyed and nitric oxide availability reduced),
and inducted inflammatory response (followed by endothelial
cells dysfunction and hypoxemia condition). These factors are
discussed in the following sections (Figure 1).

Endothelial Dysfunction After SAH
The vascular endothelial mechanism is an essential part of
cerebral autoregulation because endothelial cells modulate many
aspects of vascular functioning, particularly in controlling the
vascular tone (Pries et al., 2000; Rodella et al., 2013). The
structural and functional integrity of endothelial cells is essential
for maintaining stable cerebral autoregulation (Preckel et al.,
1996; White et al., 2000; Ainslie et al., 2007; Guo et al.,
2016). After SAH, both structural and functional integrity were
damaged because of factors, such as the high concentration of
ROS/RNS and inflammatory responses (Figure 1) (Kajita et al.,
1998; Scharbrodt et al., 2009; Szatmari et al., 2010; Sabri et al.,
2011; Qin et al., 2012; Liu et al., 2016; de Azevedo et al., 2017;
Shekhar et al., 2017; Armstead et al., 2018). In inflammatory
responses, various inflammatory pathways, such as the NF-κB
pathway (Pawlowska et al., 2018), NLRP3 pathway (Li et al.,
2016; Shao et al., 2016), and TLR4 pathway (Zhang et al.,
2016), are activated and have negative effects on the arterial
endothelium after SAH. In the downstream of these pathways are
inflammatory factors, interleukin-1β, and tumor necrosis factor-
α. These inflammatory factors act on vascular endothelium,
resulting in changes in the concentration and bioavailability of
endothelium-derived nitric oxide.

Nitric oxide, the most important vasodilation factor, can
regulate the vascular tone of small arteries; the mechanism is
that nitric oxide diffuses into the adjacent smooth muscle cells
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TABLE 1 | Functions of melatonin in improving brain injury after subarachnoid hemorrhage.

Journal First author Year Action targets

J Pineal Res Dong Y 2016 Regulating NLRP3 inflammasome and apoptosis signaling.

Mol Neurobiol Zhao L 2016 Regulating melatonin receptor/Sirt1/NF-κB signaling pathway

J Pineal Res Chen J 2014 Regulation of pro-inflammatory cytokines

J Pineal Res Chen J 2014 Regulating mitochondrial pathway

J Pineal Res Wang Z 2013 Regulating TLR4-mediated inflammatory pathway

J Pineal Re Wang Z 2012 Activating the Nrf2-ARE pathway

Mediators Inflamm Fang Q 2009 Regulating nuclear factor-kappa pathway and proinflammatory cytokines expression

TABLE 2 | Literature on cerebral autoregulation (CA) and subarachnoid hemorrhage in humans.

Journal First author Year Main outcomes

Crit Care Med Gaasch M 2018 CA was associated with delayed cerebral ischemia (DCI) and poor functional outcome

Neurology Santos GA 2016 CA can predict neurologic complications

Acta Neurochir Suppl Budohoski KP 2016 Impaired CA in the first 5 days after SAH is predictive of DCI

Neurocrit Care Calviere L 2015 Early deterioration of CA was strongly predictive of DCI

Neurocrit Care Budohoski KP 2015 Unilateral CA failure was seen in patients who developed DCI, and bilateral CA failure was seen
more frequently in patients with unfavorable outcome

Stroke Otite F 2014 Impaired CA is associated with vasospasm and DCI

J Cereb Blood Flow Metab Budohoski KP 2013 CA can aid in predicting DCI

Stroke Budohoski KP 2012 Disturbed CA in the first 5 days after SAH significantly increases the risk of DCI

Neurosurg Focus Tseng MY 2006 CA may help identify patients at high risk of delayed ischemic neurological deficits.

Anesth Analg Soehle M 2004 CA was impaired during cerebral vasospasm

Crit Care Med Lang EW 2001 CA impairment precedes vasospasm, and ongoing vasospasm worsens CA

and relaxes them by increasing cyclic guanosine monophosphate
(Kajita et al., 1998). Because of the physiological effects of nitric
oxide, Guo et al. (2016) proposed that reduced nitric oxide
availability may relate to the impaired cerebral autoregulation
after SAH due to endothelium-dependent mechanism. The
results reported by Tseng et al. (2005) support this hypothesis;
these authors found that pravastatin, a member of the drug
class of statins, can improve vascular endothelium-dependent
relaxation to acetylcholine and increase endothelial nitric oxide
synthase activity, as well as improve cerebral autoregulation after
SAH (Tseng et al., 2005; Yamamoto et al., 2007). Thus, these
studies indicated that the improvement in endothelial function
is a therapeutic target to improve cerebral autoregulation.

Sympathetic Activation After SAH
The cerebrovascular bed is innervated by sympathetic nerve
fibers (Edvinsson et al., 1975; Hamner et al., 2010). The
sympathetic nervous system regulates cerebral blood flow
by managing cerebral vascular resistance (Aubineau et al.,
1980; Busija, 1985; Guo et al., 2016). Theoretically, after the
stimulation of sympathetic nervous system, alpha-1 adrenergic
receptors are activated by norepinephrine released by post-
ganglionic sympathetic neurons, resulting in vasoconstriction
(Aubineau et al., 1980; Busija, 1985; Guo et al., 2016).
Several studies have reported that sympathetic control plays
an important role in regulating cerebral autoregulation, and
that sympathetic dysfunction can cause impaired cerebral
autoregulation (Sadoshima et al., 1985; Hamner and Tan, 2014;
Guo et al., 2016). Notably, the acute stage of SAH is accompanied

by significant sympathetic activation (Moussouttas et al., 2012b,
2014). Sympathetic activation results in increased concentration
of circulating catecholamines (epinephrine, noradrenaline, and
serotonin), which are associated with cerebral vasospasm and
delayed cerebral ischemia after SAH (Grad et al., 1991; Dilraj
et al., 1992; Naredi et al., 2000; Banki et al., 2005; Moussouttas
et al., 2012a). The vasoconstriction of blood vessels caused
by sympathetic activation after SAH is a possible mechanism
underlying cerebral autoregulation dysfunction (Figure 1).

Myogenic Response Disorder After SAH
Smooth muscle is a main component of cerebral arteries.
The control of arterial myogenic tone was first described by
Bayliss (1902). The myogenic response was regulated by a
complex mechanism, and some of these mechanisms are out of
balance after SAH (Lidington et al., 2018). (1) Previous study
reported that potassium channels are important regulators of
vascular tone. SAH can reduce potassium currents in cerebral
artery smooth muscle cells and then enhanced constriction
(Jahromi et al., 2008). (2) After SAH, endothelial dysfunction
was observed, resulting in reduced vasodilating factors levels.
Thus, it is reasonable to speculate that endothelial dysfunction
augments myogenic response disorder (Lidington et al., 2018).
(3) The effect of ROS on myogenic response disorder was
our concern. ROS are believed to be involved in cellular
signaling in blood vessels, and to directly and indirectly
mediate vascular smooth muscle via regulating endothelium-
dependent contractions pathway (Cosentino et al., 1994), and
calcium-activated potassium channels (Wei et al., 1996; Faraci,

Frontiers in Physiology | www.frontiersin.org 3 August 2018 | Volume 9 | Article 1146

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01146 August 14, 2018 Time: 19:25 # 4

Guo et al. Melatonin Improves CA After SAH

FIGURE 1 | (A) Effect of subarachnoid hemorrhage on the control mechanisms of cerebral autoregulation. After subarachnoid hemorrhage, oxidative stress is
implicated in the etiology of all stages: the high free-radical concentration leading to impaired cerebral autoregulation has direct and indirect effects, including
changing smooth muscle tone, damaging endothelial cell function (followed by destruction of endothelial cell integrity and reduction of nitric oxide availability), and
inducing an inflammatory response (followed by endothelial cell dysfunction and hypoxemia). Additionally, sympathetic activation and abnormal cerebral metabolism
after SAH aggravated the impairment of cerebral autoregulation. (B) Possible therapeutic targets of melatonin in improving cerebral autoregulation after
subarachnoid hemorrhage. After subarachnoid hemorrhage, melatonin may potentially impact the control mechanisms of cerebral autoregulation via suppression of
sympathetic nerve and antioxidant activity, increase in nitric oxide bioavailability, direct and indirect mediation of the myogenic response, and amelioration of
hypoxemia. Furthermore, melatonin can have a comprehensive effect on cerebral autoregulation.
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2006). Previous studies also reported that both relaxation and
contraction of the vascular muscle were caused by ROS, which
may dependent on concentrations (Faraci, 2006). For instance,
Rosenblum found that the generation of superoxide using
acetaldehyde and xanthine oxidase produces dilation of cerebral
arterioles at low substrate concentrations, but vasoconstriction at
higher substrate concentrations followed by dilation (Rosenblum,
1983). Studies in vivo found that hydrogen peroxide acts as a
vasodilator on small cerebral arteries via activated potassium
channels. However, high concentrations of hydrogen peroxide
can produce vasoconstriction followed by vasodilation (Faraci,
2006). The general trend is that, ROS produces vasodilation at
low concentrations and vasoconstriction at higher concentrations
(Rosenblum, 1983; Cosentino et al., 1994; Wei et al., 1996; Faraci,
2006). Thus, high concentration of ROS (derived from blood)
may augment the myogenic tone via directly and indirectly
mediate vascular smooth muscle after SAH. Recently, a study
from Deng et al. (2018) provided direct evidence. They studied
the effects of extravascular hemolyzed blood on arteriolar
myogenic constriction and found that extravascular hemolyzed
blood augments the myogenic constriction of cerebral arterioles,
possibly by increasing the vascular production of superoxide. In
addition to ROS pathways, a study reported that tumor necrosis
factor-α/sphingosine-1-phosphate signaling can augment the
myogenic tone in experimental SAH mouse model (Yagi et al.,
2015). These studies indicated that the effects of the myogenic
response on cerebral autoregulation may be caused multiple
pathways and need further analysis.

Metabolism Abnormal Impaired Cerebral
Autoregulation After SAH
Under physiological conditions, when the cerebral blood volume
was decreased, some vasoactive substances were released from
the brain, caused the cerebral arteries to become dilated,
and vice versa. This phenomenon was considered a metabolic
mechanism of cerebral autoregulation to maintain stable cerebral
perfusion. Actually, apart from vasoactive substances, oxygen
and carbon dioxide levels and metabolites can regulate cerebral
autoregulation. After SAH, the reduced brain tissue oxygen
pressure and brain pH (Carvi y Nievas et al., 2005) can
change cerebral microcirculation and metabolism, perhaps partly
because of oxidative damage (Lopez et al., 2009). These changes
may cause cerebral autoregulation dysfunction (Figure 1).

THE ROLE OF MELATONIN IN
IMPROVING CEREBRAL
AUTOREGULATION AFTER SAH

Melatonin Improves Cerebral
Autoregulation by Antioxidation
Previous studies have found that melatonin and its metabolites
(mainly N1-acetyl-N2-formyl-5-methoxykynuramine and
N-acetyl-5-methoxykynuramine) are powerful free radical
scavengers, and scavenge various types of free radicals, such as
hydroxyl radicals and hydrogen peroxide. Through a cascade

reaction involving melatonin and its metabolites, a melatonin
molecule can scavenge up to 10 ROS/RNS (Tan et al., 2002;
Zavodnik et al., 2006; Hardeland et al., 2007; Tan et al., 2007).
Besides, Boussard et al. (2006) reported that the third melatonin
binding site (MT3), characterized as the enzyme quinone
reductase 2, may contribute to melatonin antioxidant properties
by inhibiting the electron transfer reactions of quinones
(Boussard et al., 2006; Pandi-Perumal et al., 2008; Emet et al.,
2016).

In addition, melatonin plays an important role in activating
antioxidant defenses. Venkataraman et al. (2010) found
that exogenous melatonin supplementation can rescue the
decreased mRNA expression of Cu/Zn superoxide dismutase
and glutathione peroxidase-4 in a polychlorinated biphenyl-
induced neuronal damage rat model. Akcay et al. (2005)
reported that treatment with exogenous melatonin can maintain
malondialdehyde levels and catalase and superoxide dismutase
activities at normal levels in the brain cortex of a kainic acid-
induced injury rat model. Moreover, melatonin can inhibit
pro-oxidant enzymes, such as inducible nitric oxide synthase
(Lopez et al., 2006; Kang et al., 2013).

Thus, melatonin is a useful antioxidant, and acts via
multiple antioxidant pathways; its antioxidative actions directly
and indirectly improve cerebral autoregulation by protecting
endothelial function and increasing nitric oxide bioavailability,
mediating myogenic responses, and ameliorating conditions of
hypoxemia. This is discussed in the following sections.

Melatonin Improves Cerebral
Autoregulation by Protecting Endothelial
Function and Increasing Nitric Oxide
Bioavailability
As mentioned above, melatonin serves as an antioxidant via
several pathways. It also has anti-inflammatory effects. Several
studies have reported the possible pathways through which
melatonin attenuates inflammation in the brain (Carrascal
et al., 2018; Wang et al., 2018). Jumnongprakhon et al.
(2016) found that melatonin can prevent methamphetamine-
induced inflammatory responses by inhibiting the nuclear factor-
κB pathway and promoting the nuclear factor erythroid 2-
related factor-2 pathway before blood-brain barrier impairment.
Dong et al. (2016) suggested that melatonin regulates the
NLRP3 inflammasome pathway, and thus attenuates early brain
injury after SAH. Wang et al. (2013) proposed that melatonin
can alleviate secondary brain damage through the TLR4-
mediated inflammatory pathway after SAH. Fu et al. (2017)
also reported that melatonin supplementation may be a valuable
therapeutic strategy in cases of inflammatory neurological
dysfunction, and that melatonin may subserve this function
through the inhibition of TLR4 signaling. Zhao et al. (2015)
reported that melatonin attenuates sepsis-induced brain injury
by activating silent information regulator 1 signaling (Zhao
et al., 2015). In addition, oxidative stress plays a vital role in
mediating the initial phase of the inflammatory reaction by
regulating leukocyte recruitment and maturation and activating
intracellular inflammatory pathways, resulting in increased
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levels of various inflammatory mediators (Cristofanon et al.,
2009; Radogna et al., 2010). Melatonin can regulate signaling
through these pathways and thus inhibit inflammatory processes
(Figure 1).

Previous studies have reported that melatonin functions
to increase nitric oxide bioavailability. Aladag et al. (2009)
conducted a study in an SAH rat model and showed that
the administration of melatonin ameliorates cerebral vasospasm
via an increase in serum nitric oxide concentration and a
decrease in the levels of arginase and oxidative stress in the
brain. Similarly, using intermittent hypoxia rat models, Tjong
et al. (2008) showed that melatonin ameliorates constitutive
nitric oxide production and large conductance calcium-activated
potassium channel activity through an antioxidant pathway.
Wakatsuki et al. (2001) studied the antioxygenation effect
of melatonin on the oxidized low-density lipoprotein-induced
impairment of nitric oxide production, and found that pre-
treatment with melatonin reversed the oxidized low-density
lipoprotein-induced reduction in nitric oxide production. In
their review, Simko and Paulis noted that melatonin may
increase nitric oxide levels via the promotion of nitric
oxide production and/or the prevention of coupling to the
superoxide anion radical (Simko and Paulis, 2007). However,
some studies have reported that melatonin reduces nitric
oxide levels in middle cerebral artery occlusion stroke rat
models (Pei et al., 2003) and cerebral ischemia/reperfusion
Mongolian gerbil models (Guerrero et al., 1997). Thus, the
role of melatonin in nitric oxide production requires further
investigation.

Previous studies show that melatonin can act as an endothelial
protective agent via the disruption of oxidative stress and
inflammatory response pathways and may also regulate nitric
oxide concentration and bioavailability. Thus, it can protect the
integrity and function of vascular endothelial cells.

Melatonin Improves Cerebral
Autoregulation by Suppressing
Sympathetic Nerve Activity
In previous studies, melatonin has been shown to regulate
sympathetic nerve activity. Viswanathan et al. (1986) found that
the administration of melatonin to Syrian hamsters suppressed
the sympathetic nervous system. Cagnacci et al. (1998) found
that the administration of melatonin decreased blood pressure
and blunt noradrenergic activation in young women. Arangino
et al. (1999) reported that oral administration of melatonin could
reduce blood pressure, vascular reactivity, and norepinephrine
levels in men. Girouard et al. (2004) found that exogenous
melatonin improved the baroreflex response associated with
improved antioxidation in spontaneously hypertensive rats,
suggesting a correlation between antioxidation and the decreased
sympathetic tone induced by melatonin. In another study
of spontaneously hypertensive rats, K-Laflamme et al. (1998)
found that after 20 min of melatonin administration, the
plasma epinephrine concentration reduced by approximately
60%, and the norepinephrine concentration decreased by
approximately 30%. This indicated that the action of melatonin

involved the inhibition of basal sympathoadrenal tone (K-
Laflamme et al., 1998). Interestingly, Olmez and Kurcer (2003)
found that melatonin can attenuate alpha-adrenergic-induced
contractions by increasing vasoactive intestinal peptide levels
in isolated rat penile bulbs. In addition, several studies have
found that melatonin can affect the neural control of reflex
changes in muscles and sympathetic nerve activity in the
skin (Ray, 2003; Muller et al., 2013). Hence, the role of
melatonin in regulating sympathetic nerve activity is gradually
becoming clearer. However, these evidences of melatonin in
regulating sympathetic nerve activity is based on systemic
effects, we also tried to find direct evidence of melatonin
on cerebral regulation. After careful searching, only one
study was found. Bang et al. (2012) reported that exogenous
melatonin did not affect the cardiovascular reflex and dynamic
cerebral autoregulation responses to acute hypotension in
twelve healthy men. The reason for the negative results may
due to the subjects were healthy adults and the sample
size was too small. Thus, theoretically, melatonin may be a
potentially useful drug for improving cerebral autoregulation
via a reduction in sympathetic nerve activity after SAH
(Figure 1), but the actual effect of melatonin remains to be
studied.

Melatonin Improves Cerebral
Autoregulation by Mediating Myogenic
Response
As mentioned in the previous section, the ROS concentration
may play an important role in regulating vasomotor function
after SAH. Melatonin acts as a powerful ROS scavenger,
functioning to mediate myogenic responses after SAH. In
addition, exogenous melatonin reduces the concentration of
tumor necrosis factor-α in the brain (Pazar et al., 2016; Taniguti
et al., 2018), and may thus reduce tumor necrosis factor-
α-mediated myogenic tone augmentation (Yagi et al., 2015).
Weekley (1991) reported that melatonin induces the dose-
dependent relaxation of precontracted vascular smooth muscle
of rat aorta, and this response was not affected by vascular
endothelium removal.

Furthermore, melatonin can have direct effects on smooth
muscle through its receptors. Humans have two plasma
membrane receptors of melatonin, MT1 and MT2, which
are expressed in various tissues, including brain, retina,
cardiovascular system, and liver tissues (Ekmekcioglu, 2006).
MT1 and MT2 belonging to the G-protein-coupled receptor
superfamily, which constitutes adenylate cyclase inhibition by
binding to various G-proteins (Pandi-Perumal et al., 2008;
Emet et al., 2016). In the central nervous system in humans,
melatonin receptors are observed in suprachiasmatic nuclei
(Weaver and Reppert, 1996), retina (Reppert et al., 1995;
Thomas et al., 2002; Ekmekcioglu, 2006), hippocampus (Savaskan
et al., 2002; Savaskan et al., 2005), and cerebellar cortex
(Al-Ghoul et al., 1998). In studies on the caudal artery, the
MT1 receptor mRNA was primarily found in the smooth
muscle layer, whereas the MT2 receptor mRNA appeared
more evenly distributed throughout the vessel wall. However,
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both MT1 and MT2 in vascular smooth muscle cells can
regulate the vascular tone. Doolen et al. (1998) indicated
that MT1 receptor activation may mediate vasoconstriction.
Subsequently, Lew and Flanders (1999) further indicated that
melatonin elicited the contraction of the rat tail artery by
activating an MT1 receptor that coupled to the activated L-type
calcium channels. For the MT2 receptor, study conclusions are
inconsistent. Masana et al. (2002) indicated that after using
MT2 antagonists, the melatonin-mediated vasocontraction was
enhanced, indicating MT2 receptors located in vascular smooth
muscle mediate vasodilation. Similarly, Doolen et al. (1998)
also found MT2 receptors may induce relaxation. However,
a study reported that MT2 receptor activation in coronary
vascular smooth muscle cells is associated with inhibiting
nitric oxide-induced increases in cyclic GMP and coronary
arterial relaxation (Tunstall et al., 2011). The comprehensive
effects of melatonin receptors in regulating the myogenic
response warrants further studies. There are also studies of
the effect of melatonin on cerebral arteries. Régrigny et al.
(1999) found that melatonin can induce the increase of cerebral
arteriolar tone via stimulating MT1 and/or MT2 receptors
followed by blockade of calcium-activated large conductance
potassium channels in rats, they also reported that melatonin
decreased the lower limit of cerebral blood flow autoregulation,
which may potential reduce the risk of hypoperfusion-induced
cerebral ischemia. Later, Lapi et al. (2011) studied the rat pial
microvascular responses induced by melatonin during brain
hypoperfusion and reperfusion injury. They found melatonin
can regulate the pial arteriolar tone and then promote an
efficient redistribution of microvascular blood flow via activating
MT1 and MT2 receptors, they further reported that lower
dosage of melatonin stimulate MT2 receptors, while higher
dosage activated also MT1 receptors (Lapi et al., 2011). From
the above two studies, we can speculate that melatonin may
have neuroprotective effect via regulating myogenic response of
cerebral arteries.

Melatonin Improves Cerebral
Autoregulation by Ameliorating
Hypoxemia and Regulating Metabolism
To ameliorate hypoxemia, mitochondrial function is crucial.
Melatonin can protect mitochondrial functioning through its
anti-apoptosis, antioxidative, and combined anti-apoptosis
and antioxidative effects. Lopez et al. (2009) have indicated
that melatonin protects mitochondria from damage due
to oxidative stress by reducing oxygen consumption,
membrane potential, and superoxide anion production.
Carretero’s study presents the same conclusions (Carretero
et al., 2009). Yamamoto and Mohanan concluded that
melatonin protects against attenuated brain mitochondrial
DNA damage induced by hydroxyl radicals (Yamamoto and
Mohanan, 2002). In addition, Xu et al. (2016) found that
melatonin potentials protects against cadmium neurotoxicity
by blocking calcium-dependent translocation of Drp1 to
the mitochondria. Recently, a study by Sinha et al. (2018)
further reported that melatonin can inhibit mitochondrial

cell death pathways by upregulating the MT1 receptor
in newborn hypoxic-ischemic brain injury mice models.
Besides improving the mitochondrial function, melatonin
reportedly can act on cerebral nitric oxide/nitric oxide
synthase after hypobaric hypoxia injury, which balances the
release of nitric oxide, reduces peroxynitrite formation, and
protects against nitrosative/oxidative damage (Blanco et al.,
2017).

Thus, the collective general findings were that melatonin
protects against hypoxemia. Although it is unknown whether
melatonin can improve cerebral autoregulation after SAH by
ameliorating the reduced brain-tissue oxygen pressure and brain
pH, there is a theoretical basis for this hypothesis (Figure 1).
It is worth mentioning that a study conducted by Herrera
et al. (2014) found that, in chronically hypoxic lambs, melatonin
improved vascular responses to potassium, serotonin, and
methacholine and enhanced the endothelial response via nitric
oxide-independent mechanisms in isolated arteries. This study
indirectly indicates the possible impact of melatonin on cerebral
autoregulation (Herrera et al., 2014).

Comparison of Melatonin With Other
Medications in Improving Cerebral
Autoregulation
Previous studies have reported that several medications may
have the potential to improve cerebral autoregulation after SAH.
Nitric oxide plays an important in regulating cerebrovascular
tone by maintaining the dilation of the vasculature. After SAH,
nitric oxide production and responses to endothelium-dependent
vasodilators were impaired owing to injury to the cerebrovascular
endothelium, resulting in vasoconstriction (Sobey and Faraci,
1998). Consequently, nitric oxide (or nitric oxide donors)
was proposed as a possible medication to improve cerebral
autoregulation after SAH (Guo et al., 2016). In contrast to
melatonin, nitric oxide improves cerebral autoregulation by
activating calcium-dependent potassium channels in vascular
smooth muscle, thus maintaining stable vascular tone after
SAH.

Vasoactive substances can act on vascular smooth muscle,
leading to cerebral arterial vasoconstriction or vasodilation. Some
vasoactive substances, such as norepinephrine, adrenomedullin,
and indomethacin, may have protective functions in cerebral
autoregulation (Armstead et al., 2010a, 2016; Chock et al.,
2012). However, no such protective function has been reported
for other vasoactive substances, such as sodium nitroprusside
(Armstead et al., 2010b; Baerts et al., 2013). It is notable
that, unlike that for melatonin, the dose of vasoactive
substances should be carefully monitored, as the impact of
these drugs on cerebral autoregulation may vary based on the
dose.

Additionally, pravastatin was reported has the function
to improve cerebral autoregulation after SAH by improving
vascular endothelium-dependent relaxation in response to
acetylcholine, increasing endothelial nitric oxide synthase
activity, and enhancing the vascular protective effects of
Olmesartan (Yamamoto et al., 2007). These mechanisms have
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similarities and dissimilarities to the mechanisms of the action
of melatonin. Additionally, we attempted to identify more
antioxidants that have been reported to have effects on cerebral
autoregulation, but failed to find any further evidence.

CONCLUSION

Melatonin potentially impacts the control mechanisms of
cerebral autoregulation after SAH through antioxidation,
protection of endothelial cell integrity, suppression of
sympathetic nerve activity, increase in nitric oxide bioavailability,
mediation of the myogenic response, and amelioration of
hypoxemia. Furthermore, melatonin may have a comprehensive
effect on cerebral autoregulation after SAH.
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