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Earlier research work on the dynamics of the brain, disclosing the existence of crucial

events, is revisited for the purpose of making the action of crucial events, responsible

for the 1/f −noise in the brain, compatible with the wave-like nature of the brain

processes. We review the relevant neurophysiological literature to make clear that crucial

events are generated by criticality. We also show that although criticality generates a

strong deviation from the regular wave-like behavior, under the form of Rapid Transition

Processes, the brain dynamics also host crucial events in regions of nearly coherent

oscillations, thereby making many crucial events virtually invisible. Furthermore, the

anomalous scaling generated by the crucial events can be established with high accuracy

by means of direct analysis of raw data, suggested by a theoretical perspective not

requiring the crucial events to yield a visible physical effect. The latter follows from the

fact that periodicity, waves and crucial events are the consequences of a spontaneous

process of self-organization. We obtain three main results: (a) the important role of

crucial events is confirmed and established with greater accuracy than previously; (b)

we demonstrate the theoretical tools necessary to understand the joint action of crucial

events and periodicity; (c) we argue that the results of this paper can be used to shed

light on the nature of this important process of self-organization, thereby contributing to

the understanding of cognition.

Keywords: brain waves, crucial events, periodicity, 1/f spectrum, coherence

1. INTRODUCTION

Following the dynamics of the brain is a challenging issue that has forced researchers to go beyond
applying the conventional forms of non-equilibrium statistical physics (Papo, 2013) and is expected
to contribute to reshaping the emerging field of complex networks as well (Papo et al., 2014). The
dynamics of the brain and of biological processes in general, are characterized by homeodynamics
(Yates, 1994), thereby implying that the analysis of biological dynamics ought to be done taking
into account that it is typically driven by rhythms and waves.

A parallel line of inquiry has recently been developed that focuses on the connection between
the dynamics of the brain and the phenomenon of criticality (Aburn et al., 2012; Tagliazucchi
et al., 2012; Boonstra et al., 2013). Criticality in the brain is a subject widely discussed in
the neurophysiology literature, as reviewed in the recent paper (Cocchi et al., 2017) and is a
term adopted by physicists to denote, for instance, the spontaneous magnetization of a material
below the Curie temperature. At the critical temperature TC where this transition occurs, a
long-range correlation between the thermally disordered spins occurs. It is widely thought that an
analogous condition is fulfilled by brain dynamics with the consequence of strongly correlating the
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functionality of different physical regions of the brain. This
connection between brain dynamics and phase transition
processes at criticality led the present investigators to focus on
the concept of crucial events.

For context, let us briefly consider how the concept of
crucial events was introduced in neurophysiology. Contoyiannis
and Diakonos (Contoyiannis and Diakonos, 2000) studied a 3-
dimensional Ising model at criticality and proved it to be the
generator of Type I intermittency. In the sequel (Contoyiannis
et al., 2002) they pointed out that this connection with
Type I intermittency can be formally expressed through a
waiting-time probability density function (PDF) ψ(τ ), with a
dominant inverse power law (IPL) structure, with IPL index µ.
This PDF is exponentially truncated at long times. Using the
intermittency language (Manneville and Pomeau, 1979; Pomeau
and Manneville, 1980) a laminar region is interpreted as a
quiet zone between short regimes of rapid erratic activity. The
durations of different laminar regions are uncorrelated and
the turbulent processes separating consecutive laminar regions
are the crucial events studied in this paper. The discovery of
crucial events in the field of turbulence (Manneville and Pomeau,
1979; Pomeau and Manneville, 1980) had deep consequences in
statistical physics. In fact, if the IPL index µ of ψ(τ ) is smaller
than 3, the process hosting the crucial events is not ergodic. On
the other hand , the statistical analysis of molecular diffusion in
biological cells (Metzler et al., 2014) shows that these processes
are not ergodic, since they host crucial events. This leads to
the inequality µ < 3 as being an important condition for the
definition of crucial events. It has to be stressed that ergodicity
breakdown seems to be a general property of biological processes
(Grigolini, 2015), not limited to the specific case of molecular
diffusion in biological cells.

Returning to neurophysiology, we can make the conjecture
that crucial events in the EEGs are signaled by abrupt transitions
from regular to a fast irregular behavior, Rapid Transition
Processes (RTPs). Allegrini et al. (2010) searched for these
events in the brain of healthy patients using a technique for
identification of RTPs in the brain activity proposed by brothers
Fingelkurts and co-workers (Fingelkurts, 1998; Fingelkurts and
Fingelkurts, 2005, 2006, 2008, 2015; Kaplan et al., 2005). After
detecting them, Allegrini et al. (2010) proved that, as expected,
the RTPs host crucial events.

On the basis of earlier remarks, crucial events are defined in
terms of their statistical properties as follows. The time intervals
between consecutive crucial events are described by the waiting-
time PDF ψ(τ ) having an IPL structure

ψ(τ ) ∝
1

τµ
, (1)

with the IPL index µ in the interval

1 < µ < 3. (2)

From the earlier arguments, furthermore, it is clear that the
crucial events are renewal and consequently the times τi should
not be correlated. If a sequence of crucial events are defined by
the time intervals τ1,τ2,τ3,. . . then the time-average correlation

function is a Kronecker delta function where the time average is
indicated by an overbar

C(t) =

∑

|i−j|=t

(τi − τ)
(

τj − τ
)

∑

i
(τi − τ)

2
. (3)

This correlation function is properly normalized, thereby
yielding C(0) = 1 , and in the case of genuine renewal events
should satisfy the condition C(t) = 0 for t > 0. This renewal
property can also be expressed by the assumption that the
probability of occurrence of both τi and τj, 5(τi, τj), when i 6= j
is given by,

5(τi, τj) = P(τi)P(τj), (4)

where P(τi) and P(τj) are the probability of occurrence of τi and
τj, respectively.

Allegrini et al. (2010) following the line of thoughts illustrated
in this Introduction conjectured that these crucial events are
a signature of criticality and addressed the important tasks of
detecting them from the observation of EEG time series (Coles
and Rugg, 1995). The criticality hypothesis is in line with the
views of many other researchers (Levina et al., 2007, 2009;
Haimovici et al., 2013). In conclusion, the widely shared idea that
the brain operates at criticality led to the discovery that crucial
events act on the brain. This important conclusion left open two
important problems, hereby illustrated. Their solutions are the
main results of this paper.

1.1. First Problem
It is not yet clear what kind of criticality generates crucial events,
either that determined by externally tuning a control parameter
(Ising-like), or that achieved spontaneously through the internal
system dynamics, i.e., self-organized criticality (SOC), is expected
to afford a sufficient theoretical picture. We discuss the open
issue of the proper form of criticality to use to increase our
understanding of the brain dynamics in sections 5 and 6.

Here we stress that the research lines of this paper are
determined by the recent form of self-organization called self-
organized temporal criticality (SOTC) (Mahmoodi et al., 2017,
2018a,b; Mahmoodi et al., to be submitted). This form of
criticality has been proposed for the purpose of establishing a
new view of the field of Evolutionary Game Theory. The authors
of this field explain the emergence of cooperation, in spite of
the incentive for the single individual to cheat, and are looking
for the spontaneous emergence of the global cognition that
cooperation generates more social benefits, and consequently
more benefits for the single individuals. SOTC shows that this
cognition emerges naturally from a social interaction where
the degree of social attention, which is related in some way
to the control parameter of the ordinary approaches to phase
transitions, is changed by the single individuals and it increases
or decreases according to whether their overall social benefit
increases or decreases.
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1.2. Second Problem
The second problem left unsettled by the results of Allegrini
et al. (2010) is how to make crucial events compatible with
homeodynamics (Yates, 1994). Although SOTC has a sociological
origin, it can also be applied to neurophysiological processes and
more generally to biological processes satisfying the principle of
homeodynamics. In this case the single units are oscillators that
adjust their interactions with other units so as to maximize the
reciprocal synchronization (Mahmoodi et al., to be submitted).
This extension of SOTC yielding the emergence of global
periodicity makes it difficult to make analytical predictions.
Recent work (Lambert et al., to be submitted) bypasses this
difficulty: it is a promising way to take homeodynamics into
account so as to make periodic behavior compatible with
crucial events, replacing extensive computations with analytical
equations. This theoretical approach establishes a connection
between coherence and criticality-induced crucial events, and
was recently used (Tuladhar et al., 2018) to evaluate the influence
of meditation on brain dynamics (Tuladhar et al., 2018) bymeans
of the statistical analysis of the heart rate variability time series of
these subjects.

The main result of the present paper is establishing an
approach that simultaneously detects the statistical properties
of crucial events and a connection with the wave-like nature
of brain dynamics. The adoption of the RTP method is very
attractive but, as shown in section 2, its adoption does not make
it possible for us to measure the complexity of brain dynamics
directly and in addition requires a filtering process. Herein we
propose a technique of analysis of EEG time series data not
requiring the detection of RTPs, and that leads to the detection
of scaling directly from raw data. We show that the resulting
scaling is identical to that obtained in earlier work using RTP’s.
More importantly, the present technique helps establish a bridge
between EEG waves (di Santo et al., 2018) and crucial events. In
fact, as shown in section 3, this bridge is expected to lead us to
understand more about what form of criticality to apply to study
the dynamics of the brain.

1.3. Outline of the Paper
In section 2 we review the procedure adopted to detect RTP
events. We devote section 3 to an intuitive introduction to the
process of self-organization combining periodicity and crucial
events and in section 4 we analyze the spectrum of one EEG
to point out the interesting qualitative agreement with the
predictions of section 3 . In section 5 we illustrate a technique
of detection of crucial events that facilitates the analysis of EEG
time series. Finally, in section 6 we draw some conclusions and
present plans for future work.

2. DETECTION OF RAPID TRANSITION
EVENTS

As mentioned earlier, the efficacy of the RTP method in the
study of brain dynamics has been established by the brothers
Fingelkurts and co-workers (Fingelkurts, 1998; Fingelkurts and
Fingelkurts, 2005, 2006, 2008, 2015; Kaplan et al., 2005).

FIGURE 1 | Illustration of the RTP procedure of Kaplan et al. (2005).

The connection between RTPs and crucial events has been
demonstrated by Allegrini et al. (2010). However, for the sake
of clarity we sketch here the approach adopted by the latter
authors to obtain crucial events from RTPs, to emphasize the
importance of recovering the same results for detecting the same
scaling, using a very different technique. We base our analysis
on data derived from Fingelkurts (1998), which are available in
physionet.org Fingelkurts and Fingelkurts (2005).

These EEG time series data have been filtered between 0.15-28
Hz and the sampling rate (Fs) is 2048 Hz. We select one healthy
subject, from the dataset, and the top panel of Figure 1 shows the
raw data of this subject. The second panel displays one intrinsic
mode function, obtained adopting the method of Hilbert-
Huang Transformation (HHT) illustrated in Huang and Wu
(2008). The HHT method decomposes the original EEG signal
into many intrinsic mode functions, with different structures.
We select a structure with a kind of sausage-like pattern
suggested by the theoretical results of (Bologna et al., 2010).
They proved that a set of infinitely many three-state oscillators,
cooperatively interacting with an interaction parameter K, at
criticality generate a coherent non-harmonic oscillation. When
the number of oscillators is finite the regular non-harmonic
oscillations generate a sausage-like structure similar to the second
panel of Figure 1. In section 6.1 we make additional remarks on
the criticality-induced sausage-like structure.

The third panel from the top of Figure 1 is the modulus of
the data depicted in the second panel. The green curve in the
fourth panel is the envelope of the curve of the third panel, called
a Testing Sequence (TS). The blue curve in the fourth panel is the
Level Sequence (LS) obtained from the TS bymeans of a running-
average smoothing. Finally, the red crosses in panel five denote
crucial events.
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Note that this procedure for finding the crucial events is not
sufficiently accurate to be restricted to detecting only renewal
events. It is known that the events revealed by this analysis are a
mixture of crucial events and ordinary Poisson events (Allegrini
et al., 2010). However, the presence of Poisson events does not
prevent us from detecting the anomalous scaling generated by
the crucial events. The desired scaling is detected in the following
way. The authors of Grigolini et al. (2001) use the detected events
to generate a diffusion process x(t) by means of the rule that
the random walker jumps ahead when an event, either crucial or
Poisson, occurs. The scaling generated by the Poisson events has
a power-law index δ = 0.5, whereas the scaling power-law index
δ of the crucial events is given by the important relation

δ =
1

µ− 1
. (5)

Note that the latter scaling dominates asymptotically in the time
due to Equation (5) resulting in δ > 0.5 when the condition 2 <
µ < 3 applies (Grigolini et al., 2001). When 1 < µ < 2 crucial
events yield the scaling δ = (µ − 1), but the EEG time series
studied in this paper and the subordination theory of section 3,
adopted to explain their complexity, show that we need to focus
on µ > 2.

To be explicit, since in this paper as far as the scaling detection
is concerned, we adopt the same procedure as that proposed by
Grigolini et al. (2001), we generate a fluctuation ξ (t) holding the
value 1 when an event, either crucial or Poisson, occurs, and the
vanishing value when no event occurs. The diffusion variable x(t)
is obtained from the following equation of motion

d

dt
x = ξ (t). (6)

Using a moving window of size t, we generate a PDF p(x, t) and
the Shannon information entropy

S(t) = −

∫ +∞

−∞

dxp(x, t)ln[p(x, t)]. (7)

The PDF constructed from the diffusion process has the scaling
form

p(x, t) =
1

tδ
F

( x

tδ

)

. (8)

Then inserting Equation (8) into Equation (7), after some algebra
yields

S(t) = A+ δln(t), (9)

where A is the entropy constant

A ≡ −

∫ +∞

−∞

dyF(y)ln[F(y)]. (10)

To make this treatment compatible with the subsequently
discussed arguments about intermediate asymptotics, we rewrite
Equation (9) in the following way

S(t) = C + δ(t)ln(t), (11)

where C denotes a constant that may differ from A, when, as we
find herein, the proper complexity scaling emerges only in the
region of intermediate asymptotics.

It is important to stress that a significant advance of the
theoretical justification of Equation (11) based on an extension of
the theory of SOC, incorporating complexity in the time domain,
is called SOTC (Mahmoodi et al., 2017, 2018a,b). This new theory
provides a rationale for the crucial IPL indexµ. In fact, according
to SOTC the processes of spontaneous self-organization, in
general, and especially those behind the statistical analysis used
herein, namely physiological processes, naturally evolves to a
state generating the crucial events defined in section 1. These
events manifest scaling in the intermediate time domain, called
intermediate asymptotics (Goldenfeld, 1992; Barenblatt, 1996).
As a consequence of temporal complexity emerging in the
intermediate time scale, S(t) is not a straight line when expressed
as a function of ln(t). As shown in Figure 2, entropy is a straight
line in the intermediate time region and its slope is used to
define the statistics of crucial events occurring within that region
through the IPL index µ, established by Equation (5). This
data analysis technique has been labeled the diffusion entropy
approach (DEA).

To explain using an intuitive interpretation the intermediate
asymptotics, we notice that the short-time region corresponds to
the time scale where the self-organization is not yet perceived
by the interacting units. According to SOTC (Mahmoodi et al.,
2017), the intermediate time scale with temporal complexity
becomes more and more extended as the number of units
cooperatively interacting increases. However, the fluctuation
intensity becomes smaller and the long-time scale is a
sort of Poisson shoulder that, however, does not affect the
communication efficiency of the complex system, since that
efficiency is determined by the intermediate time region. The
exponential truncation favors the transmission of information,
because the flexibility of the complex system’s response to the
environment requires that the system explore a sufficiently high
number of crucial events (free-will states) to adapt itself to the
external influence. It has the effect of making the mean value of
the time interval between consecutive crucial events finite, even
in the case µ < 2. We remind the reader that the theoretical
mean time between crucial events is < τ >∝ 1/(µ − 2), if
µ > 2 and it is divergent if µ < 2 and the IPL PDF is not
truncated.

The events generated by SOTC are renewal, which explains
adopting Equation (5) for the connection between δ andµ, which
is based in fact on the renewal assumption (Grigolini et al.,
2001). We see from Figure 2 that the subject examined with DEA
procedure yields µ = 2.2.

It is convenient to stress the fact that the choice of the
RTP method, illustrated in Figure 1, has been motivated by the
intuitive assumption that crucial events have physical effects.
With reference to the second panel from the top of Figure 1,
an event may be located in the short-time region of weak
fluctuations separating the ending of one sausage from the
beginning of another. Actually, the theoretical approach outlined
in section 3 suggests that many more crucial events exist, thereby
leading to a scaling method evaluation resting on a much larger
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FIGURE 2 | Detection of the scaling δ applying DEA to the diffusion process

generated by a random walker making a jump ahead when a crucial event

occurs.

number of crucial events, even if, as in the case of the earlier
mentioned method by the brothers Fingelkurts and co-workers
(Fingelkurts, 1998; Fingelkurts and Fingelkurts, 2005, 2006, 2008,
2015; Kaplan et al., 2005), not all the events adopted to generate
the diffusion process analyzed with DEA, are crucial.

3. SUBORDINATION

Establishing the statistics of the crucial events manifest in EEG
time series by means of the detection of RTP, unfortunately, does
not help us to build a bridge between the wavelike nature of
EEG time series and crucial events. To establish the theoretical
connection between the periodicity of EEG time series and
crucial events, we adopt the SOTC model of units with an
individual periodicity, for instance the SOTC model (Mahmoodi
et al., 2017) as applied to the Kuramoto model (Kuramoto, 1975).
This computationally demanding approach, however, has not yet
been converted into an analytical approach for bridging the gap
between waves and crucial events. We believe that the theoretical
remarks of this section are a fair account of this form of SOTC.

The research work done in the recent past on the brain with
the help of the RTPmethod led Allegrini et al. (2009) to conclude
that the crucial events are characterized by values of µ very close
to µ = 2, according to the prescription

S(ω) ∝
1

ω3−µ
. (12)

The derivation of this spectrum was done by other researchers
(Margolin and Barkai, 2006; Lukovic and Grigolini, 2008), who
assumed that the time regions between consecutive crucial events
are filled with either +1′s or −1′s, values generated by a coin
tossing algorithm. However, no direct evaluation of the EEG
spectrum was done. Herein we see that if the EEG spectrum

is evaluated, the frequency region for ω → 0 is affected by
strong fluctuationsmaking it difficult to assess the IPL property of
Equation (12). However, we are able to shed light into the overall
structure of the spectrum and we argue that this is compatible
with Equation (12).

To establish a bridge between crucial events and periodicity, as
done by Ascolani et al. (2009), we make an extension of the well
known Continuous Time RandomWalk (CTRW) (Montroll and
Weiss, 1965; Sokolov, 2000; Shlesinger, 2017). The subordination
to a coherent process with frequency � is a mathematically
simple way of simulating a genuine process of self-organization.
We have a clock, the hands of which move clockwise with
frequency� from noon to noon, making TRR clicks with the time
interval1t between one click and the next. Thus,

� =
2π

TRR1t
. (13)

The crucial events, some of which have been detected by Allegrini
et al. (2010) through the search of RTP, are imbedded into
this regular motion, by assuming that the time interval between
consecutive clicks is derived from a waiting-time PDF ψ(τ ) with
the temporal complexity of Equation (1). The explicit analytical
form of ψ(τ ) is

ψ(τ ) = (µ− 1)
Tµ−1

(τ + T)µ
, (14)

corresponding to the survival probability

9(τ ) =

(

T

τ + T

)µ−1

. (15)

The parameter T serves the purpose of properly defining the
short-time scale and setting the normalization condition9(0) =
1. The temporal complexity becomes important at times τ ≫ T.

This procedure of infusing the original perfect coherence of
the clock with complex randomness establishes a bridge between
waves and crucial events. This has the effect of turning the
frequency � into an effective frequency �eff , thereby modeling
a process of self-organization of interacting oscillators, each of
which is characterized by its own frequency, into a collective
homeodynamic process.

According to the theoretical treatment of Lambert et al. (to be
submitted), the effective frequency is, valid for µ > 2,

�eff =
�(µ− 2)

T
. (16)

This theoretical prediction suggests, in agreement with Figure 3,
that the frequency peak is evident forµ > 2 and that, in addition,
it also depends on the parameter T of the waiting-time PDFψ(τ )
of Equation (14). This property is used in section 4 to shed light
into themeaning of the HHT components of themethod adopted
to detect RTP events Huang and Wu (2008). In the range µ > 2,
when both the first and second moment of τ are finite, �eff = �

(Lambert et al., to be submitted).

Frontiers in Physiology | www.frontiersin.org 5 August 2018 | Volume 9 | Article 1174

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bohara et al. Bridging Waves and Crucial Events

FIGURE 3 | Power Spectra obtained averaging over 300 trajectories with

numerical parameters T = 0.5 and the regular oscillation before subordination

has the frequency � = 0.77. The inlay denotes the calculations for IPL indices

spanning a range from 1.1 to 10.

This illustration of subordination makes it evident that crucial
events are not only at the border between consecutive pieces of
the sausage but the oscillatory-like behavior within a sausage
hosts crucial events. It is surprising that the same conclusion
has been achieved by the Fingelkurts brothers (Fingelkurts and
Fingelkurts, 2005) who wrote “By varying the parameters of this
technique it is possible to obtain the segments corresponding to a
more or less detailed structure of the EEG/EMG. Therefore, there
are prospects for the description of the structural EEG/EMG
organization as a hierarchy of segmental descriptions on different
time-scales. We make the conjecture that this may have the effect
of establishing a correlation between the non-crucial events,
thereby contributing a significant theoretical advance on the issue
of cognition, and the effects of meditation on the dynamics of
the brain (Tuladhar et al., 2018). This observation suggests that
it should be possible to design a method of statistical analysis for
extracting information from a larger set of crucial events even if
they remain invisible.

Figure 3 illustrates spectra generated by surrogate sequences
obtained using the subordination method with 1t = 1. We
keep the frequency � fixed and change the IPL index µ. We
note that a spectrum consists of three parts. There exists a peak
corresponding to the effective frequency �eff that shifts to the
right upon decreasing µ and disappears for µ < 2. At the left of
the�eff peak the slope of the spectrum β is determined to be

β = 3− µ. (17)

We see that the spectrum becomes flat at µ = 3 and remains flat
for higher values of µ, as clearly shown in Figure 3.

Note that due to the average of many realizations, which is not
possible with real EEG time series, the region of low frequency is
regular and is not affected by the fluctuations that would appear
when evaluating the spectrum with only one time series. For this
reason, the adoption of surrogate time series makes it possible for

FIGURE 4 | Power Spectra derived with permission from Aburn et al. (2012)

under the terms of the Creative Commons Attribution License http://

creativecommons.org/licenses/by/3.0/.<p>denotestheneuronfiringrate.

us to prove that, as expected, subordination is compatible with
the emergence of 1/f −noise in the ideal case µ = 2.

Let us now discuss the spectra depicted in Figure 4, which
was obtained by Aburn et al. (2012) by approaching the Hopf
supercritical bifurcation in order to better understanding the
alpha rhythm of human EEG time series. We note that this
spectrum is similar to those of Figure 3 when µ ≥ 3. In other
words, this theory does not involve crucial events. It is interesting
to notice that for values of ω larger than the peak frequency,
the spectrum depicted in Figure 4 yields the slope β = 2. The
comparison between Figures 3, 4 indicates that subordination
creates a bridge between periodicity and crucial events, while
making the high-frequency region identical to that of a spectrum
with no crucial events.

When µ < 3 there exists a close connection between
periodicity and complexity, as indicated in Figure 3 showing
that the position of the periodicity bump is very sensitive to the
temporal complexity.

4. SPECTRA FROM RAW DATA

In this section we discuss the spectrum generated by real EEG
time series fluctuations as shown in Figure 5. We see that the
region of low frequencies is very erratic, due to the fact that,
as mentioned earlier, the use of only one time series makes
it impossible to generate a smooth curve. There exists an
indication of a frequency bump, generated by periodicity, and for
frequencies larger than this bump the slope β = 2 is rediscovered.
This real spectrum depends on a wide swath of frequencies.

To stress the multi-frequency nature of the real spectrum,
again using the HHTmethod (Huang andWu, 2008) we evaluate
six intrinsic mode functions of the EEG raw data corresponding
to the spectrum of Figure 5. These different components of the
whole signal correspond to six different frequencies of decreasing
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value. They are the frequencies: 26.84; 18.97 hz, 10.59 hz; 5.406 hz
and 2.438 hz and 1.031 hz, which are shown in Figure 6.

In Figure 7 we use the subordination prescription described
in section 3, with 1t given by an inverse sampling frequency of
real data (1t = 1

2048 sec) to generate surrogate spectra, helping to
clarify the meaning of the different spectra in Figure 6. We assign
to themonochromatic frequency 62 hz with six different values of
the parameters T, mimicking the dominant frequencies of the six

FIGURE 5 | Power Spectrum obtained from raw EEG time series data.

HHT components illustrated in Figure 6. The real spectrum of
Figure 5 is interpreted as a superposition of the spectra illustrated
in Figure 7. In fact all these spectra share the property β = 3−µ
in the low frequency region and the property β = 2 in the high
frequency regions and intermediate region where the change of
slope occurs is significantly broader than in the monochromatic
case.

5. METHOD OF STRIPES

The stripe method was originally adopted to detect the scaling
of crucial events hosted by heartbeats (Allegrini et al., 2002) and
was not used in the case of EEG time series in all likelihood
because of the lack of a proper theoretical understanding of the
connection between crucial events and periodicity. The same
method was more recently applied by Bohara et al. (2017) to
establish a connection between the occurrence of crucial events
and multifractality.

In section 3 we used an intuitive illustration of the process of
self-organization, based on subordination that affords theoretical
support for the adoption of the method of stripes. The central
idea is that the RTPmethod detects only a small fraction of crucial
events, whereas real EEG time series and subordination theory
with them, host a much larger number of crucial events, even if
they remain invisible.

Figure 8 shows how the method of stripes works. As is well
known (Coles and Rugg, 1995), an EEG time series captures
Event Related Potentials (ERPs) which, in turn, measures the rate
of firing neurons. The method divides the vertical axis into many

FIGURE 6 | Power Spectra of the same subject with different HHT frequency components.
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FIGURE 7 | Power Spectra generated using the data recorded in Figure 6 according to subordination of section 3.

FIGURE 8 | Illustration of the method of the stripes. The size of stripes is

1E = 1/30 µv.

stripes of size 1E, here assumed to have the value 1E = 1/30
µv, and we record the times at which the raw signal crosses the
line separating two adjacent stripes. The level of the stripe is
determined by the number of neuron firings at a given time, and
we record for how long that firing rate remains constant.

The change from one firing rate to another is an event.
Of course this event is not necessarily a crucial event. As
a consequence, the time interval between consecutive events
cannot be used to define the important parameter µ. This lack of
precision in determining the occurrence of crucial events applies
also to the RTP method. Let us callNT the total number of events
detected, Nc the total number of (unknown) crucial events and
Nnc the total number of non-crucial, possibly Poisson events.
The intermediate asymptotics, revealing the complex scaling δ of

FIGURE 9 | DEA applied to the diffusion process generated by the

stripe-crossing events.

Equation ( 5), begins earlier upon increase of the ratio

rc ≡
Nc

NT
. (18)

In both cases, the adoption of the DEA method is essential. In
fact, after recording events with the method of stripes, as done
with the method of RTP, we adopt the prescription of Grigolini
et al. (2001).We again turn the sequence of detected events, either
crucial or not, into a diffusion signal x(t) by making the random
walker jump ahead by a fixed quantity, equal to 1. As pointed out
in section 2, the non-crucial events generates a diffusion process
with scaling δ = 0.5 and the crucial events, on the contrary,
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generate the scaling index of Equation (5) that for µ > 2 is
larger than 1/2, thereby making it possible for DEA to establish
the correct scaling of Equation (5) at long times.

The result illustrated in Figure 9 shows that the scaling
detected with this method is virtually identical to the result
obtained with the use of RTP method. In both cases the complex
scaling of Equation (5) appears in the intermediate time regime,
but it appears that the present method is more accurate, since
the slope covers three decades of scale, see Figure 9, while the
RTP method is limited to only two decades (Figure 2). This is a
clear indication that the method of stripes makes the ratio rc of
Equation (18) significantly larger than the RTP method.

6. CONCLUDING REMARKS

The adoption of the RTP method makes it easy to establish the
non-local nature of the brain criticality (Allegrini et al., 2010).
This is a consequence of the fact that it is sufficient to count
how many electrodes undergo RTP’s at the same times. However,
the detailed illustration in section 2 shows that the procedure to
establish the occurrence of an RTP is not straightforward and we
conjecture that it may be replaced by the adoption of a cross-
correlation function between the EEG time series generated by
different electrodes. But this remains to be verified.

6.1. Self-Organized Temporal
Criticality(SOTC)
The sausage-like structure of the model studied by Bologna et al.
(2010) has a surprising similarity to the second panel from the top
of Figure 1. This is not accidental. In fact, the theory adopted by
(Bologna et al., 2010) is a phase transition obtained by the control
parameter K taking on the critical value K = 1.5. At criticality
the oscillators are no longer independent of one another and
as a result of highly correlated motion they generate a regular
non-harmonic oscillation.

The SOTC is a new form of self-organization studied
by Mahmoodi et al. (2017, 2018b), which establishes a
significant difference between critical slowing down and
temporal complexity. In the case of a conventional form of
criticality, where the control parameter is finely tuned so as to
generate phase transition (Beig et al., 2015) the two forms of
complexity can be mistakenly judged to be equivalent. When
a system at criticality is assigned a distribution different from
the equilibrium distribution, the system is expected to relax
back toward equilibrium with infinitely slow motion (critical
slowing down). When the number of units is finite the mean field
fluctuates around the mean value and the time interval between
consecutive origin re-crossings, temporal complexity, may be as
slow as critical slowing down (Beig et al., 2015).

In the case of SOTC the time necessary to evolve toward
the condition of temporal criticality is finite (Mahmoodi et al.,
2017, 2018b). In the special case studied by Bologna et al. (2010),
another form of criticality generated by the fine tuning of the
control parameter, but combining crucial events with periodicity,
the mean field does not have regular oscillations: the intensity
of these oscillations and their frequency are modulated in time

generating the sausage-like structure of the second panel from
the top of Figure 1. SOTC of a set of cooperating oscillators is
expected to spontaneously lead to the same qualitative results.
Subordination theory affords a simple way of mimicking this
process of organization, introducing ad hoc the crucial events,
which actually are the results of a spontaneous self-organization.

The processes of phase transitions are characterized by IPL
PDFs with indices expressing the universality of criticality.
The construction of renormalization group theory made it
possible to determine without a detailed knowledge of the micro-
interactions of the system, the scaling nature of phase transitions.
In the case of the brain the micro-units, whose dynamics depart
from the erratic behavior of independent units to collective
behavior at criticality, are neurons. However, in spite of the
frequent use of the term SOC these models rest on tuning
a control parameter to a critical value that establishes global
properties making the micro-dynamics unimportant in favor the
macro-dynamics of criticality. If a neuron fires all the neurons
linked to it makes a step ahead toward the firing level. Criticality
is a condition generated by a suitable value of the control
parameter that establishes a complex dynamics characterized
by temporal complexity, namely, the crucial events defined in
section 1. An interesting example of “Self-organized criticality”
is given by Levina et al. (2009). They propose a very interesting
model generating super-criticality and sub-criticality as well as
criticality, a puzzling result because we expect that a process
of self-organization may lead only to criticality. We make the
conjecture that SOTC may realize this wide set of condition
depending on how the process of self-organization is realized.

6.2. Future Research Work
The results of this paper suggest promising directions to
establish homeodynamics as a form of genuinely spontaneous
organization. SOTC (Mahmoodi et al., 2017) affords the
prescription to turn a set of independent Poisson units,
fluctuating between the values ξ = 1 and ξ = −1, into a self-
organized system, thereby yielding, with a finite number of units,
temporal complexity and crucial events. It is important to stress
that, as shown by Mahmoodi et al. (2017), SOTC is a generator
of complexity in line with the important concept of intermediate
asymptotics of Barenblatt (Goldenfeld, 1992; Barenblatt, 1996).
This is made evident in Figures 2, 9. The deviation of the scaling
in both the short-time and long-time regions from the complex
prediction of Equation (5) is not due to the numerical inaccuracy
of DEA. Rather it is a surprising benefit of this technique of
analysis that does not rely on the evaluation of the second
moment of the PDF p(x, l) of Equation (8), but is a direct
consequence of the general scaling behavior of the PDF. Not only
is the PDF not forced to be Gaussian, its exact function form is
not important.

These remarks lead us to conclude that the subordination
theory used in this paper is an appropriate way to mimic the self-
organization of units characterized by periodicity, as manifest in
their spectra.

The comments we make in section 3 on the surprising
agreement between the physical meaning of SOTC and the
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architectonic structures of Fingelkurts and Fingelkurts (2005)
deserves further study. In our view, the interesting review
paper (Fingelrkurts et al., 2012) provides directions on how to
approach the challenging problem of cognition especially if it is
supplemented by the contribution that emotion is expected to
afford to it (Tuladhar et al., 2018), presumably through the proper
action that meditation and emotion may exert on the non-crucial
events.
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