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Pulmonary hypertension (PH) is an incurable, chronic disease of small pulmonary
vessels. Progressive remodeling of the pulmonary vasculature results in increased
pulmonary vascular resistance (PVR). This causes secondary right heart failure. PVR
is tightly regulated by a range of pulmonary vasodilators and constrictors. Endothelium-
derived substances form the basis of most current PH treatments. This is particularly the
case for pulmonary arterial hypertension. The major limitation of current treatments is
their inability to reverse morphological changes. Thus, there is an unmet need for novel
therapies to reduce the morbidity and mortality in PH. Microvessels in the lungs are
highly innervated by sensory C fibers. Substance P and calcitonin gene-related peptide
(CGRP) are released from C-fiber nerve endings. These neuropeptides can directly
regulate vascular tone. Substance P tends to act as a vasoconstrictor in the pulmonary
circulation and it increases in the lungs during experimental PH. The receptor for
substance P, neurokinin 1 (NK1R), mediates increased pulmonary pressure. Deactivation
of NK1R with antagonists, or depletion of substance P prevents PH development.
CGRP is a potent pulmonary vasodilator. CGRP receptor antagonists cause elevated
pulmonary pressure. Thus, the balance of these peptides is crucial within the pulmonary
circulation (Graphical Abstract). Limited progress has been made in understanding
their impact on pulmonary pathophysiology. This is an intriguing area of investigation to
pursue. It may lead to promising new candidate therapies to combat this fatal disease.
This review provides a summary of the current knowledge in this area. It also explores
possible future directions for neuropeptides in PH.

Keywords: substance P, calcitonin gene-related peptide, endothelial function, sensory C fibers, lung, right
ventricle, pulmonary hypertension

INTRODUCTION

Pulmonary hypertension (PH) is a rare chronic disease. Morphological changes in the pulmonary
arterioles leads to increased pulmonary arterial pressure. Greater cardiac contractility occurs
to overcome the higher pulmonary vascular resistance (PVR). The consequence is right heart
remodeling, causing decompensating heart function (McLaughlin et al., 2015). The definition of
PH is pulmonary arterial pressure >25 mmHg (or at least 30 mmHg upon exercise). Increased
PVR and mean pulmonary wedge pressure occur. Patients suffering from PH show symptoms
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GRAPHICAL ABSTRACT |

such as dyspnea, fatigue, chest pain, near syncope, syncope, leg or
peripheral edema, angina, palpitations, and abdominal distension
(Rich et al., 1987; Barst et al., 2004). PH is hard to diagnose as
initial symptoms are non-specific. Fatigue, malaise, and exercise
intolerance are often misdiagnosed as the patient being unfit.
Asthma is also a common misdiagnosis due to the presence of
dyspnoea. In fact, PH diagnosis often takes up to 2 years after
symptom onset. Confirmation of PH sometimes occurs only after
the progression of right heart failure.

Pulmonary Hypertension Disease
Classifications
It is increasingly clear that PH has complex, multifactorial
pathophysiology. In 1957 PH was categorized into five different
groups based on the underlying cause of disease (Brenner, 1957),
termed World Health Organization (WHO) groups. These have
been further refined at subsequent World Symposiums on PH
(Humbert and McLaughlin, 2009) (Figure 1).

Group 1 PH is pulmonary arterial hypertension (PAH).
The endothelium (inner) layer of blood vessels produces
both vasodilators and vasoconstrictors. These are of extreme
importance in regulating vascular tone. One of the defining
features of PAH is the abnormal function of the pulmonary
vascular endothelium. This results in an imbalance in
dilators/constrictors, resulting in predominant vasoconstriction.
PAH develops from many distinct contributing mechanisms. It
is often idiopathic, occurring from (as yet) unknown cause. PAH
may arise from hereditary factors, such as the inactivation of the
BMPR2 gene (Cogan et al., 2006; Morrell, 2006). It may develop
following human immunodeficiency virus infection (Mehta
et al., 2000). PAH can also be induced by drugs. For example,

some anti-depressants (Garg et al., 2017) have been implicated
in causing PAH and a spate of cases was caused by appetite
suppressant drugs (Abenhaim et al., 1996) that have since been
withdrawn from the market. Group 2 PH is due to left-sided
heart disease, either congenital or acquired. Group 3 PH is due
to pulmonary hypoxia, which occurs secondary to chronic lung
diseases. Group 4 PH is due to thromboembolic disorders and
Group 5 PH occurs from other disorders including anemia and
other blood disorders, tumors, and chronic kidney failure.

For all PH subtypes, patients are also classified into functional
classes (Galie et al., 2016), indicating disease severity (Figure 1).
Patients tend to be diagnosed in functional class II-III and
progressively worsen.

The Unmet Need for Effective
Treatments for Pulmonary Hypertension
Regardless of the cause of PH, there is common histopathology
to all five groups. This includes hypertrophy of vascular smooth
muscle cells, fibrosis, vascular wall remodeling and vessel
obstruction. While the incidence of PH is low, at ∼15 cases
per million people (Galie et al., 2015) the average survival time
for a patient left untreated is only 2.8 years (Humbert et al.,
2006; Peacock et al., 2007). Since the emergence of effective
pharmaceuticals for PH, patient outcomes have substantially
improved, as shown in REVEAL (Registry to Evaluate Early and
Long-term PAH Disease Management) and French Consortium
registries (D’Alonzo et al., 1991; McGoon et al., 2008; Frost
et al., 2011; McGoon and Miller, 2012). Although there has
been a substantial improvement in quality of life and longevity,
the current treatments are far from ideal. For one thing, many
patients become resistant to therapy (Morrell et al., 2009).
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FIGURE 1 | PH World Health Organization classification and functional class. Five different major sub-types of PH according to World Health Organization
classification and functional classes are out-lined. Adapted from (Humbert and McLaughlin, 2009; Galie et al., 2016).

In addition, PH remains a progressive and terminal disease.
Current treatments have shown limited ability to reverse vascular
and cardiac remodeling (Bubb et al., 2015). Thus, the search for
novel and breakthrough treatments for PH continues in earnest.

In order to establish new PH treatments, it is important
to determine how existing treatments can be improved. The
first part of this review outlines the current treatments of PH.
Subsequently, we review the effects of the sensory C-fiber-derived
neuropeptides on the lung circulation. Several neuropeptides
show promising effects and are being investigated for PH
treatment. These include neuropeptides released from C-fibers:
substance P and calcitonin gene-related peptide (CGRP).
Both are important regulators of the pulmonary circulation.
Modulation of either of the C-fiber-derived neuropeptides can
reverse progression of experimental PH. Yet, their use has not
progressed beyond pre-clinical research. We also discuss their
potential as novel treatments for PH.

CURRENT TREATMENTS FOR
PULMONARY HYPERTENSION

Current treatment options for all forms of PH include primary
therapies directed at treating the underlying cause of the
disease and broad therapies that alleviate the symptoms. General
treatment prescribed at the discretion of the primary care
physician includes the use of warfarin, diuretics and oxygen.
The aims of these therapies are to alleviate volume and

viscosity-induced pressure within the pulmonary circulation,
reduce hypoxia, and treat right heart failure. Non-pharmaceutical
approaches include lung transplant and double heart-lung
transplant. Surgical approaches can be utilized in some cases,
often when all other options have been exhausted. The primary
pharmaceutical therapies that are approved for PH treatment are
the main focus of this review and are detailed in subsequent
sections.

Targeting the Pulmonary Vascular
Endothelium for Treatment of Pulmonary
Arterial Hypertension
For the purposes of this review we will focus mainly on
Group 1 PAH. Vasoregulatory treatments are most successful
in this type of PH (Austin and Loyd, 2015; Bubb et al.,
2015; Prior et al., 2016). Thus, neuropeptides that we are
investigating are most likely to impact PAH rather than other
forms of PH. Disease-targeted treatment options for PAH are
centered mainly around the control of pulmonary vascular
tone. As outlined in Figure 2, major pathways that are
currently targeted include endothelium-derived vasodilators and
constrictors. The vasodilators of main interest are nitric oxide
(NO) and prostacyclin. Both of these are susceptible to being
decreased in bioavailability in PAH. These dilators are targeted at
multiple levels. Treatments that either modulate their activity or
inhibit their metabolism may be used. The endothelium-derived
vasoconstrictor, endothelin (Galié et al., 2004) is the main culprit
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FIGURE 2 | Summary of current PAH treatments. Currently licensed treatments for PAH are shown inside the circles with broken lines indicating their mode of action
within vascular signaling pathways. AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; COX,
cyclooxygenase; ECE, endothelin converting enzyme; eNOS, endothelial nitric oxide synthase; ET-1, endothelin; ERA,B, endothelin receptor A,B; GTP, guanosine
triphosphate; IP, inositol monophosphate; NO nitric oxide; PDE5, phosphodiesterase 5; PGI2, prostacyclin; sGC soluble guanylate cyclase.

causing excessive vasoconstriction. Antagonists of the endothelin
receptor/s are in clinical use for PAH. Calcium-channel blockers
are also used to inhibit the calcium-dependent smooth muscle
contraction.

Endothelium-Dependent Pulmonary Vasodilation
The reduction in pulmonary pressure by stimulating pulmonary
endothelium-dependent vasodilation resulted in the first
approved treatment for PAH. This continues to be the basis
behind the development of the majority of PAH treatments.

Nitric oxide-cyclic guanosine monophosphate signaling
NO and the associated signaling pathways have a major
role in promoting pulmonary vasodilation. The NO signaling
pathway can be summarized as follows: NO activates soluble
guanylate cyclase (sGC); this increases the second messenger,
cyclic guanosine monophosphate (cGMP); cGMP then activates
protein kinase G (PKG); PKG mediates vasodilation by
decreasing intracellular calcium by a number of mechanisms.
NO also mediates anti-inflammatory and anti-coagulatory effects.
The low bioavailability of NO is a major occurrence in patients
with PH. This is replicated in pre-clinical models of the disease
(Michelakis, 2003). Upregulation of NO, either exogenously or
endogenously, has been the primary aim of many decades of
trials. Inhaled NO (Steiner et al., 2005) is useful in neonates
suffering from persistent PH of the newborn. However, in adults
it tends to result in methemoglobinemia, increased pulmonary
oedema and a potentially life-threatening hypertensive rebound
when therapy is ceased. It also suffers a short half-life and

is prohibitively expensive and cumbersome for patients to
administer (Michelakis, 2003; Steiner et al., 2005; Baliga et al.,
2011). NO donors were developed in an attempt to improve the
delivery of NO. Nebulised NONOates (Vanderford et al., 1994;
Hampl et al., 1996) and inhaled glyceryl trinitrate (Goyal et al.,
2006) effectively lower PVR. Yet they notoriously lack specificity
for the pulmonary circulation (Baliga et al., 2011). Thus, targeting
of the intermediates in the NO signaling pathway is a more
attractive option for improving vasodilation.

In vascular endothelial cells, L-arginine is converted to
NO (and the by-product L-citrulline) by endothelial NO
synthase (eNOS) in a two-step oxidation reaction. This
reaction utilizes nicotinamide adenine dinucleotide phosphate
(NADPH), molecular oxygen and the essential cofactor,
tetrahydrobiopterin (BH4) (Palmer et al., 1988; Andrew and
Mayer, 1999; Forstermann, 2010). Phosphorylation of eNOS is an
important regulatory mechanism for NO generation. It can also
occur in response to shear stress, estrogen, vascular endothelial
growth factor, and insulin. In normally functioning arteries
the major stimulus for eNOS phosphorylation is increased
intracellular calcium. This proceeds by binding of calcium to
calmodulin in the oxygenase domain of eNOS, increasing the rate
of NADPH electron transfer within the domains. In PAH (like
other cardiovascular diseases) eNOS can exist in an ‘uncoupled
state.’ Usually the substrate L-arginine or co-factor BH4
become rate-limiting. In this scenario, eNOS transfers electrons
to molecular oxygen, rather than oxidizing L-arginine and
superoxide is produced. Superoxide is a reactive oxygen species
that is prevalent in vascular dysfunction (Verhaar et al., 2004).
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Supplementation with BH4 improves systemic hypertension
(Landmesser et al., 2003). Evidence suggests that this strategy
may also be effective in PAH (Baliga et al., 2011). Stimulating
the coupling of eNOS and BH4 to promote NO rather than
superoxide production has proven beneficial in experimental (Jin
et al., 1992) and clinical PH (Saadjian et al., 1998). Increasing
the substrate for NO by L-arginine administration can likewise
attenuate PH in the experimental setting (Mitani et al., 1997)
and acutely decreases PVR in PH patients (Mehta et al., 1995).
Despite the extensive research, no therapeutic targets have been
licensed that target NO generation.

Drugs that target the receptor for NO, sGC have proven
to be more successful. Activation of sGC by NO is dependent
on binding of NO to a heme prosthetic group. This stimulates
a conformational change which activates the enzyme. Changes
to the redox state of sGC, which can occur in PAH, can
result in modulation of sGC expression or activity (Priviero
and Webb, 2010; Baliga et al., 2011). Mice lacking sGC are
sensitive to experimentally induced PH (Vermeersch et al., 2007).
This makes sGC an important target in PH. Pharmacological
stimulation of sGC is complicated and drugs fall into two
distinct classes. sGC activators, (e.g., cinaciguat) are effective at
activating sGC when it is in an oxidized or heme-free state.
sGC stimulators (e.g., riociguat) stabilize the enzyme in its
active configuration and upregulate sGC activity. There is an
advantageous synergistic relationship of sGC stimulators and NO
when they are co-administered (Stasch et al., 2011). Experimental
PH was ameliorated after treatment with either sGC activators
or stimulators (Dumitrascu et al., 2006; Stasch et al., 2011; Lang
et al., 2012). Both classes of drugs are promising, but, sGC
stimulators have progressed to the clinic first. The PATENT trials
demonstrated improved clinical outcome for patients with PAH
treated with riociguat (Ghofrani et al., 2012). Riociguat was first
FDA-approved for treatment of PAH in 2013 and is now licensed
in many countries. It is also the only drug licensed to treat group
4 PH after success in the CHEST trial (Lian et al., 2017).

The other major class of drugs to successfully treat
PAH by targeting the NO-cGMP signaling pathway are
phosphodiesterase (PDE) 5 inhibitors. PDEs metabolize cyclic
nucleotides to their inactive form and some, including PDE5,
are specific to cGMP. PDE5 is substantially upregulated in most
forms of experimental and clinical PH (Murray et al., 2002;
Sebkhi et al., 2003; Wharton et al., 2005; Schermuly et al.,
2007) and this led to extensive testing of the efficacy of PDE5
inhibition for PH. Pre-clinical studies have provided insight into
the therapeutic mechanisms of PDE5 inhibitors. It has been
well-established that sildenafil is effective in inhibiting PH in
experimentally induced models (Zhao et al., 2001; Schermuly
et al., 2004; Steiner et al., 2005), and this is cGMP-dependent.
Both sildenafil (Galie et al., 2005) and tadalafil (Galie et al., 2009)
are effective in improving symptoms and outcomes of PH in
patients.

Prostacyclin
Prostacyclin was first identified in 1976 (Moncada et al.,
1976) and is the main eicosanoid produced by vascular
endothelial cells. It is synthesized by cyclooxygenase-dependent

conversion from arachidonic acid. Like NO, prostacyclin is
also a classic endothelium-dependent vasodilator and also
possesses anti-inflammatory and anti-coagulatory properties.
Prostacyclin acts predominantly by binding with cell-surface IP
receptors which stimulates adenylyl cyclase and cyclic adenosine
monophosphate (cAMP) production with downstream effects
mediated by protein kinase A (Mitchell et al., 2008). It is
a particularly potent vasodilator in the lung circulation and
PAH patients often exhibit decreased prostacyclin levels and/or
reduced lung prostacyclin synthases (Mitchell et al., 2014).
Prostacyclin analogs are a mainstay of PAH treatment but are
generally restricted to functional class III and IV patients due
mainly to limitations with their administration as outlined below.
Prior to the use of epoprostenol (therapeutic prostacyclin) in
1995 (Barst et al., 1996), there was no therapy for PAH, and
patients had a 1-year survival of 69% and a 5-year survival of
38% (D’Alonzo et al., 1991). When first introduced, epoprostenol
was the only treatment available for PAH. It was widely used
even though administration was challenging and side-effects were
marked. It has been largely superseded by the next generation
of therapeutic prostacyclins, iloprost and treprostinil. These
are available in inhalers or by subcutaneous or intravenous
routes. Recently the first non-prostacyclin that activates the
cAMP signaling pathway has been developed. Selexipag is an IP
receptor agonist, which has the benefit of being available in oral
formulation (Mitchell et al., 2014). It has proven successful in
Phase III trials (Sitbon et al., 2015) and has recently been licensed
for PAH treatment.

Pulmonary Vasoconstriction by Endothelin
There are at least three isoforms of endothelin: endothelin
(ET)-1, ET-2, and ET-3, of which ET-1 is the most potent
and abundant in lungs (Matsumoto et al., 1989; Giaid et al.,
1993a). First discovered in 1988 (Hickey et al., 1985; Yanagisawa
et al., 1988), ET-1 is a peptide mainly produced by vascular
endothelial cells. A number of physical factors affect ET-1
production, including shear stress, epinephrine, angiotensin II,
growth factors, cytokines and free radicals (Marasciulo et al.,
2006). ET-1 activity is mediated by ET receptors, ETA and
ETB, both expressed on vascular smooth muscle cells (Seo
et al., 1994). ET-1 is produced by ET converting enzyme (ECE)
from a precursor molecule of ET (La and Reid, 1995), big
ET-1. ET-1 induces increased intracellular calcium via ETA and
ETB receptor-mediated activation of phospholipase C (PLC)
(Pollock et al., 1995) and increases mitogenesis by ETB-mediated
activation of protein kinase C (Ohlstein et al., 1992), leading to
both vasoconstriction and cell hyperplasia. ETB, which is also
found on endothelial cells, stimulates local vasodilators such as
NO and prostaglandins. It also plays a role in the clearance
of ET-1, a feature unique to the lungs (Fukuroda et al., 1994;
Kelland et al., 2010). PAH is associated with increased circulating
ET-1 levels (Miyauchi et al., 1993). Expression of ET-1 has been
found in plexiform lesions of lungs, where higher levels of ET-1
correlate with increased PVR and structural abnormalities (Giaid
et al., 1993b; Bressollette et al., 2001). PAH patients may also
have reduced clearance of ET-1 in the lung (Stewart et al., 1991),
contributing to vasoconstriction.
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Modulation of ET-1 has proven a successful strategy for
treating PAH (Channick et al., 2004) and several endothelin
receptor antagonists (ERA) are licensed for use. One of the
first ERAs approved for PAH was bosentan, which antagonizes
both ETA and ETB receptors. The clinical trials BREATH
I and II (Rubin, 2002; Humbert et al., 2004) showed that
non-selective oral bosentan delayed clinical worsening of PAH
by improved exercise capacity, hemodynamics, and WHO
functional class. Studies assessing longer term outcome found
reduced mortality rates after bosentan use for PAH (McLaughlin
et al., 2005; Sitbon et al., 2005). The EARLY trial found that
bosentan slowed the deterioration of patients with group 2 PH.
Ambrisentan is another ERA currently used for PAH, and is
a selective antagonist of ETA receptors (ETA:ETB selectivity
>4000:1), whereas bosentan (ETA:ETB selectivity ∼300:1) is
a non-selective antagonist (Elshaboury and Anderson, 2013).
Ambrisentan improved mortality and survival times when
tested in ARIES 1 and 2 randomized, double-blind, placebo-
controlled, multi-centre efficacy studies (Galie et al., 2008).
Macitentan is a dual ETA and ETB antagonist developed
by modifying the structure of bosentan to increase safety
and efficacy (Bolli et al., 2012). The phase III clinical trial
(SERAPHIN), showed reduced morbidity and mortality, with
improved cardiac hemodynamics and 6-min walk distance
with macitentan use (Pulido et al., 2013). Macitentan is
characterized by sustained receptor binding and has better tissue
penetration (Iglarz et al., 2008; Gatfield et al., 2012). Common
side effects of ERAs include peripheral oedema and flushing,
nasopharyngitis, headache, and anemia. Bosentan is associated
with teratogenesis and elevated transaminases in 10–12% of
patients due to liver toxicity. Liver toxicity forced another ERA,
sitaxentan, to be withdrawn from the market in 2010 due to
hepatic necrosis (Odili and Abdullahi, 2014; Tran Thao et al.,
2018). Ambrisentan (Galie et al., 2008) and macitentan appear
superior in this respect, with lower risk of aminotransferase
abnormalities.

INVESTIGATION OF C-FIBER-DERIVED
NEUROPEPTIDES AS NOVEL
PULMONARY HYPERTENSION
THERAPIES

Pulmonary vascular tone is controlled by many other factors,
aside from those discussed above. There are a number of
promising candidates for new PH treatment options, including
the neuropeptides, substance P and CGRP. This pair of
neuropeptides are of interest as both are released from
sensory C-fibers. This complex has a well-characterized role
in nociception and pain transduction, but this is not the
focus of this review. Beyond their afferent role as nociceptors,
sensory C-fibers have an efferent role. They can be stimulated
in the periphery to release vasoactive neuropeptides. This
leads to direct and immediate modulation of vascular tone
(Holzer, 1991). The endogenous stimulation of C-fibers largely
involves inflammatory signals. C-fibers are pharmacologically

characterized by their sensitivity to noxious stimuli such as heat,
acidic pH and capsaicin, the ‘hot’ component in chili peppers.

Use of Capsaicin in Isolating
Neuropeptide Activity
Capsaicin has proven to be a useful pharmacological tool for
investigating the actions of the C-fiber-derived neuropeptides
(Figure 3). Acutely, capsaicin can activate C-fibers to release
substance P and CGRP. Yet, with prolonged use it leads to
depletion of nerve endings of their neuropeptide content via
retrograde transport of nerve growth factor (NGF) to the cell
bodies of sensory nerves (Burks et al., 1985; Juranek and
Lembeck, 1997). As an example of this, in rats, capsaicin can
permanently degenerate C-fiber afferents leading to reductions
of neuropeptide levels. This is a promising strategy for
alleviating chronic pain (Lynn, 1990). Capsaicin has been used
extensively to characterize the contributions of neuropeptides to
vascular regulation. The role of CGRP and substance P in the
cardiovascular system, are discussed in detail in the following
sections.

Calcitonin-Gene Related Peptide (CGRP)
First identified in 1982, CGRP is a polypeptide which has
37- amino acids (Amara et al., 1982; Rosenfeld et al., 1983;
Wimalawansa, 1996) and belongs to a larger peptide family
including calcitonin. CGRP is expressed in neuronal tissue and
in central, peripheral and enteric nervous systems (Mulderry
et al., 1985b). It can be found in both unmyelinated sensory C
fibers and myelinated Aδ fiber. Immunocytochemistry studies
showed cells within the central nervous system (CNS), peripheral
nerves in the heart, airway mucosa and general vasculature
all have high amounts of CGRP (Rosenfeld et al., 1983;
Mulderry et al., 1985c; Tjen et al., 1998). It was originally
reported that CGRP could mediate sympathetic efflux from
brain (Fisher et al., 1983), and that intravenous delivery could
lower blood pressure and increase heart rate (Fisher et al., 1983;
Marshall et al., 1986). It was then crucially discovered that CGRP

FIGURE 3 | Activation of TRPV1 and neuropeptide release. Exogenous and
endogenous stimuli that activate TRPV1 are shown. HPETEs
(hydroperoxyeicosatetraenoic) and HETEs (hydroxyeicosatetraenoic) refer to
eicosanoid derivatives of arachidonic acid. Once activated, TRPV1 on sensory
C-fibers releases substance P and calcitonin-gene related peptide (CGRP)
from nerve endings.
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has direct vasodilator activity (Brain et al., 1985). Perivascular
nerves are the major source of plasma CGRP and deficiency
of perivascular nerves has been shown in certain types of
hypertension (Wimalawansa, 1996; Smillie and Brain, 2011).
CGRP is widely believed to have anti-inflammatory effects
(Gomes et al., 2005). Inflammation-mediated nerve damage
can upregulate CGRP synthesis (Amara et al., 1982; Rosenfeld
et al., 1984; Donnerer and Stein, 1992). In vasculature, terminal
CGRPergic sensory fibers are located in all layers of the vascular
smooth muscle (Rosenfeld et al., 1983) (Amara et al., 1985;
Mulderry et al., 1985a). CGRP can be found in perivascular
neurons common to all vascular beds, where expressions are
higher in arterial than venous tissues in human coronary arteries
(Amara et al., 1985). Receptors for CGRP have also been found in
both the media and intima of resistance vessels and in endothelial
cells (Mulderry et al., 1985a; Hagner et al., 2002). The wide
distribution of CGRP and its receptor in the vasculature makes
CGRP a promising future drug target.

CGRP Is a Potent Vasodilator
Calcitonin gene-related peptide is a potent vasodilator in the
systemic circulation and other localized vascular beds. (Brain
et al., 1985; Kubota et al., 1985; Greenberg et al., 1987;
van Rossum et al., 1997). CGRP achieves vasodilation by
receptor-mediated activation of adenylyl cyclase and cAMP
(Aiyar et al., 1997), and may also have some cross-talk with
NO (Chen and Guth, 1995). Patients with hypertension have
increased plasma CGRP concentrations (Masuda et al., 1992; Li
et al., 2009). Circulating CGRP levels correlate with systolic and
diastolic pressures in severe hypertension (Edvinsson et al., 1992).
Dose-dependent increases in plasma CGRP levels were found
when blood pressure was artificially raised with angiotensin II in
normotensive volunteers (Portaluppi et al., 1993). These studies
suggest that raised plasma CGRP is a compensatory mechanism
to overcome high blood pressure. While CGRP is the most potent
neuropeptide vasodilator, it suffers from a short half-life that may
limit its clinical use. To overcome this a long lasting acylated
α-CGRP analog (half-life ≥ 7 h) was used in a pre-clinical study.
This effectively alleviated hypertension (Aubdool et al., 2017),
further supporting the notion of CGRP acting as an endogenous
anti-hypertensive agent.

CGRP in Pulmonary Hypertension
Similar to systemic circulation, CGRP is also a major vasodilator
in pulmonary arteries (McCormack et al., 1989a). Using
experimental models, it appears that upregulating CGRP
signaling protects against increased PVR in PAH (Table 1).
Pulmonary vascular remodeling, right ventricular systolic
pressure and right ventricular hypertrophy can all be ameliorated
by the infusion of CGRP in experimental PH (Keith and Ekman,
1992; Tjen et al., 1992). Decreased CGRP activity, by CGRP
receptor antagonism resulted in exacerbated PH in rats (Tjen
et al., 1992). More interestingly, gene therapy with CGRP has
also proven to be effective in preventing PH characteristics
in vivo and in vitro in experimental PH models (Champion
et al., 2000; Bivalacqua et al., 2002; Chattergoon et al., 2005;
Zhao et al., 2007). Endothelial progenitor cells that were

transfected with CGRP and directed to the pulmonary
vasculature of rats led to decreased PVR (Zhao et al., 2007).
This suggests that PH-associated endothelial dysfunction may be
corrected by CGRP.

Interestingly, patients with higher CGRP levels had more
severe PAH (Bartosik et al., 2002; Zhang et al., 2006). Likewise,
chronic hypoxia-induced PH in rats was associated with higher
levels of CGRP. The latter correlated with increased arterial
medial hypertrophy and right ventricular systolic pressure and
hypertrophy (Keith and Ekman, 1992). These studies hint at
a role for CGRP in the pathophysiology of PAH. Taken in
context with the therapeutic potential of CGRP for lowering
pulmonary pressure, it is likely that increased CGRP levels reflect
a compensatory upregulation to overcome the high pulmonary
pressure. If this is the case, CGRP may be a useful clinical
biomarker for PAH diagnosis.

Substance P
Substance P was first discovered in 1931 after tissue extract
containing a previously unknown compound was demonstrated
to stimulate rabbit intestinal contraction (V Euler and Gaddum,
1931). Several decades later the structure of substance P, as a
polypeptide containing 11 amino acids, was resolved (Chang
et al., 1971). It is now well established that substance P is involved
in many physiological and pathological effects, mediating touch,
pain and temperature (Lembeck and Holzer, 1979; Holzer, 1988).
While substance P is mostly known for its role in pain and
neurogenic inflammation and is found in the central nervous
system (Mantyh, 2002), it also mediates effects via receptors in
non-neuronal tissues. Substance P modulates cell proliferation
and cytokine production, mediates interaction between immune
cells and neurons (de Avila et al., 2014; Mashaghi, 2016) and is
involved in immunoregulation (Payan and Goetzl, 1985; Stead
et al., 1987, 1989; Haines et al., 1993; Ho et al., 1997; Schratzberger
et al., 1997). The main receptor for substance P is neurokinin 1
receptor (NK1R), which belongs to the tachykinin receptor family
of G protein-coupled receptors. When substance P binds to
NK1R a scaffold complex can be formed, resulting in endocytosis
and stimulation of intracellular signaling via mitogen activated
protein kinases (Grady et al., 1995; DeFea et al., 2000).

Substance P Is an Indiscriminate Regulator of
Vascular Tone
In the vasculature, substance P promotes proliferation of
smooth muscle cells (Payan, 1985). It also influences vascular
tone in a complex manner. It has a dual role of being a
vasoconstrictor or vasodilator, depending on the circumstances
and the type of vessel it stimulates (Worthen et al., 1985).
The vascular response to substance P is largely mediated by
NK1R activation. Substance P has a higher affinity for NK1R
compared to NK2R and NK3R. There is little evidence to
suggest a role for the other isoforms in vascular reactivity
(Maggi et al., 1990; Constantine et al., 1991; Hall and Brain,
1994; Berthiaume et al., 1995; Corboz et al., 1998). Whether the
effect of Substance P is to cause vasodilation or vasoconstriction
is dependent on where NK1R is located. Activation of NK1R
on smooth muscle cells may induce vasoconstriction. If
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TABLE 1 | Role of neuropeptides in experimental models of PH.

Species PH model Treatment Effect Reference

TRPV1

Rat Monocrotaline Capsaicin ↓ PH, ↓RVH Zhou and Lai, 1993; Katzman and Lai, 2000

Rat Pulmonary banding Capsaicin ↓ PH, ↓RVH Xu et al., 2017

Rat Hypoxia Capsaicin ↑ PH, ↑RVH Tjen et al., 1998

Rat Perinatal hypoxia/ monocrotaline Capsaicin ↓ PAP Chen et al., 2012

CGRP

Rat Post-natal hypoxia ↓ CGRP ↑ PH Keith et al., 2000

Mouse Hypoxia CGRP gene transfer ↓ PH, ↓RVH Champion et al., 2000; Bivalacqua et al., 2002

Rat Hypoxia CGRP ↓ PH, ↓RVH Tjen et al., 1992

Rat Hypoxia CGRP receptor impaired ↑ PH Qing and Keith, 2003

Rat Hypoxia CGRP infusion ↓ PH, ↓RVH Qing and Keith, 2003

Substance P

Rat Perinatal hypoxia/ monocrotaline ↑ Substance P Chen et al., 2012

Rat Monocrotaline ↑ Substance P Zhou and Lai, 1993

Rat Hypoxia NK1R antagonist ↓ PAP Chen et al., 1999

Rat Hypoxia NK1R activation ↑ PAP Chen et al., 1999

CGRP, calcitonin gene-related peptide; NK1R, neurokinin 1 receptor; PH, pulmonary hypertension; RVH, right ventricular hypertrophy.

NK1R on endothelial cells are stimulated, calcium-induced
activation of the vascular endothelium can occur. This results in
production of endothelium-derived vasodilators. Yet, endothelial
NK1R activation can also result in thromboxane-mediated
vasoconstriction (Figure 4). Interestingly, global knockout
of the NK1R gene (Tacr1) resulted in no alteration to
vascular function in isolated systemic arteries (Moyes et al.,
2016). Given that both smooth muscle and endothelial cells
were lacking NK1R in these mice, it may explain the

phenotype. Vascular function would be best explored using
tissue-specific knockout mice (i.e., smooth muscle and/or
endothelial cell knockout) to truly determine functional relevance
of NK1R.

Substance P as a vasodilator
Substance P can be a potent vasodilator of some vessel
types and this has been shown in isolated vessels from both
humans (Bodelsson and Stjernquist, 1992; Onoue et al., 1994;

FIGURE 4 | Overview of neuropeptide function in the lung circulation. Proposed mechanisms by which CGRP and Substance P may be effective in regulating
pulmonary vascular tone. AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; CRLR, calcitonin receptor-like
receptor; eNOS, endothelial nitric oxide synthase; GDP, guanosine diphosphate; GTP, guanosine triphosphate; IP3, inositol triphosphate; MAPK, mitogen activated
protein kinase; NK, neurokinin; NO nitric oxide; PGI2, prostacyclin; PKC, protein kinase C, PLC, phospholipase C; RAMP-1, receptor activity-modifying protein-1;
sGC, soluble guanylate cyclase; TXA, thromboxane.
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Wallerstedt and Bodelsson, 1997) and animals (D’Orleans-
Juste et al., 1985; Bolton and Clapp, 1986; McCormack et al.,
1989b; Toda et al., 1991) and in vivo (McEwan et al., 1988;
Beattie et al., 1993; Hall and Brain, 1994; Strobel et al., 1996).
Vasodilation induced by substance P via NK1R can occur through
both endothelium-dependent (D’Orleans-Juste et al., 1985;
Bolton and Clapp, 1986; Onoue et al., 1994) and -independent
mechanisms (Enokibori et al., 1994). Endothelium-dependent
vasodilation (Figure 4) after substance P stimulation can be
via any of the major endothelium-dependent pathways; NO
(Rosenblum et al., 1993; Holton et al., 2010), prostacyclin
(Bodelsson and Stjernquist, 1994) or endothelium-dependent
hyperpolarization of the smooth muscle membranes (Petersson
et al., 1995; Wallerstedt and Bodelsson, 1997). This can also
occur through NK1R in isolated pulmonary vessels (Corboz et al.,
1998; Pedersen et al., 2000). Substance P-induced pulmonary
vasodilation tends to occur at low concentrations (McCormack
et al., 1989b) and can be transient in nature (Maxwell, 1968).

Substance P as a vasoconstrictor
Whilst it is often considered a systemic vasodilator, substance
P can also induce a myogenic ‘response,’ or pressure-induced
constriction (Scotland et al., 2004). When substance P release is
stimulated, it can induce coronary vasoconstriction and increased
blood pressure (Bubb et al., 2013) and it may have a role in the
pathogenesis of hypertension (Faulhaber et al., 1987; Kohlmann
et al., 1997). Activation of the NK1R on smooth muscle cells
results in activation of phospholipase C. This creates a transient
increase of inositol 1,4,5 triphosphate (Takeda et al., 1991) and
increased intracellular calcium (Krause et al., 1992), resulting in
vasoconstriction. Substance P primarily causes vasoconstriction
in pulmonary arteries (Selig et al., 1988; McCormack et al.,
1989b; Shirahase et al., 1995), which can be mediated via
NK1R via thromboxane or NK2R (Figure 4). This appears
to be largely pulmonary-specific (Selig et al., 1988) and likely
involves complex receptor interactions. At higher substance
P concentrations, pulmonary vasoconstriction dominates over
vasodilation (McCormack et al., 1989b).

Substance P in Pulmonary Hypertension
The complexities around the dual vasodilator/vasoconstrictor
role of substance P in the pulmonary circulation (Figure 4) make
it difficult to predict what role it has (if any) in PH. Infusion
of substance P has minimal vasodilating effect on patients with
PAH (Uren et al., 1992; Brett et al., 1996; Cailes et al., 1998).
Thus, is has been postulated that substance P dysfunction is an
underlying cause of PAH. On the other hand, the dominant role
of substance P as a pulmonary–specific vasoconstrictor led to
the hypothesis that substance P overactivity is causative in PAH.
Pre-clinical models of PH are associated with increased lung
substance P (Zhou and Lai, 1993; Chen et al., 2012). Pulmonary
pressure can be decreased by depleting substance P (Table 1) or
by using NK1R antagonists (Zhou and Lai, 1993; Chen et al.,
1999, 2012). Likewise, activation of NK1R can induce increased
pulmonary pressure (Chen et al., 1999). Substance P is involved
in lung vascular remodeling, possibly due to increased oxidative
stress (Springer and Fischer, 2003). Increased PVR has also

been attributed to inflammatory stimulation of mitogen-activated
protein kinase pathway by substance P. This is alleviated by
capsaicin-induced depletion (Xu et al., 2017). In model systems
using hypoxia to simulate PH, substance P release is increased
(Lindefors et al., 1986). Based upon this body of literature it
would appear that substance P is indeed a promising candidate
for reducing PVR.

Further research should be conducted to pursue the intricate
mechanisms of substance P in PAH. As NK1R antagonists
can lower pulmonary pressure in rats, they may be the
best pharmacological target to consider for humans. NK1R
antagonists are in clinical use as anti-emetics. They are usually
prescribed to take prior to chemotherapy or surgery. Aprepitant
is available as an oral formulation and is well tolerated
(Martinez and Philipp, 2016). It has been investigated for use as
an anti-inflammatory agent. Interestingly, reported side-effects
include low blood pressure. If subsequent pre-clinical studies are
positive, a clinical trial in PH could conceivably proceed using
this safety-approved formulation.

Transient Receptor Potential Vanilloid
Type 1 (TRPV1) in Vascular Regulation
There are a number of signaling intermediates in C-fiber-derived
neuropeptide release. One of the best characterized in the
vasculature is TRPV1. TRPV1 activation results in substance P
and/or CGRP release from peripheral nerve terminals (Holzer,
1991; Gibbons et al., 2010). TRPV1 receptors are non-selective
cation channels located predominantly on sensory nerve endings
(Tominaga and Julius, 2000) but they also reside on cells of
many peripheral tissue types. They are present in the entire
respiratory tract (Zholos, 2015) and located on both smooth
muscle and endothelial cells of the vasculature. TRPV1 receptors
are nociceptors that are highly responsive to pro-inflammatory
stimuli and are activated by a range of endogenous and
exogenous factors (Figure 3). These include temperature, pH,
bradykinin, anandamide, arachidonic acid metabolites such as
20-hydroxyeicosatetraenoic acid (Wen et al., 2012), spider toxins,
and most famously, capsaicin, (Caterina et al., 1997; Devesa et al.,
2011). TRPV1 receptors have a binding site for capsaicin. The
complicated mechanism for activation is still being unraveled
and great progress has been made since 2013 when breakthrough
structural information was first reported (Yang and Zheng, 2017).
TRPV1 activation is involved in a variety of cardiovascular
pathologies, including the modulation of atherosclerosis (Li et al.,
2014; Xiong et al., 2016), myogenic tone (Scotland et al., 2004;
Bubb et al., 2013), systemic arterial pressure (Bubb et al., 2013)
and hypertension (Hao et al., 2011), congestive heart failure
(Gao et al., 2014; Lang et al., 2015), vascular remodeling (Chen
et al., 2010), haemorrhagic shock (Akabori et al., 2007) and sepsis
(Chen et al., 2018).

Evidence of a Role for TRPV1 in Pulmonary
Hypertension
Pulmonary hypertension is characterized by pulmonary smooth
muscle cell hyperproliferation causing remodeling of the smooth
muscle cell layer and impacting on PVR. Although it is likely
that TRPV1 activation in sensory nerves is the key to modulation
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of pulmonary circulation, it is possible that some direct effects
in smooth muscle cells could contribute to the PH phenotype.
Activation of TRPV1 on cultured pulmonary smooth muscle
cells (SMC) results in enhanced proliferation (Randhawa and
Jaggi, 2017), increased intracellular calcium and stimulates cell
migration (Martin et al., 2012). Under laboratory conditions, PH
can be simulated by exposing cells to chronic hypoxia. Using this
model, TRPV1 expression can increase (Wang et al., 2008) with
corresponding increased intracellular calcium and reorganization
of cytoskeletal architecture. TRPV1 blockade with capsazepine
can abolish these effects (Parpaite et al., 2016). There are a
number of studies assessing the role of TRPV1 by using capsaicin
to desensitize it (Table 1). These studies are further evidence of
the importance of TRPV1 in PH. The contribution of individual
neuropeptides downstream of TRPV1 activation is complex and
has been discussed in the relevant sections of this review.

DIRECT CARDIAC EFFECTS OF
SENSORY C-FIBER NEUROPEPTIDES

The increased PVR in all groups of PH generally leads to
right ventricular cardiac remodeling due to the increased right

ventricular afterload. This remodeling eventually leads to right
heart failure and accounts for mortality in most patients. The
right heart remodeling is the most difficult component to treat.
Similar to left-sided heart failure, there are a paucity of drugs that
are effective in reversing cardiac remodeling. Many PH patients
remain undiagnosed until right heart remodeling is already
established. Therefore, this is a significant clinical problem. It
is important to investigate the direct cardiac effects of potential
therapies for PH. Even if the effect on vascular resistance is
modest, any direct effects on cardiac remodeling would increase
the usefulness of the therapy. Current treatments tend to be
disappointing in this respect (Michelakis, 2003; Steiner et al.,
2005; Baliga et al., 2011). In PAH, where the treatments cause
a significant decrease in right heart afterload, the impact on the
right ventricular mortality is minimal (Westerhof et al., 2017).
Promisingly, both CGRP and substance P have been reported to
have direct cardiac effects (Ejaz et al., 2011) as outlined below
(Figure 5).

CGRP in Heart Failure and Cardiac
Remodeling
Calcitonin gene-related peptide receptors are located throughout
the myocardium (Ieda et al., 2006). There is evidence of densely

FIGURE 5 | Proposed direct cardiac effects of neuropeptides. Both Substance P and CGRP modulate tumor necrosis factor α (TNFα) signaling. TNF-α is crucial in
mediating cardiac remodeling and these effects can occur via activation of receptors (TNFR1 and TNFR2) on cardiomyocytes. Substance P promotes cardiac
remodeling via TNFα release from inflammatory cells. CGRP inhibits TNFα and decreases remodeling in diseased models. Dashed lines indicates unknown but
postulated mechanisms.
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located CGRP-containing nerve fibers around the coronary
arteries, papillary muscles, sinoatrial and atrioventricular nodes
(Mulderry et al., 1985b). CGRP protects against cardiac
hypertrophy in a pre-clinical model of heart failure (Li et al.,
2010). CGRP levels can be increased in heart failure (Hsu
et al., 2005). Whether this is causative or compensatory is
unknown. However, there is evidence to support the latter notion.
Infusion of CGRP increases myocardial contractility (Gennari
et al., 1990) and improves circulation in coronary disease
(Gennari et al., 1990; Dubois-Rande et al., 1992; Stevenson
et al., 1992). On a cellular level, CGRP inhibits generation of
pro-inflammatory tumor necrosis factor (TNF)-α and prevents
interstitial and perivascular fibrosis (Li et al., 2013). CGRP also
ameliorates cardiomyocyte apoptosis via the Bcl-2/Bax pathway
(Ma et al., 2013) and has direct anti-proliferative effects on
cardiac fibroblasts (Li et al., 2016). CGRP has positive cardiac
ionotropic effects that are mostly abolished by both a CGRP
antagonist and a PI3 kinase inhibitor (Al-Rubaiee et al., 2013).
A CGRP analog alleviated pre-clinical diabetes-induced heart
failure and remodeling due to reduced α-smooth muscle actin
and transforming growth factor (TGF)-β1 (Aubdool et al.,
2017). Therefore, CGRP appears to be cardioprotective. Even
more promising for PH, is the recent finding that rutacarpine,
which stimulates CGRP release, was able to reverse right heart
remodeling in experimental PH and this was attributed to
p27-dependent signaling (Li et al., 2016).

Substance P in Heart Failure and Cardiac
Remodeling
In the human heart, substance P has been found in intrinsic
cardiac ganglia (Wharton et al., 1990; Hoover et al., 2009),
coronary vessels (Laine et al., 2000), and within myocardium
(Weihe et al., 1981; Rechardt et al., 1986). Substance P appears
to have a damaging role in heart disease (Dehlin and Levick,
2014), hinting at a direct effect of substance P on myocardial
tissue. Pro-substance P (a stable surrogate for substance P)
is an independent predictor of recurrent acute myocardial
infarction, heart failure and cardiac mortality (Ng et al., 2014).
Levels of substance P are increased in congestive heart failure
(Valdemarsson et al., 1991). Substance P promotes hypertrophy
in isolated cardiomyocytes, suggesting this effect is direct and
independent of systemic factors (Church et al., 1996). Several
pre-clinical models have demonstrated a role for substance P
in mediating heart failure. Cardiac hypertrophy, apoptosis and
dilated cardiomyopathy were absent from substance P knockout
mice (D’Souza et al., 2007). Genetic deletion of TAC1, which
encodes substance P was protective against increased cardiac
mast cell density and TNFα upregulation and associated cardiac
remodeling (Melendez et al., 2011). Inhibition of NK1R also
improved cardiac function and ameliorated cardiac hypertrophy
in models of heart failure (Melendez et al., 2011; Robinson
et al., 2015). Substance P appears to be a mediator of cardiac
toxicity induced by doxorubicin, which is a chemotherapy agent
that causes cardiomyocyte death. Inhibition of substance P
resulted in lower cardiomyocyte apoptosis after doxorubicin
treatment to an isolated cell line (Robinson et al., 2016).

Taken together, these findings are clinically exciting, as it suggests
that substance P-antagonist based therapies may be able to
directly improve right ventricular parameters above simply
relieving right ventricular afterload for PAH treatment.

WHAT IS NOT KNOWN? FUTURE
PROSPECTS FOR NEUROPEPTIDES AS
A TREATMENT STRATEGY FOR
PULMONARY ARTERIAL
HYPERTENSION

From a relatively small pool of research we can conclude that
the neuropeptides, substance P and CGRP, have the ability to
regulate both systemic and pulmonary arterial pressure. We have
also provided evidence that these neuropeptides regulate vascular
smooth and cardiac muscle cell remodeling under diseased
conditions. However, there is not yet a comprehensive answer
on whether these neuropeptides are strong signaling targets for
treating PAH. CGRP is a proven potent dilator of systemic and
pulmonary vasculature and appears to have favorable effects
on cardiac remodeling. Based on what we know, stimulation
of endogenous CGRP signaling or exogenous administration of
stable analogs should be good candidates for the treatment of
PAH. Yet only a handful of studies have investigated this and
it has not gone further than pre-clinical investigation. The next
step would be to thoroughly characterize the potential for CGRP
in reversing all aspects of PAH. It is important to show this in
three or more different PH models, before embarking on a Phase
II trial.

The clinical appeal of substance P is more distant as there are
still inconsistencies in identifying the precise vascular regulatory
function of this neuropeptide. From the pulmonary literature, it
appears that the over-arching role of substance P is likely to be
as a vasoconstrictor. This is contrary to its effect in the systemic
circulation, where it seems to predominantly cause vasodilation.
If this is proven to be the case, it is a very attractive property for
PAH treatment. A major adverse effect for some PAH therapies
has been the unacceptable lowering of systemic arterial pressure.
This is an important factor to consider for PAH treatment,
especially in regard to using combination therapies.

Combination therapies are emerging as a promising
treatment regimen for PAH, while we wait for development of
novel compounds. An effective PVR-lowering combination has
involved upregulation of cGMP generation with concurrent
inhibition of cGMP metabolism. However, this is not always
possible. For example, the use of sildenafil and long-acting
nitrates can cause life-threatening hypotension (Cheitlin et al.,
1999). Using pre-clinical models, an alternative strategy has
emerged. Stimulation of a different ‘pool’ of cGMP, derived from
particulate guanylate cyclase activity rather than sGC (Baliga
et al., 2008), and combining this with sildenafil, has been a
success. This has resulted in a far more pulmonary-specific
vasodilation, negating the hypotensive effects. A similar
approach could apply for substance P. Antagonism of NK1R
would presumably block the pulmonary vasoconstriction of
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substance P, but also prevent excessive systemic dilation to some
degree. A hypothetical treatment strategy could involve using
NK1R antagonists alongside already approved PAH therapies
such as PDE5 inhibition or sGC stimulation. This may result in
a pulmonary-specific dilation, as substance P-induced systemic
vasodilation would be prevented at the same time as pulmonary
vasoconstriction is lowered. Pre-clinical studies should focus on
investigating the substance P axis alongside current treatments,
or in combination with other promising candidates. This could
identify new strategies that are truly able to target multiple
etiologies of PAH and are an essential starting point. A similar
strategy should be utilized when investigating CGRP for PAH
therapy. It is likely that CGRP-based pharmaceuticals may have
significant and unacceptable blood pressure lowering effects,
similar to the organic nitrates. Therefore dose-selection and
combination approaches would be essential in establishing
CGRP as a therapy.

As TRPV1 activation results in release of both neuropeptides,
it may also make an interesting target. If antagonism of TRPV1
lowers substance P, this may be beneficial for PAH. It would also
presumably lower CGRP, which may not be beneficial. It probably
depends on the release pattern of CGRP/substance P in PH lungs
and little is known about that. The majority of studies so far have
found that depleting the C-fiber nerve endings by using capsaicin
has generally resulted in improvements in PH models (Table 1).
This suggests that inhibiting sensory C-fibers predominantly
impairs substance P-induced pulmonary constriction without
a major influence on CGRP-induced dilation. This may be
reflective of the mechanisms at play in regards to the role
of TRPV1 in PAH. Future research should focus on whether
complete inhibition of TRPV1 could be effective as a PH therapy,
or whether the balance could be shifted more toward CGRP-
production with inhibition of substance P. Of course, with any
strategy, consideration must be given to the consequences for
other organ systems. Complete inhibition of either TRPV1 or
substance P may elicit unexpected effects and this should be
thoroughly investigated in PH models. Use of targeted therapy
to the pulmonary vasculature and/or heart would help to
elucidate the role of both neuropeptides. Also, receptor-specific
therapy could be considered. One study has investigated all three
neurokinin receptors, but it indicated no role of NK2R and NK3R
(Corboz et al., 1998). The little that has been done suggests
that NK1R is likely to be the primary mediator of pulmonary
vasoconstriction, but the other neurokinins should not yet be
ruled out.

Another interesting area to explore could be related to neutral
endopeptidases (NEP), which are the most important enzymes
in the degradation of tachykinins, including substance P (Skidgel
et al., 1984). Interestingly, there is a decent body of evidence to
suggest that NEP inhibitors could be a promising PAH therapy,
and they are currently in clinical trial. In addition to tachykinins,
NEPs also degrade a selection of other peptides, including
pulmonary vasodilating natriuretic peptides and pulmonary
vasoconstrictors such as ET-1 (Abassi et al., 1992). NEPs appear
to have an underlying role in the pathogenesis of PH (Dempsey
et al., 2009). NEP inhibitors have produced promising results
in models of PH, both as monotherapy (Klinger et al., 1993;

Thompson et al., 2012) or in combination with PDE5 inhibition
(Baliga et al., 2008). This is largely due to their ability to increase
circulating atrial natriuretic peptide. However, in addition to
increasing pulmonary vasodilators, NEP inhibitors may result
in increased circulating substance P (in addition to other
vasoconstrictors such as ET-1 and angiotensin II) and this
would likely counteract their beneficial effects on the pulmonary
circulation. An alternative strategy could be to introduce NEP
inhibition in combination with an NK1R antagonist, for example.
A similar strategy has been trialed for hypertension, using
combined NEP/ angiotensin II inhibition with promising results
(Cuculi and Erne, 2011).

Another exciting avenue worth pursuing is the interaction
of neuropeptides with ET-1. CGRP inhibits the interaction of
ET-1 with ETA on vascular smooth muscle cells. This can
decrease smooth muscle contraction and is reversible with CGRP
antagonists (De Mey and Vanhoutte, 2014). This suggests that
intact CGRP may be important in preventing ET-1 activity.
Upregulation of CGRP may act as an endogenous ERA inhibitor
and attenuate ET-1 over-activity in PAH. There are also emerging
findings that substance P may directly interact with ET-1. In non-
cardiovascular (melanocyte) cells, substance P can stimulate ET-1
(Park et al., 2015). An NK1R antagonist was able to prevent an
increase in ET-1 expression seen in spontaneously hypertensive
rats, which was associated with reduced cardiac fibrosis (Dehlin
et al., 2013). If the relationship between substance P and ET-1
is proven, this could also have important implications for PAH
treatment, given that ET-1 is already a prime target for licensed
therapies. Taken together, it would seem that selectivity in
regulating neuropeptide release/ activity is of prime importance.
Most of the in vivo studies in this area have investigated broad-
spectrum C-fiber depletion. This is unlikely to give meaningful
information on the mechanisms at play in PH. Many of these
studies were conducted years ago, prior to the advancements
in the efficiency of genome manipulation. It is worth revisiting
these neuropeptides in PH. The use of elegant and well-designed
studies, utilizing advanced technology, should fully interrogate
the vascular interactions of substance P and CGRP in the
pulmonary circulation.

SUMMARY

Pulmonary arterial hypertension is a fatal disease that afflicts
people of any age and causes substantial reduction in quality of
life. It tends to be more prevalent in young people, particularly
women. While treatments developed in the past few decades
improved the prognosis for PAH patients, mortality rates still
remain high. Current treatment methods are primarily centered
on enhancing pulmonary vasodilation. They are not effective
at reducing mortality. There is great potential to develop new
treatments that target both cardiopulmonary re-modeling and
PVR. Altered release of neuropeptides such as substance P and
CGRP have been implicated in the pathophysiology of PAH.
Selective control of the balance on these neuropeptides in the
pulmonary circulation is a promising approach to combating this
fatal disease.
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