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INTRODUCTION

The opinion review by Campbell and Dicke questioned if sarcolipin (SLN) is involved in adaptive
thermogenesis especially cold adaptation, while agreeing to SLN-mediated heat production
(Campbell and Dicke, 2018). Several interesting questions were raised concerning the data
implicating SLN in muscle nonshivering thermogenesis (NST). Here, we intend to clarify
to the research community that SLN-mediated heat production and adaptive thermogenesis
are inseparable. This is because heat production by SLN-SERCA interaction is a biochemical
mechanism, whose physiological implication is adaptive thermogenesis. Recent studies from
several groups have identified SLN as an important regulator of SERCA pump (Smith et al., 2002;
Tupling et al., 2002; Asahi et al., 2003; MacLennan et al., 2003; Vangheluwe et al., 2005; Mall
et al., 2006; Morita et al., 2008; Gorski et al., 2013, 2017; Toyoshima et al., 2013; Winther et al.,
2013; Gamu et al., 2014, 2015; Montigny et al., 2014; Fajardo et al., 2015). X-ray Crystallographic
studies notably from two groups Toyoshima andNissen have provided themolecular details of SLN
binding to SERCA, inside the TM groove (Toyoshima et al., 2013; Winther et al., 2013). Studies
using genetically altered mouse models provided convincing data that SLN is important for muscle
thermogenesis and metabolism (Bombardier et al., 2013; Sahoo et al., 2013; Maurya et al., 2015;
Rowland et al., 2015a; Bal et al., 2017). Although the molecular details of SLN function in muscle
physiology continues to evolve, there is critical evidence that SLN is a key regulator muscle NST.

SLN IS AN UNCOUPLER OF SERCA PUMP LEADING TO
INCREASED HEAT PRODUCTION

SERCA is a Ca2+ ion transport pump in muscle and its activity is regulated by small peptides
including phospholamban (PLB-52 aa) and sarcolipin (SLN-31 aa), whose interaction with SERCA
alters the dynamics of Ca2+ cycling (Odermatt et al., 1998; Maclennan, 2004; Bhupathy et al., 2007;
Traaseth et al., 2008; Periasamy et al., 2017). SLN expression is muscle specific, and its expression
level is highly regulated during muscle development and disease states (Vangheluwe et al., 2005;
Babu et al., 2007; Pant et al., 2015). PLB is known as an affinity modulator of SERCA pump for
Ca2+. Interestingly PLB binds to SERCA only to the Ca2+-free E2-state, whereas SLN can bind
to Ca2+-bound SERCA and can remain bound during the Ca2+-transport cycle. The presence of
SLN decreases the Vmax of Ca2+-uptake but not the amount of ATP hydrolyzed (Sahoo et al.,
2013, 2015; Shaikh et al., 2016). Anthony Lee and his colleagues were the first to suggest that
SLN binding to SERCA could promote uncoupling of SERCA-mediated ATP hydrolysis from Ca2+

transport (Smith et al., 2002; Mall et al., 2006). They further showed that Ca2+ accumulation in the

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01217
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01217&domain=pdf&date_stamp=2018-09-27
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:naresh.bal@kiitbiotech.ac.in
mailto:mperiasamy@sbpdiscovery.org
https://doi.org/10.3389/fphys.2018.01217
https://www.frontiersin.org/articles/10.3389/fphys.2018.01217/full
http://loop.frontiersin.org/people/577106/overview
http://loop.frontiersin.org/people/258569/overview
http://loop.frontiersin.org/people/577250/overview


Bal et al. Sarcolipin in Muscle Non-shivering Thermogenesis

vesicles decreased, but the heat released by SERCA increased
in the presence of SLN. Based on this, they suggested that
SLN binding to SERCA prevents release of Ca2+ into the
lumen and promotes slippage of Ca2+ back to the cytosol.
The efficiency of SLN uncoupling of SERCA may depend on
several factors including a) the ratio of SLN to SERCA; b)
cytosolic Ca2+-concentration; c) SR luminal Ca2+-load; d) ATP
availability in the local milieu and e) other factors yet to
be defined. A recent study by Nowack et al provides strong
evidence that SLN-to-SERCA ratio is utilized by pigs to recruit
skeletal muscle thermogenesis independent of shivering. Using
muscle SR vesicles expressing high SLN, we determined that the
efficiency of SLN uncoupling is not 100% but amounts to no
more than 30% of SERCA which suggests while SLN uncoupling
function does not interfere with normal muscle function since
SERCA pump is in excess. Considering the fact that muscle forms
more than 40% of the body weight of all endothermic vertebrates,
even a small fraction of heat coming from SLN-mediated
uncoupling of SERCA function can have a significant impact on
thermoregulation.

THE STRUCTURAL FEATURES INVOLVED
IN SLN BINDING AND UNCOUPLING OF
SERCA

The detailedmechanism of SLN uncoupling is an evolving area of
research, but many structural features of SLN/SERCA interaction
were identified by protein cross-linking and using SERCA/SLN
co-crystals. The X-ray crystals showed that SLN binds to the
SERCA TM groove formed by TMs 2, 6, and 9 (Sahoo et al.,
2015; Shaikh et al., 2016) however, these studies could not localize
the N-terminus of SLN. Previous studies have shown that the
C-terminal residues of SLN (Tyr29 and Tyr31), are important
for regulation of SERCA (Odermatt et al., 1998) and or SLN
localization and interaction with SERCA (Butler et al., 2011).
Employing protein chimeras of SLN and PLB, we determined
the function of individual domains in uncoupling. We found
addition of SLN C-terminus to PLB can increase PLB binding
affinity to SERCA but does not promote uncoupling of SERCA
(Sahoo et al., 2015). Recent studies from our laboratory suggest
that the N-terminus of SLN is important for SLN function (Sahoo
et al., 2015). The short N-terminus varies across species and
2ERSTQE sequence in rodents change to 2ERSTRE in rabbit
and to 2GINTRE in primates. It contains a conserved Thr5
residue that has been proposed to be a site of Phosphorylation
(Bhupathy et al., 2009). Using mutagenesis and chimeric proteins
made between SLN and PLB, we have shown that SLN requires
its N-terminus for its uncoupling function. Deletion of the N-
terminal residues (MERSTQ) caused SLN to constitutively bind
to the SERCA groove but did not possess the uncoupling ability.
Recently, Autry et al speculated that the negatively charged
Glutamate residues are critical for the uncoupling function
(Autry et al., 2016). This suggests that mere occupation of the
groove is insufficient for uncoupling function but requires the
dynamic interaction between the N-terminus, the TM, and the
C-terminus of SLN with SERCA for its regulation.

SLN PLAYS A ROLE IN BOTH SHIVERING
AND NON-SHIVERING THERMOGENESIS

The opinion review questioned if SLN is recruited during
adaptive thermogenesis. While skeletal muscle has been known
to generate heat through shivering, the role of NST in muscle
has not been fully appreciated until recently. Studies in birds
and mammals suggest that cold adaptation involves upregulation
of SR proteins in addition to metabolic remodeling of the
muscle (Rowland et al., 2015a; Bal et al., 2016, 2017). Both
shivering and NST rely on SR Ca2+-cycling, so invariably recruits
SLN and SERCA, therefore SLN-dependent heat production is
a component of both shivering and NST mechanisms. It is
interesting to point out that during shivering the level of Ca2+-
leak from the SR is very high which would recruit myosin-
ATPase as well. Further, as discussed earlier high cytosolic Ca2+-
concentration reduce SLN interaction/uncoupling of SERCA,
so SLN function during shivering might be an important but
minor. During prolonged cold adaptation animals switch from
shivering to NST mechanisms; which is activated through an
increase in cytosolic Ca2+ either via RYR1-mediated Ca2+-leak
or Ca2+-entry through channels in the plasma membrane. It
is known that cold adapted mice including UCP1 knockout
(UCP1-KO) do not shiver when challenged with cold which
argues that NST in muscle is primarily responsible for heat
production. This idea is further supported by two independent
observations made recently. First, mice with surgical ablation
of interscapular BAT acclimated to cold significantly upregulate
SLN expression in their skeletal muscles (Bal et al., 2016).
Similarly, SLN is upregulated in skeletal muscles of UCP1-
KO mice, even when exposed to mild cold (Bal et al., 2017).
Despite these progress, there are several gaps in our knowledge
including how SLN-based NST is activated, whether this involves
neurohormonal signaling to trigger Ca2+-entry through plasma
membrane channels and/or release from the SR. At this time
the major mechanism appears to be RYR1-mediated Ca2+-leak
that can trigger muscle heat production during cold adaptation
(Dumonteil et al., 1993, 1995; Aydin et al., 2008; Bal et al., 2016).

SLN IS RECRUITED IN DIET INDUCED
ADAPTIVE THERMOGENESIS

Compared to rodents, in large adult mammals including rabbits,
dogs and humans, BAT-mediated thermogenesis is negligent
and SLN levels are much more abundant (Babu et al., 2007;
Rowland et al., 2015b). To mimic SLN expression found in large
mammals, we overexpressed SLN using skeletal α-actin gene
promoter (Maurya et al., 2015). Sln over-expression (Sln-OE)
did not affect muscle function but increased BMR. When pair-
fed, Sln-OE mice showed a higher rate of oxygen consumption
and lost its fat mass, whereas Sln-KO mice consumed less
oxygen and gained fat mass. We further showed that Sln-
OE mice were resistant to high fat diet induced obesity and
were protected from lipotoxicity in muscle, suggesting higher
SLN leads to enhanced energy expenditure through increased
mitochondrial biogenesis (Maurya and Periasamy, 2015; Maurya

Frontiers in Physiology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 1217

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bal et al. Sarcolipin in Muscle Non-shivering Thermogenesis

et al., 2015; Sopariwala et al., 2015). A recent study by Maurya et
al, has demonstrated that SLN-mediated Ca2+-signaling promote
mitochondrial health and muscle metabolism (Maurya et al.,
2018). On the other hand, a manuscript published by Butler et al.
shows that SLN could not be detected in rodent muscle and they
were unable to increase SLN expression through transgenesis
in muscle (Butler et al., 2015). We believe that there might be
technical issues with SLN detection since this protein is highly
hydrophobic and of very small size (∼3.5 kDa) and the use
different mouse strain could also contribute to this discrepancy
since our Sln-OE mouse model is in C57Bl6/j background.
It has been shown that cold intolerance of UCP1-KO varies
significantly between different mouse strains (Hofmann et al.,
2001).

SLN BASED MUSCLE NST CAN
COMPENSATE FOR THE LOSS OF BAT
FUNCTION IN MICE

Recent studies also highlighted that in rodents muscle based
thermogenesis is recruited in addition to BAT during cold
adaptation (Monemdjou et al., 2000; Anunciado-Koza et al.,
2008, 2011; Bruton et al., 2010; Shabalina et al., 2010; Rowland
et al., 2015a; Bal et al., 2016, 2017; Stanford et al., 2018). Barbara
Cannon’s group showed that cold adaptation of UCP1-KO mice
affect skeletal muscle metabolism (Aydin et al., 2008), but argued
that this is primarily due to muscle shivering. Interestingly,
several groups have found that Ca2+-handling in the skeletal
muscle is altered in cold adapted UCP1-KO mice. We further
investigated the importance of muscle NST in UCP1-KOmice by
exposing them to different regimens of cold challenge. We found
that skeletal muscles from gradually cold adapted UCP1-KO
mice upregulated SLN expression, become redder with increased
mitochondrial content, succinate dehydrogenase (SDH) activity
as opposed to SLN–KO mice. Interestingly, SLN knockout mice
adapted to cold showed significant upregulation of UCP1 and
higher mitochondrial content in BAT suggesting that SLN-KO
mice increasingly rely on BAT-based NST to compensate for
decreased muscle thermogenesis.

Using double knockout (DKO) mice for SLN and UCP1, we
studied their ability to adapt to cold. These DKO mice were
unable to withstand acute cold (4◦C) exposure, while UCP1-KO
exhibit only 30% cold sensitivity (Rowland et al., 2015a). Further,
we do not believe shivering is the sole mechanism for the survival
of UCP1-KO mice during cold adaptation. To gain insight into
this question we have performed cold adaptation studies on
UCP1-KO mice employing gradual decrease (2.0◦C/day) and
acute decrease (5◦C/day) of ambient temperature of mice reared
at 29◦C. During this cold exposure, the UCP1-KO show visible
shivering only for a short period. When acutely shifted from 29
to 16◦C and from 16 to 4◦C, mice showed visible shivering for
up to 2 days but recognizable shivering decreases and stops by
4th day. Based on these studies we suggest that, subsequent to an
initial phase of shivering, SLN-based NST becomes the primary
mechanism of thermogenesis as continuous shivering will lead to
muscle damage.

SLN MIGHT BE THE MAJOR
DETERMINANT OF MUSCLE
THERMOGENESIS IN BIRDS AND
BAT-DEFICIENT MAMMALS

From the studies described here, it is evident that SLN plays
a very important role in thermogenesis, both in shivering and
muscle NST. Campbell and Dicke rightly pointed out that all
our studies have been in the mouse model. We agree that we
have not studied large animal models and/or avian species.
However, we want to emphasize that we have compared SLN
protein expression inmice vs. large animals (like rabbit, dog), and
humans (Babu et al., 2007; Rowland et al., 2015b). SLN is highly
abundant in all the muscles of larger mammals including human
and SLN has a better intracellular milieu for its physiological
function in oxidative fibers [discussed by Nowack et al. (2017)].
Based on the expression profile, we do not believe that SLN can
have a completely different physiological role in larger mammals
compared to mice. We were unable to study SLN expression in
birds using our antibody as it detects the C-terminal sequence
“RSYQY” that is not conserved in birds (KSYQX). However SLN
is highly conserved in the TM region, suggesting avian SLN bind
to the same groove of SERCA. The C-terminus of avian SLN does
not have conserved sequence but the N-terminus has conserved
Glutamate at 2nd and 7th position in sparrow, chicken and
pigeon important for uncoupling function (Sahoo et al., 2015;
Autry et al., 2016). It is to be noted that avian SERCAbears several
residue substitutions especially in the cytosolic and luminal
loop regions that SLN can potentially interact as shown in
Figure 1. Hence, difference in SLN sequence as seen in Figure 1,
might provide better anchoring leading to increased function
and not loss of function as indicated by the authors. Complete
sequence alignment of SERCA is presented as supplemetal data
Data Sheet 1. It shows that transmembrane helices are highly
conserved, which provides the groove for SLN to bind to SERCA.

PERSPECTIVES AND CONCLUSIONS

While shivering is an important mechanism of heat production
in birds and mammals, prolonged shivering would compromise
many physiological functions of an animal and even compromise
survival in the wild. In addition mild temperature fluctuations
do not activate shivering but rely primarily on NST mechanisms.
It is of interest and surely significant that SLN is expressed
throughout the vertebrate, from fish to man and might be
involved in more fundamental role of local heat production.
The role of SR Ca2+-cycling in muscle thermogenesis has been
documented in the “heater organ”: a modified extraocular muscle
found in deep sea fishes (Block and Franzini-Armstrong, 1988;
Morrissette et al., 2003) and in malignant hyperthermia, a disease
where excessive Ca2+-leaks from RyR coupled with chronic
SERCA Ca2+-cycling leading to pathological heat production
(Gommans et al., 2002; Rossi and Dirksen, 2006). These examples
do suggest that SR can be adapted as a heat producing
mechanism. While thermogenesis is often thought as important
for whole body temperature regulation, heat production in
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FIGURE 1 | Alignment of SERCA (A) and SLN (B) sequences. Comparison of SERCA sequences from various species of birds and mammals shows that the

cytosolic residues that may potentially interact with SLN do not have strict conservation. SLN sequences also show divergence more on the N-terminal cytosolic and

C-terminal luminal side. Like other transmembrane proteins, transmembrane residues of both the proteins are more strictly conserved. Therefore, avian SLN may be

better suited to uncouple avian SERCA.

muscle plays an intrinsic role in peak muscle performance
and more importantly survival, especially when faced with a
predator–prey situation. True endothermy is seen only in birds
and mammals, yet it relies on BAT in only one taxa, the
eutherian mammals. The other extant mammals, monotremes
and marsupials, lack BAT but are competent endotherms. Birds

too lack BAT but manage endothermy at the highest body
temperatures of any, 40◦C and more. These all must achieve
their endothermy by relying on regulatory NST sourced in the
skeletal muscle. [reviewed by Nowack et al. (2017)]. Uncoupling
mechanisms or futile mechanisms are not entirely new but
exist at the expense of increased energy demand. Regulation
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of SERCA by small peptides including PLB, SLN, myoregulin
and others have provided new roles for SERCA pump activity
in muscle Physiology (Anderson et al., 2015). We suggest that
SLN uncoupling of SERCA activity evolved during vertebrate
evolution to support heat production in muscle important
for both muscle performance and thermogenesis. Although
the molecular details how SLN binding promotes uncoupling
of SERCA and recruited under different pathophysiological
conditions remain to be solved, the recent studies provide strong
evidence that SLN is important for muscle thermogenesis.
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