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Introduction: Patients with schizophrenia show cognitive deficits that are evident
both behaviourally and with EEG recordings. Recent studies have suggested that
non-linear analyses of EEG might more adequately reflect the complex, irregular, non-
stationary behavior of neural processes than more traditional ERP measures. Non-linear
analyses have been mainly applied to EEGs from patients at rest, whereas differences
in complexity might be more evident during task performance.

Objective: We aimed to investigate changes in non-linear brain dynamics of patients
with schizophrenia during cognitive processing.

Method: 18 patients and 17 matched healthy controls were asked to name pictures.
EEG data were collected at rest and while they were performing a naming task. EEGs
were analyzed with the classical Lempel-Ziv Complexity (LZC) and with the Multiscale
LZC. Electrodes were grouped in seven regions of interest (ROI).

Results: As expected, controls had fewer naming errors than patients. Regarding EEG
complexity, the interaction between Group, Task and ROI indicated that patients showed
higher complexity values in right frontal regions only at rest, where no differences in
complexity between patients and controls were found during the naming task. EEG
complexity increased from rest to task in controls in left temporal-parietal regions,
while no changes from rest to task were observed in patients. Finally, differences in
complexity between patients and controls depended on the frequency bands: higher
values of complexity in patients at rest were only observed in fast bands, indicating
greater heterogeneity in patients in local dynamics of neuronal assemblies.

Conclusion: Consistent with previous studies, schizophrenic patients showed higher
complexity than controls in frontal regions at rest. Interestingly, we found different
modulations of brain complexity during a simple cognitive task between patients and
controls. These data can be interpreted as indicating schizophrenia-related failures to
adapt brain functioning to the task, which is reflected in poorer behavioral performance.
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Highlights:

- We measured classical and multiscale Lempel-Ziv Complexity (LZCN and MLZC) of the
EEG signal of patients with schizophrenia and controls at rest and while performing a
cognitive task.

- We found that patients and controls showed a different pattern of brain complexity
depending on their cognitive state (at rest or under cognitive challenge).

- Our results illustrate the value of the MLZC in the characterization of the pattern of brain
complexity in schizophrenia on function of frequency bands.

- Nonlinear methodologies of EEG analysis can help to characterize brain dysfunction in
schizophrenia.

Keywords: schizophrenia, EEG, non-linear analysis, multiscale lempel-ziv complexity, naming task

INTRODUCTION

Patients with schizophrenia suffer from cognitive impairments
in a wide number of domains that include attention, language,
working memory, episodic and semantic memory (Heinrichs and
Zakzanis, 1998; Addington et al., 2003). However, many studies
have shown evidence that the cognitive deficit that underlies
schizophrenia is not generalized, but specific to some functions
(e.g., semantic memory, working memory) (Cohen and Servan-
Schreiber, 1992; Goldman-Rakic, 1994; Kerns and Berenbaum,
2002; Jonides and Nee, 2005). In addition, there have been many
attempts to specify the brain dysfunctions related to the specific
cognitive deficits by analyzing EEG signals. Electrophysiological
studies have traditionally used methodologies of linear analyses,
such as Event-Related Potentials (ERP) or power analysis (Kiang
et al., 2007; Hughes et al., 2012). The absence of abnormalities of
the raw EEG in patients with schizophrenia has led researchers
to study quantitative parameters of EEG (QEEG). Spectral and
coherence analyses of EEG are commonly used in the studies
of QEEG abnormalities in schizophrenia (see Hughes and John,
1999).

Recently, new approaches to the study of EEG signals
have been developed from non-linear system theories that can
be helpful to understand brain dysfunctions associated with
schizophrenia. Non-linear measures might render more adequate
to reflect the complex, irregular and non-stationary behavior
of neural processes. Some have suggested that non-linear
approaches may be more powerful than classical lineal analyses
to relate brain patterns of activation to cognition (e.g., Pereda
et al., 2005; Klonowsky, 2009). EEG signals are the result
of the non-linear combination of electrical activity generated
by interacting oscillators from the cerebral cortex and other
biological sources such as muscles. Consequently, the EEG signals
have complex non-linear structures when looking at them in the
time dimension. Most non-linear analyses have tried to quantify
the complexity of EEG signals and to relate it to functional
aspects of the neural networks. Thus, EEG complexity has been
related to the integrity of neural connectivity, and with the
number of distinct generators contributing to a given EEG signal
(e.g., Lutzenberger et al., 1995). Hence, the more complex the
signal is, the wider the distribution of cortical activation related
to it (e.g., Mölle et al., 1999). Complexity is also related to
the synchrony of oscillations of the generators. Synchronization

between oscillators has been proposed as a general mechanism
for information exchange within neural circuits (e.g., Engel
et al., 2001; Fries, 2005). In general, it has been shown that
synchrony is negatively related to complexity (Escudero et al.,
2015; Ghanbari et al., 2015). While this relationship is far from
being perfect (Ibáñez-Molina et al., 2018), highly synchronized
signals (e.g., epileptic seizures) give rise to low complexity
values (Radhakrishnan and Gangadhar, 1998). In sum, and
although the exact meaning of complexity is still a matter of
debate, complexity seems to be related to a number of variables:
connectivity of neural networks, number of oscillators involved
in the generation of signals, and synchrony of oscillations.
Hence, for a given cognitive function, complexity reflects key
functional aspects of the underlying neural sources. In general,
high levels of complexity in the EEG recording indicate that
the neural generators of the signal tend to be widely distributed
and desynchronized. On the contrary, a low level of complexity
indicates that the neural generators tend to be local and/or
synchronized.

A number of complexity measures have been developed,
some of which [the correlation dimension (D2), the Lyapunov
exponent (L1), the Lempel-Ziv complexity (LZC), and the
multiscale entropy analysis (MSE)] have been applied to EEGs
from psychiatric patients (Sohn et al., 2010; Fernández et al.,
2011; Bachiller et al., 2014). However, there are important
differences among these methods. Thus, for example, while D2
and L1 are chaos-based estimates of complexity, LZC is based
on algorithmic complexity, and MSE quantifies entropy over
multiple time scales. More relevant, D2 and L1 require a large
amount of EEG data, whereas LZC and the MSE are suitable for
short and non-stationary time series.

Most of these measures quantify the degree of randomness
or degrees of freedom of a system. Indeed, at a conceptual
level, complexity has been often interpreted as irregularity,
unpredictability, desynchrony or randomness (see Stam, 2005,
for a review). However, it has been pointed out that complexity
should not be equated to randomness, but to an intermediate
state between randomness and order (Tononi and Edelman,
1998; Stam, 2005; Yang and Tsai, 2013). Yang and Tsai (2013) have
proposed that brain complexity underlies the behavioral ability to
adapt to the constantly changing environment. From this view,
an abnormal brain complexity would give rise to either highly
ordered or highly random behavioral patterns. Both regular and
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random patterns can be indicative of pathology and represent a
deviation from complexity (Goldberger et al., 2002; Yang et al.,
2015). This idea is supported by evidence showing lower values
of brain complexity in some disorders (e.g., Alzheimer’s disease,
Stam et al., 2009), whereas higher values of complexity are found
in other disorders (i.e., schizophrenia) or during normal aging
(Yang and Tsai, 2013).

Over the last years non-linear analyses have proven their
utility to detect changes in brain complexity in some mental
disorders (Yang and Tsai, 2013), with most studies focused on
schizophrenia. (Fernández et al., 2011; Fernández et al., 2013).
Some of these studies have found that patients with schizophrenia
exhibit higher complexity than healthy controls in their EEG
signals (Li et al., 2008; Takahashi et al., 2010; Fernández et al.,
2011), although decreased complexity values have also been
reported (Hoffmann et al., 1996; Lee et al., 2001; Akar et al.,
2016). These apparently inconsistent findings might be explained
by a number of confounding variables, such as the nature of the
complexity estimates employed or the condition under which
patients are tested (e.g., rest, closed eyes or active processing).
Additionally, a relevant issue is that complexity is modulated
by age. While complexity increases with age in healthy people,
the opposite trend has been observed in patients with a mental
disorder (Fernández et al., 2011; Méndez et al., 2012).

In a recent review, Fernández et al. (2013) proposed that
three main variables seem to modulate EEG complexity in
schizophrenia: medication, age, and symptomatology. Thus,
increased complexity in schizophrenia is found in those studies
that include young patients without medication and with
a predominance of positive symptoms. In a previous study
(Fernández et al., 2011), these authors reported increased
complexity in patients with schizophrenia compared with
a control group. However, whereas complexity positively
correlated with age in the control group, patients with
schizophrenia exhibited the opposite pattern (decreasing
complexity with age). With regard to medication, some studies
have shown that antipsychotics reduce complexity (as measured
with MSE) in patients with schizophrenia (Takahashi et al.,
2010), and that antidepressants reduce the usually high values of
complexity in depression (Méndez et al., 2012).

Finally, EEG complexity also depends on the recording
conditions. Several studies have reported that complexity
increases in healthy participants while performing cognitive
tasks (arithmetic, visual and reading tasks, see Stam, 2005, for
a comprehensive review). On the contrary, Ibáñez-Molina and
Iglesias-Parro (2014) have shown that EEG complexity is lower
when healthy participants attend to visual or auditory stimuli
than when they attend to their own thoughts (mind wandering).
Furthermore, whether complexity increases or diminishes with
cognitive demands might rely on the specific brain networks
involved in the cognitive task.

In schizophrenia, most studies have focused on EEGs from
patients at rest (Fernández et al., 2011), though exceptions
exist (Kirsch et al., 2000; Li et al., 2008; Bachiller et al., 2014).
Kirsch et al. (2000) compared EEG complexity (D2) of patients
and controls at rest and while performing the continuous
performance test (CPT). While they did not find differences

between the two groups in the resting state condition, control
participants showed a decrease in complexity when performing
the cognitive task that was not observed in patients. According
to the authors of the study, the healthy controls, but not the
patients, were able to adjust their brain functioning to the
task demands. However, because they recorded EEG from a
unique electrode (in the Cz site), they were not able to explore
changes in complexity on different brain regions under cognitive
processing. Li et al. (2008) compared LZC of the EEG from
patients with schizophrenia and depression with that of controls
at rest and while performing a mental arithmetic task. Patients
with schizophrenia showed higher LZC than controls at most
electrodes. Both groups exhibited a decreased LZC during the
task, although this decrease was smaller in the control group.
More recently, Bachiller et al. (2014) compared spectral entropy
(SE) between a resting condition and a task condition (auditory
odd-ball task) in patients with schizophrenia and controls.
SE quantifies the degree of disorder in a signal. They found
that controls showed a decrease in entropy when performing
the cognitive task, compared to rest, at parietal and central
brain regions, whereas patients showed a reliable lower decrease
than controls. Similar to Kirsch et al. (2000), Bachiller et al.
(2014) failed to find differences in brain complexity between
patients and controls in the resting state condition. On the
contrary, Carlino et al. (2012) found a significant increase in EEG
complexity (D2) during “active” conditions (eyes open, counting
forward and counting backward conditions) compared to an
eyes-closed resting condition, but only in the control group. At
rest, however, the authors found greater complexity in patients
than in controls. In sum, the evidence regarding EEG complexity
while participants are performing cognitive tasks is mixed. It is
possible that differences in the cognitive demands of the tasks,
or in the non-linear measures used in different studies, underlie
these divergences.

In the present study we aimed to gain further insight into
how brain complexity changes under cognitive demands in
patients with schizophrenia and healthy controls. To this end,
we recorded EEGs from participants with schizophrenia and
healthy controls at rest and while they performed a picture
naming task. This cognitive task was selected for two reasons.
First, it is a short and easy task wherein participants have to
attend and name aloud visually presented stimuli. In addition,
and more relevant, the picture-naming task has shown to be
useful as a measure of semantic memory impairments in patients
with schizophrenia (Soriano et al., 2008), which have been widely
reported in this population (Manschreck et al., 1988; Kerns
and Berenbaum, 2002). Specifically, here we compared EEG
complexity in patients and controls in a resting state condition
(seating and with open eyes) and while they were performing
the naming task. Complexity was estimated with the classical
Lempel-Ziv complexity analysis (LZCN) and the modified LZC
to measure different frequency bands (Ibáñez-Molina et al.,
2015). This modified measure was termed Multiscale Lempel-Ziv
complexity (MLZC) and we selected it because of its several
advantages over other non-linear measures: namely, it can be
applied to short time series and non-stationary and noisy signals.
In addition, the MLZC measure allows for the exploration of the
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signal at different time scales. Previous results have shown that
the classical LZC neglects rapid components of the EEG signals
(Ibáñez-Molina et al., 2015; Kalev et al., 2015). The Multiscale
LZC, however, allows for a better characterization of EEG
complexity in different frequency bands. Most rapid components
of the EEG signals reflect local functional configurations in the
cortex, whereas slow oscillations reflect more long-range cortical
interactions (Buzsáki and Draguhn, 2004). However, a word
of caution is necessary regarding the causal role of fast and
slow rhythms, since slow oscillatory activity could reflect the
long-range coordination of faster components or the operation
of a single mechanism that generates the specific rhythm. Despite
this, the MLZC permits a better characterization of the signal
in terms of its oscillatory components and, because it is more
sensitive to rapid rhythms, it might serve as a more suitable tool
to detect local neural interactions than the classical LZC.

Based on previous results (Li et al., 2008; Takahashi et al.,
2010; Fernández et al., 2011), we expected to find higher
EEG complexity in patients, compared to controls, in the rest
condition. We also hypothesized that complexity would vary
in healthy controls while performing the naming task. More
interesting, and given that patients with schizophrenia usually
show poorer performance in naming tasks (Soriano et al.,
2008), we aimed to explore whether their EEG complexity was
modulated by the fact of performing the cognitive task. Finally,
we aimed to examine through the MLZC whether differences
in complexity between patients and controls depend on specific
components (slow or rapid) of the EEG signal.

MATERIALS AND METHODS

Participants
The patients group was composed of 18 participants attending the
Mental Health Day Hospital of the St Agustín Hospital in Linares.
In their clinical record, they were diagnosed with schizophrenia,
schizophreniform or schizoaffective disorder according to
DSM-IV criteria. The patients’ diagnosis was confirmed through
a clinical interview performed by the psychiatrist or clinical
psychologist in charge of the patient. In addition, the Spanish

TABLE 1 | Demographic and clinical characteristics of the study sample means
(and standard deviations).

Patients (n = 18) Control (n = 17)

Age, years 35.26 (8.96) 29.6 (9.42)

Females 3 6

Education 2.39 (0.21) 2.59 (0.22)

Illness duration, years 13.21 (9.47) −

GAF 45.44 (17) −

PANNS

Positive 14.9 (7.9) −

Negative 17.16 (6) −

General 34.05 (8.4) −

∗Groups did not differ significantly on any of the demographic characteristics
(p < 0.05).

version (Peralta and Cuesta, 1994) of The Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987) was used to
evaluate patients’ current clinical state; and some additional
demographic information was obtained (see Table 1). At the
time of testing, all patients were taking antipsychotic medications
with good compliance. All the patients were receiving atypical
antipsychotics, usually risperidone, olanzapine, or clozapine.
Before participating, they were informed of the task and study
and asked to sign informed consent forms in accordance with
Ethical Committee of the Hospital.

The control group was composed of 17 healthy adult
participants. They were recruited from the family members of the
clinical and research staff of the Unit. Care was taken that none
of the control participants had a history of psychotic disorders,
or family members with psychotic disorders. In addition,
none of the participants, control or patients, had a history of
substance use disorders, neurological illness, head trauma, or
mental retardation. There were no significant differences between
patients and controls in age or educational level (see Table 1).

The number of participants per group was decided on the
basis of the sample sizes considered in previous studies using
EEG recordings on schizophrenic patients (e.g., Sabeti et al., 2009;
Carlino et al., 2012).

Task
Eighty black and white simple pictures were employed as targets.
Three additional pictures were used for practice. The pictures
were selected from the norms of Puerta-Melguizo et al. (1998).
The order of the pairs was randomized. The STIM2 software was
employed to create the task. Each trial consisted of a sequence of
stimuli, which appeared in the center of a computer screen. First,
a mask was presented for 500 ms and then the picture target was
presented for 100 ms, the mask for another 14 ms, and finally
a tone that signaled the participant to respond. Thus, responses
were delayed, in order to avoid the influence of vocal movements
on the EEG recording. Participants were instructed to look at
the center of the screen and to name the pictures as soon as
they heard the tone. The experimenter registered the participants’
responses. The task took about 10 min.

EEG Recording
EEG data were obtained with a 36 Ag/Ag Cl electrodes cap
(QuikCap), and they were recorded with a sampling frequency of
1000 Hz (22 bits). EEG was recorded at rest and while the naming
task was being performed. Participants were always seated in
a chair opposite the computer screen. A Neuroscan SynAmps
32-channel amplifier was used for data acquisition. EEG data
were applied a band-pass filter with cut-off frequencies of 1 and
30 Hz. The reference electrode was the left mastoid. The influence
of eye movements on the EEG signal was eliminated through
ERPlab. Facial movements were recorded through 4 electrodes
and segments that included them were eliminated. EEG segments
corresponding to errors in the naming task were also excluded
from the analysis. Electrodes impedance was maintained below
5 k� for all participants. The rest segments were selected from
each participant right before the task with a length of 5× 104 ms.
EEG segments from the task of 2 × 103 ms were extracted
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after the appearance of each trial. They were selected so that the
influence of the verbal responses was not included.

Analyses
Behavioral Data
A response was considered an error when the participants
stuttered or hesitated in naming the target, or they misnamed
or failed to name the target. We compared error percentages in
patients and controls. Naming times were not analyzed, since
vocal responses were delayed in order to avoid muscle influences
on the EEG recording.

Classical LZC and Multiscale LZC
Lempel-Ziv Complexity measures complexity as defined by
Kolmogorov (1965); namely, the number of bits of the shortest
computer program that can generate the analyzed time series.
Thus, LZC tests the randomness of a sequence by searching for
patterns in the series (Lempel and Ziv, 1976). Recent studies
have presented it as an effective tool in analyzing biomedical
signals (Zozor et al., 2005), and in fact it has been widely
used to characterize the EEG of several mental and neurological
disorders (Nagarajan, 2002; Aboy et al., 2006). For the present
study we employed the classical LZC (LZCN ) and the MLZC
measure introduced by Ibáñez-Molina et al. (2015). The original
LZC measure estimates the complexity of a time series by a
binarization process in which the signal is transformed into
a binary sequence by using its median as a threshold. It has
been shown that this based-on-median binarization neglects fast
components of the EEG signals (Ibáñez-Molina et al., 2015).
The MLZC can be seen as a generalization of the original LZC
because it uses multiple thresholds for binarization. Thresholds
are median-based smoothed versions of the original signals. By
increasing the width of the window used for the smoothing,
the new versions include less and less fast components. Thus,
when used as thresholds for binarization they capture the missing
fluctuations in the original series. Hence, this procedure allows
us to capture signal variations at different time scales that make
it possible to obtain a spectrum of complexity ranging from fast
to low rhythms. That is, the MLZC considers both temporal and
spectral information from the EEG signals and, consequently, it
permits the evaluation of the complexity of the different brain
rhythms and the detection of complexity variations in a specific
oscillatory band. It is also possible to relate a specific threshold
of binarization to a particular frequency band on the basis of the
sampling rate of the signal, so that the width of the smoothing
procedure can be associated with a particular frequency. Thus,
for example, to capture a rhythm of 1 Hz with a sampling rate of
1000 Hz, we need at least a smoothing with a window length of
1000 points.

Formally, a 0-1 sequence {p(n)} = s(1), s(2)...s(N), was
created by comparison of each data point x(n) in the series with
its Td in the following way:

s(n) =
{

0 if x(n) < Td
1 if x(n) ≥ Td

(1)

The first binary sequence was constructed using the median of
the entire signal as Td (TdN). The other binarizations were created
using smoothed versions of the signal as Tds. Each data point x(n)
had an unique Tdw(n) which was calculated by:

Tdw(n) = median
(
x
(
n−

wk − 1
2

)
, ...., x(n), ...,

x
(
n+

wk − 1
2

))
,

n = 1+
wk − 1

2
, .....,N −

wk − 1
2

(2)

where W = [wk,. . .,wm], k = 1,. . .,m is the vector that contains
window lengths of the smoothing procedure.

In order to obtain the LZC spectrum of all {x(n)},
each Pw(n) was explored according to the following
steps:

(a) EEG segments were analyzed using segments of 2×103 ms
and averaged for each experimental condition. In the rest
condition, long segments (5 × 104 ms) were analyzed
using a moving window procedure. The moving window
length was 2 × 103 ms with an overlap of 2 × 102 ms.
In the task condition, EEG segments were time locked to
stimulus onset for each trial. Hence, at task, a total of 80
segments of 2× 103 ms were analyzed for each participant
and then averaged to obtain a final value of MLZC.

(b) LZC was calculated for each window by means of a
complexity counter Cw(n). During a left to right scan of a
given binary sequence, Cw(n) increased by one unit every

FIGURE 1 | Regions of interest used in the study (ROI). Colors indicate the
electrodes for each specific ROI. Left frontal (blue); Frontal (red); Right frontal
(purple); Left temporal-parietal (pink); Central (yellow); Right temporal-parietal
(orange); Parietal-occipital (green).
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FIGURE 2 | Means and SE (error bars) of Classical LZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

time a new subsequence of consecutive characters was
encountered.

(c) Each LZCw was obtained when Cw(n) values were
normalized with

LZC =
Cw(n)

n
log2 n

(3)

where the sub index w indicates the window length of the
smoothing that produced Pw(n). Note that LZCN will refer
to the median based LZC.

(d) The final LZCw value of each signal was calculated by the
average of all values obtained with the moving window
procedure.

RESULTS

Analyses of the behavioral accuracy data indicated that patients
committed more errors (10%, SD = 7.1) than controls (6%,
SD = 3.4), though the effect only approached to statistical
significance [F(1,33) = 7.47; MSE = 73.73; p = 0.07].
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FIGURE 3 | Means and SE (error bars) of fast rhythms MLZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

Regarding electrophysiological data, electrodes were grouped
in seven Regions Of Interest (ROI, see Figure 1). We conducted
three mixed ANOVAs with Group as the between participants
factor, and Cognitive State (rest vs. task) and ROI (1: left frontal
2: frontal 3: right frontal 4: left temporal-parietal 5: central
6: right temporal-parietal 7: parietal-occipital, see Figure 1),
as within-participant variables. Each ANOVA was conducted on
a specific range of scales. The first analysis was performed on
the classical LZCN measure (see Figure 2). The results of this
analysis showed a reliable main effect of ROI, [F(6,198) = 13.43;
MSE = 0.001; p < 0.01]; complexity was significantly lower

in medial Central and Frontal regions than it was in the
rest of regions. The effect of group did not reach statistical
significance (F < 1). However, more importantly, we found
a significant Group × Cognitive State × ROI interaction
[F(6,198) = 2.18; MSE = 0.0003; p < 0.05]. In order to
examine this second-order interaction, we analyzed separately
the effects of ROI and Cognitive State in each group. We found
a reliable ROI × Cognitive State interaction in the control
group [F(6,96) = 26.9; MSE = 0.0008; p < 0.05], which showed
that control participants exhibited greater complexity in Left-
Temporal-Parietal regions while performing the task than at
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FIGURE 4 | Means and SE (error bars) of slow rhythms MLZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

rest, [F(1,33) = 6.12; MSE = 0.001, p < .05]. On the contrary,
the ROI x Cognitive State interaction did not reach statistical
significance in patients (F < 1): there were no significant
differences in complexity between rest and task in the patients
group.

In addition, we compared the groups at rest and during
task performance: planed comparisons showed that in the rest
condition complexity was higher in patients than in controls in
Right-Frontal [(F(1,33) = 5.53; MSE = 0.002; p < 0.05)] and in
Right-Temporal-Parietal regions, even though this latter effect
was statistically marginal, [F(1,33) = 3.53; MSE = 0.002; p = 0.06].
During task performance, however, there were no significant
differences between patients and controls (F < 1).

The second ANOVA was carried out to investigate the
complexity of the signals in scales ranging from LZC21 to
LZC101 (frequency bands > 10 Hz), since we aimed to
evaluate the complexity predominantly associated with fast
rhythms and low amplitudes (See Figure 3). As in the previous
analysis, the main effect of ROI was reliable [F(6,198) = 7.25;
MSE = 0.0003; p < 0.051], and it reflected that complexity
was lower in Central Region than in the rest of regions. The
effect of Group [F(1,33) = 1.22; MSE = 0.0257; p = 0.28]
and the interactions between ROI and Group (F < 1), and
Cognitive State and Group [F(1,33) = 2.1; MSE = 0.0127;
p = 0.16] did not reach significance, but the interaction of
Group × Cognitive State x ROI, F(6,198) = 2.1; MSE = 0.0001;
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p = 0.05 did. In order to examine this second-order interaction,
we analyzed the effects of ROI and Cognitive State in each
group. Again, we found a significant ROI × Cognitive State
interaction in the control group [F(6,96) = 2.8, MSE = 0.0002;
p < 0.05], while the ROI × Cognitive State interaction was
not significant in the patients group (F < 1). In addition,
planned comparisons showed higher levels of complexity
in the rest condition for patients than for controls in
Left-temporal-parietal [F(1,33) = 4.41; MSE = 0.002; p < 0.05],
and Right-temporal-parietal [F(1,33) = 4.13; MSE = 0.002;
p = 0.05] sites, while no effects were found in the task condition
(all ps > 0.5).

The third analysis (see Figure 4) was applied to scales from
LZC121 to LZC201 to explore slow rhythms (frequency bands in
an approximate range of 5–8 Hz). It revealed a main effect of ROI
[F(6,198) = 15.95; MSE = 0.0004; p < 0.01] and a similar pattern
of complexity across regions to that found in previous analyses;
The effect of Group (F < 1), and the interactions between
ROI and Group [F(6,198) = 1.80; MSE = 0.0004; p = 0.10],
and Cognitive State and Group [F(1,33) = 2.07; MSE = 0.0117;
p = 0.16] did not reach significance, but the interaction of
Group x Cognitive State x ROI was significant [F(6,198) = 2.19;
MSE = 0.0002; p < 0.05]. Interestingly, the pattern of results
differed from that of the fast scales, indicating that the complexity
of EEG signals was similar in patients and in controls in the rest
condition (F < 1), but complexity in patients tended to be lower
than in control participants in the task condition. Although this
tendency did not reach statistical significance, it was marginally
significant at the central region [F(1,33) = 3.18; MSE = 0.003;
p = 0.08].

Finally, and because the ANOVAs failed to capture the
rest to task changes in complexity in patients and controls
(see Figures 2, 4 in nearly all the regions), we explored this
general pattern by categorizing the rest vs. task changes as ‘up’
(Task-Rest > 0) or ‘down’ (Task-Rest ≤ 0), and then performing
a non-parametric chi-squared test on each region. The results of
this analysis (see Table 2) revealed that the differences between
the groups in complexity changes from rest to task are especially
evident in fast rhythms.

TABLE 2 | Non-parametric analyses of complexity changes from Rest to Task in
patients vs. controls on each region of interest.

LZCN χ2 (gl = 1),
p-value

LZC21−101 χ2

(gl = 1), p-value
LZC121−201 χ2

(gl = 1), p-value

FL 3.54, 0.06 1.37, 0.24 2.44, 0.12

F 4.80, 0.03∗ 1.37, 0.24 0.77, 0.38

FR 4.80, 0.03∗ 3.44, 0.06 1.45, 0.23

TPL 0.31, 0.58 3.73, 0.05 1.70, 0.19

C 0.72, 0.39 6.41, 0.01∗ 3.73, 0.05

TPR 2.62, 0.10 6.56, 0.01∗ 0.72, 0.39

PO 0.70, 0.40 4.06, 0.04∗ 2.91, 0.09

∗Groups differed significantly in the Task – Rest qualitative variable (p < 0.05). Task
vs. Rest complexities were characterized by a categorical variable with the value
‘up’ in the case that the transition from rest to task was positive, and the value
‘down’ if the transition was negative. Differences between the control and patients
groups were analyzed for each region of interest by χ2 tests.

DISCUSSION

EEG complexity is being increasingly used to explore brain
dynamics in healthy and pathological states, since complexity
indexes might more adequately reflect the complex, irregular,
non-stationary behavior of neural processes than more
traditional ERP measures. The present work aimed to explore
possible differences in EEG complexity between patients with
schizophrenia and controls under conditions involving different
cognitive demands. Overall, our results showed two important
patterns: (1) patients exhibited higher complexity in frontal
regions than control participants at rest; and (2) while control
participants showed an increment in complexity from rest to
task, there were no reliable differences in complexity between
rest and task in the patients group.

Regarding the higher complexity in frontal regions for patients
at rest, our findings are in accordance with those from most
recent studies with patients with features similar to the ones
displayed by our patients’ sample. Thus, although there are
some divergent results (Li et al., 2008; Takahashi et al., 2010;
Fernández et al., 2011; Akar et al., 2016), higher complexity
has been mainly observed in young, drug-naive patients with
active symptomatology, whereas lower complexity than controls
has been observed in studies with medicated chronic patients
(Fernández et al., 2013). Because our patients were recruited from
a Mental Health Day Hospital, although they were medicated,
most of them were young adults with active psychotic symptoms
(see Table 1). In addition, higher complexity at rest has also been
found in other mental disorders such as depression (Méndez
et al., 2012), while lower complexity has been found in Alzheimer
Disease (AD) (Jeong, 2004; Stam et al., 2009). As we mentioned,
higher complexity values would reflect more and more widely
distributed neural nodes oscillating at a lower synchrony. Hence,
high complexity in schizophrenia (and other severe mental
disorders as depression) could be indicative of isolation or
disconnection of brain nodes (Friston et al., 1995) as well as
disorganization of spiking activity (Takahashi et al., 2010).

The finding of lower complexity in patients with
schizophrenia in some of previous studies could be due to
the elevated requirements of some measures (classical measures
as D2 and L1 require stationary dynamical systems). Distinct
tolerance to noise or requirements related to length of time-series
are other variables that could explain the lack of agreement in
results. In the context of mental disease, Sabeti et al. (2009)
compared the discriminative power of several measures and
found that Higuchi fractal dimension, Lempel-Ziv complexity
and Entropy indexes were the most informative in discriminating
between patients with schizophrenia and controls.

The second and more remarkable finding in the present
study is that we observed (with the classical LZCN measure) an
increase in EEG complexity in Left-Temporal-Parietal regions
during task performance only in controls, with the group of
patients showing comparable complexity at rest and during task
performance. Although it had been suggested that changes in
complexity during cognitive processing might depend on the
specific brain regions involved in the task (Elbert et al., 1994),
research regarding this modulation has been scarce. In the
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present study the cognitive task was a visual naming task.
Although it might seem low-demanding at first sight, picture
naming involves a number of cognitive processes including visual
perception, semantic memory and phonological retrieval (Race
and Hillis, 2015). Studies employing functional neuroimaging
or lesion data converge in the idea that semantic memory
is generally dependent on the left hemisphere, specifically on
ventral and lateral regions of the posterior temporal lobe (Chao
et al., 1999; Hamberger, 2015; Race and Hillis, 2015). The lack
of observable changes in brain complexity during the task in
patients was also associated with impairment in performance
in the naming task in patients. Together, these findings would
support the idea that patients encountered difficulties to adapt
their brain functioning to the task demands.

In addition, the use of the MLZC provides relevant data
regarding differences in complexity between patients and
controls in fast and slow components of the EEG. As we
mentioned, the classical LZC neglects rapid components of the
EEG signals (Ibáñez-Molina et al., 2015; Kalev et al., 2015). In
contrast, the Multiscale LZC, allows for a better characterization
of EEG complexity in different frequency bands. A study by Yang
et al. (2013) has also spotlighted the importance of frequency
bands in the estimation of complexity in AD. In this study,
they found that increased severity of AD was associated with
decreased MSE complexity as measured by short-time scales, but
with increased MSE complexity as measured by long-time scales.
In a similar vein, Kalev et al. (2015) have shown that MLZC is
able to capture differences in complexity between patients with
depression and controls in the high frequency scales, whereas the
classical LZC did not differentiate between the groups because
it underestimated high frequency components of the EEG signal.
Our results also illustrate the value of the MLZC in the estimation
of complexity in different frequency bands. While the classical
LZC estimate indicated that patients exhibited higher values of
complexity at rest in some brain regions, separate analyses for
rapid and slow scales pointed to a more complex pattern of
results. Specifically, patients showed higher values of complexity
during rest only for fast rhythms. On the contrary, control
participants tended to present higher values of LZ during the
task in slow rhythms. Although the functional meaning of these
results is not evident to us, they support the idea that complexity
should be separately assessed for different rhythms. To fully
understand complexity for rapid and slow oscillatory rhythms,
there are two aspects to consider: (1) the more complex a signal
is, the more variability it exhibits, and (2) while the variability
for fast rhythms reflects local functional configurations in the
cortex, for slow oscillations complexity captures more long-range
cortical interactions (Buzsáki and Draguhn, 2004). Hence, one
could speculate that fast oscillations reflecting local dynamics
of neuronal assemblies are more heterogeneous for patients at
rest. This might result from an irregular by-default functioning
at a local level. On the contrary, the higher complexity of the
slow rhythms in controls might result from a more flexible
establishment and switching between a large variety of long
range cortical interactions directed to adapt themselves to the
task at hand. Finally, the non-parametric analyses of rest-task
changes showed that differences between patients and controls

from rest to task were especially evident in fast frequencies,
which is in line with the findings by Kalev et al. (2015) in
depression. These results could be indicating that differences
between patients and controls in cognitive functioning would rely
more on local neural configurations than on the dynamics of
whole-brain networks. The fact that the non-parametric analyses
revealed differences between patients and controls in parietal and
occipital electrode locations in fast scales, could be interpreted
as reflecting abnormal processing in primary visual areas. This
finding is in line with experiments showing that schizophrenic
patients exhibit abnormal beta-gamma induced rhythm during
visual perception (Uhlhaas et al., 2006; Uhlhaas and Singer,
2010; Grützner et al., 2013). However, we should note that this
explanation is tentative and the present results are novel and need
replication.

Some limitations of the study need to be considered.
First, and most important, the small sample prevented us
from analyzing the relationship between demographic and
symptomatic characteristics of patients and EEG complexity.
As previously mentioned, age and symptomatology influence
complexity measures (Fernández et al., 2013). Second, all
patients were on antipsychotic treatment, which could have
impacted on their EEG patterns. Finally, we evaluated brain
complexity of participants while performing a naming task.
Cognitive tasks vary in a number of variables: processing system
(attention, language, memory...), perceptual domain (visual,
auditory. . .), and difficulty, among others. Therefore, it would
be highly speculative to extrapolate results from a visual naming
task to other cognitive tasks. Future research should address
how changes in brain complexity are modulated by cognitive
demands.
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