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Semaphorins are a large family of secreted, transmembrane, or GPI-anchored
proteins initially identified as axon guidance cues signaling through their receptors,
neuropilins, and plexins. Emerging evidence suggests that beyond the guidance,
they also function in a broad spectrum of pathophysiological conditions, including
atherosclerosis, a vascular inflammatory disease. Particular semaphorin members have
been demonstrated to participate in atherosclerosis via eliciting endothelial dysfunction,
leukocyte infiltration, monocyte-macrophage retention, platelet hyperreactivity, and
neovascularization. In this review, we focus on the role of those semaphorin family
members in the development of atherosclerosis and highlight the mechanistic relevance
of semaphorins to atherogenesis.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory process initiated by endothelial dysfunction and the
secretion of cytokines and chemokines, and it allows the subendothelial accumulation of low-
density lipoprotein (LDL) (Gibson et al., 2018). The deposited LDL is then oxidized and becomes
oxidized LDL (ox-LDL) that potently stimulates cytokine release from intimal endothelial cells
and facilitates leukocyte adhesion and transmigration (Singh et al., 2002; Paoletti et al., 2004).
The infiltrated monocytes differentiate into macrophages that uptake oxLDL and other forms of
modified LDL (Rader and Pure, 2005), subsequently forming foam cells that are the constitutes
of fatty streaks (Siegel-Axel et al., 2008). Accumulating immune cells including macrophages and
T cells fuel immune response and inflammation, promoting the transition from a fatty streak to
a complex atherosclerotic plaque (Jonasson et al., 1986; Samson et al., 2012). The ultimate stage
of atherosclerotic disease is hallmarked by plaque rupture and thrombus formation that may lead
to acute fatal coronary syndrome (ACS), myocardial infarction (MI), and stroke. To date, a vast
number of proteins have been shown to participate in the onset and progression of atherosclerosis,
including those from plasma, blood cells, and the vascular wall, that fall into the classical class
of molecules that have established current understanding of atherogenesis (Geovanini and Libby,
2018). However, additional molecules are being identified, shedding new light on the modulation
and control of atherosclerosis.

Recently, emerging evidence suggests the semaphorin family in atherosclerosis plays a
role. Semaphorins are a large family of transmembrane (including GPI-anchored) or secreted
proteins that were originally identified as indispensable regulators of neuron-axonal guidance
(Kolodkin et al., 1993). Their molecular structure consists of a highly conserved sema
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domain, a plexin–semaphorin–integrin (PSI) domain, and
distinct protein domains that further define semaphorins,
including immunoglobulin-like (Ig), thrombospondin, and
basic C-terminal domains (Zhou et al., 2008). More than
20 semaphorin family members have been identified that
fall into eight classes (Semaphorin Nomenclature Committee,
1999; Wannemacher et al., 2011). Classes 1 and 2 belong to
invertebrates, and classes 3 through 7 belong to vertebrates
while class 8 is viral-encoded. In addition, classes 1 and 4–
7 are membrane-associated, whereas those in classes 2, 3,
and 8 are in a secreted form (Capparuccia and Tamagnone,
2009; Figure 1). Two groups of proteins, including plexins and
neuropilins (Npns or Nrps), have been identified as the primary
semaphorin receptors (Tamagnone et al., 1999). It is worthy
to note that nine plexins that also contain the extracellular
sema domains were found in vertebrates and fall into classes
A–D (Wannemacher et al., 2011). Several recent studies on
semaphorin structure confirmed that each sema domain of
a semaphorin homodimer binds to a plexin-sema domain to
promote plexin dimerization for signal transduction (Janssen
et al., 2010; Nogi et al., 2010; Wannemacher et al., 2011;
Figure 1). Plexins are associated with different co-receptors
in distinct tissues to allow semaphorins to exert pleiotropic
functions (Alto and Terman, 2017). Although semaphorins
were originally identified as axon guidance molecules required
for axon pointing to proper targets (Kolodkin et al., 1993),
cumulative findings indicate that they are indispensable in
diverse physiological processes (Zhou et al., 2008), including
cardiomyogenesis (Toyofuku and Kikutani, 2007; Toyofuku et al.,
2008), tumor neovascularization, metastasis (Giordano et al.,
2002; Neufeld and Kessler, 2008; Capparuccia and Tamagnone,
2009), osteoclastogenesis (Takegahara et al., 2006), angiogenesis
(Serini et al., 2003; Gu et al., 2005; Toyofuku et al., 2007), and
immunomodulation (Kikutani and Kumanogoh, 2003; Suzuki
et al., 2008; Nishide and Kumanogoh, 2018). In this review,
we focus on the role of semaphorins and their receptors in
the setting of atherosclerosis development. Attention will be
placed on several semaphorin family members for their role in
semaphorin-receptor signaling during atherogenesis.

Sema3A

There are seven members of secreted class 3 semaphorins,
named Sema3A through Sema3G, which were found to express
in the nervous system (Hashimoto et al., 2004; Hou et al.,
2008), immune system (Ji et al., 2009), lung (Martin-Satue
and Blanco, 1999), osteogenesis (Ryynanen et al., 2017), and
cancer cells (Herman and Meadows, 2007; Karayan-Tapon et al.,
2008). They function through their receptors, the neuropilins
and plexins, forming complexes in which neuropilins serve
as the ligand-binding moiety and plexins act as the signal
transduction component (Sharma et al., 2012b). The extensive
expression pattern of class 3 semaphorins suggests their other
functions beyond the nervous system. Sema3A, first designated
as collapsin-1, was found to regulate stimulation-induced growth
cone slump (Luo et al., 1993) and repulsion of neuron axon

growth in the nervous system (Kolodkin et al., 1997; Tamagnone
and Comoglio, 2000; Dent et al., 2004). Nevertheless, emerging
evidence indicates that Sema3A branches out beyond the
nervous system, especially in the regulation of the immune
system. Sema3A suppresses B- and T-cell proliferation and
activation by inhibiting actin cytoskeleton reorganization and
alleviating generation of proinflammatory cytokines (Lepelletier
et al., 2006; Vadasz and Toubi, 2014). In addition, it induces
apoptosis of endothelial cells (Guttmann-Raviv et al., 2007) and
monocyte-derived macrophages through its receptors containing
neuropilin and PlexinA (Moretti et al., 2008; Vadasz et al.,
2013). Furthermore, Sema3A functions as an inhibitor of integrin
function (Serini et al., 2003) and tube formation in endothelial
cells (Guttmann-Raviv et al., 2007).

Recently, van Gils et al. (2013) revealed that endothelial
Sema3A modulates leukocyte rolling, adhesion, and
transmigration into the subendothelial wall during atherogenesis.
They examined Sema3A expression in the inner and outer
curvatures of the aortic arch of low-density-lipoprotein
receptor−/− (LDLR−/−) mice following a western diet for
2 weeks and showed that Sema3A is abundantly expressed by
endothelial cells in the antiatherogenic greater curvature, but
little was detected in the proatherogenic lesser curvature.
In in vitro analysis, Sema3A expression was obviously
downregulated in human coronary artery endothelial
cells (HCAECs) exposed to oscillatory (atheroprone) flow,
proatherogenic factors, and proinflammatory cytokines. Sema3A
acts as a barrier to prevent monocyte migration into the arterial
intima as leukocyte rolling and adhesion to the endothelium was
increased when Sema3A was inhibited using blocking peptides
or blocking its receptor neuropilin-1. These data imply that
Sema3A functions as a negative regulator of monocyte invasion,
a priming step in the process of atherogenesis, alleviating
inflammation progression and atherosclerosis development
(Figure 2). In addition, endothelial Sema3A was reported to bind
platelets and suppress platelet activation by inhibiting αIIbβ3
integrin-dependent spreading and granule releasing (Kashiwagi
et al., 2005). Whether its antiplatelet effect contributes to
atherosclerosis development is not clear.

Sema3E

Semaphorin 3E (Sema3E), originally defined as M-SemaH, was
identified in tumor cells and involved in embryonic development
(Christensen et al., 1998). In the nervous system, Sema3E
functions as a negative regulator of retinal ganglion cell axon
growth and induces the collapse of retinal ganglion cell (RGC)
axons via cGMP signaling (Steinbach et al., 2002). Further studies
showed that the functions of Sema3E are associated with axon
regeneration after injury (Sharma et al., 2012a; Bribian et al.,
2014) and vascular development and remodeling (Gu et al.,
2005; Kim et al., 2011; Oh and Gu, 2013). Sema3E suppresses
endothelial cell motility and tube formation through the
inhibition of VEGF-mediated Akt phosphorylation via PlexinD1
(Moriya et al., 2010; Aghajanian et al., 2014). Sema3E-PlexinD1
signaling in endothelial cells relies on the GTPase-activating
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FIGURE 1 | Schematic representation of semaphorins and semaphorin receptors. The semaphorin family can be divided into eight classes. Classes 1 and 2 are
found in invertebrates and classes 3–7 belong to vertebrates. Classes 2 and 3, and the viral semaphorin 8 are secreted whereas classes 4–6 are transmembrane
proteins. Class 7 is the only GPI-anchored protein. Each semaphorin consists of a large sema domain, a plexin-sema-integrin domain (PSI), immunoglobulin (Ig)-like
domains, and thrombospondin repeats. Semaphorins signal through their receptors, plexins. Plexins A and B are found in invertebrates. Vertebrates have plexins
A1–4, plexins B1–3, PlexinC1, and PlexinD1. Plexins contain a sema domain, a PSI domain, and an Ig-like, plexins, transcription factors (IPT) domain. Structurally,
the cytoplasmic domain of the plexin contains two GTPase activating protein (GAP) domains, including one GTPase-binding domain and one PDZ domain
(postsynaptic protein PSD-95/SAP90, the Drosophila septate junction protein Discs-large, and the tight junction protein ZO-1 domain) (B-type plexins only). In
invertebrates, semaphorins 1 and 2 signal through Plexin A and Plexin B. In vertebrates, semaphorins 3, 5, and 6 signal via Plexin A, while semaphorin 3 requires a
combination of neuropilins (Nrp1 or Nrp2) for signal transduction. Neuropilin is a transmembrane receptor composed of two complement-like (CUB) domains, two
FV/FVIII clotting factor-like domains, one meprin-like MAM domain, and a short cytoplasmic tail.

FIGURE 2 | Schematic representation of the role of Sema3A in atherosclerosis. Sema3A functions as a natural barrier to prevent monocyte migration into the arterial
intima under basal conditions. Sema3A is abundantly expressed by endothelial cells in the atheroresistent greater curvature while little is expressed in the lesser
aortic curvature. The downregulation of Sema3A in the d-flow-injured endothelial cells leads to inflammatory leukocyte trafficking into the intima, an initial essential
step in the process of atherogenesis, and accelerates inflammation and atherosclerosis development.

protein (GAP) activity to modulate cytoskeleton reorganization
and cellular migration and adhesion (Sakurai et al., 2010).

Accumulating evidence suggests that the migration and
proliferation of vascular smooth muscle cells (VSMCs) are crucial
processes in neointimal formation, while neointimal hyperplasia
is a pivotal pathophysiological process that contributes to
atherosclerosis (Dzau et al., 2002; Owens et al., 2004; Gomez
and Owens, 2012). To examine the role of Sema3E in VSMC
migration and proliferation during neointimal formation, Wu
et al. (2017) found that abundant Sema3E was expressed in alpha-
smooth muscle actin (α-SMA)-positive VSMCs of mouse and
human arteries under normal condition, while its expression
in VSMCs of atherosclerotic plaques was markedly deceased

as compared with the normal aortic arteries. Moreover, they
found that Sema3E inhibited VSMC migration and neointimal
formation in a dose-dependent manner in vitro. Mechanistically,
Sema3E inactivated Rap1-Akt signaling pathways to suppress
VSMC migration and proliferation via the PlexinD1 receptor.
Therefore, Sema3E plays a negative regulatory role in the process
of neointimal hyperplasia (Figure 3A).

In the later stage of atherosclerosis, as part of the resolution
phase of acute inflammation, normally activated macrophages
in the lesion emigrate from the site of local inflammation
to the draining lymphatic vessels (Bellingan et al., 1996).
However, unlike other inflammatory conditions, atherosclerotic
cholesterol-laden macrophages (foam cells) persist in the
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FIGURE 3 | Schematic representation of the role of Sema3E in atherosclerosis. (A) In the early stage of atherosclerosis, Sema3E and its receptor PlexinD1 are
remarkably decreased in atherosclerotic plaques. Sema3E inhibits VSMC migration and proliferation by inactivating Rap1-AKT signaling pathways via binding to
PlexinD1 in the process of neointimal formation. (B) Sema3E and its receptor PlexinD1 are remarkably increased in monocyte-macrophages of advanced
atherosclerotic plaques. Sema3E inhibits the directional emigration of macrophages by disrupting the Rho GTPase signaling cascade and actin cytoskeleton
reorganization via binding to PlexinD1, which promotes monocyte-macrophage retention, exacerbating atherosclerosis.

FIGURE 4 | Schematic representation of Sema4D and its receptor PlexinB1 in the development of atherogenesis. (A) Dyslipidemia upregulates platelet sensitivity,
making them more likely to become activated in response to vascular injury. Sema4D enhances platelet hyperactivity, which may lead to platelet adhesion and
transmigration into the intima, thus accelerating the development of atherosclerosis. (B) Sema4D expresses on the surface of invasive lymphocytes in atherosclerotic
lesions and interacts with PlexinB1 on the endothelial cells, resulting in endothelial cell activation, macrophage infiltration, and intraplaque angiogenesis.

arterial wall and the ability of emigration appears to be
impaired (Llodrsa et al., 2004; Trogan et al., 2006). To date,
the mechanisms by which these cells are retained in plaques
remain poorly understood. Wanschel et al. (2013) investigated

the dynamics of Sema3E expression in atherosclerosis
using a model of atherosclerosis regression and identified
Sema3E in atherosclerotic lesions, which are co-localized with
infiltrated macrophages. Functionally, they also showed that
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Sema3E contributes to monocyte-macrophage invasion and
accumulation in plaques. They further demonstrated that
the decreased Sema3E mRNA level was accompanied by a
downregulation of plaque macrophage accumulation and an
increase in the proportion of M2 subtype macrophages. Besides,
they showed that Sema3E regulates monocyte-macrophage
retention and that its expression reduces along with plaque
regression (Wanschel et al., 2013). Using bone marrow-derived
macrophages (BMDM) in vitro, Sema3E expression was further
investigated in macrophage polarization, which showed that
Sema3E was highly upregulated in proinflammatory M1
subtype macrophages and that Sema3E inhibits the directional
emigration of macrophages by disrupting the Rho GTPase
signaling cascade, actin cytoskeleton reorganization, and
polarization via binding to PlexinD1 (Wanschel et al., 2013).
Thus, Sema3E appears to function as an inducer of monocyte-
macrophage infiltration and an inhibitor of macrophage
emigration and thus may accelerate atherosclerosis by promoting
monocyte-macrophage retention and long-term inflammation
(Figure 3B).

Sema4D

Semaphorin 4D (Sema4D/CD100) is a 150-kD transmembrane
protein that belongs to the semaphorin class 4. It was first
perceived as an “immune system semaphorin” (Wang et al.,
2001) and indispensably takes part in the immune responses
(Kumanogoh and Kikutani, 2003). Two types of receptors with
distinct binding affinities have been identified for Sema4D.
PlexinB1 is a receptor that has been shown to have a relatively
high affinity for Sema4D (Maestrini et al., 1996; Tamagnone
et al., 1999), while CD72, expressed at prominent levels
in lymphocytes, is a low-affinity receptor for Sema4D. The
interaction between Sema4D and its receptor CD72 is critical for
immune regulation (Chapoval et al., 2017), including lymphocyte
activation, production of antibody, and autoimmune diseases
(Wang et al., 2001).

Sema4D is the first semaphorin family member that was
shown to participate in the development of atherosclerosis
(Zhu et al., 2009). This finding was largely based on the
previous observations that Sema4D promotes platelet activation
in vitro and accelerates thrombus formation and growth (Zhu
et al., 2007; Wannemacher et al., 2010). Using Sema4D-
deficient LDLR−/− mice, Zhu et al. (2007, 2009) investigated
whether eliminating Sema4D-dependent events could provide
a means of platelet hyperactivity reduction in the setting of
dyslipidemia. They found that the loss of Sema4D expression
ameliorates the effects of dyslipidemia on the platelet function
in vivo and ex vivo, and reduces atherosclerotic lesions in
hyperlipidemic mice on a high-fat, high-cholesterol diet for 3
or 6 months (Zhu et al., 2009) (Figure 4A). Platelet is not
the unique source of Sema4D expression as T cells, B cells,
and monocytes/microphages have been reported to express
Sema4D (Bougeret et al., 1992; Hall et al., 1996). Luque et al.
(2013, 2015) showed that Sema4D is expressed in plaque
macrophages and foam cells and mediates monocyte-endothelial

cell adhesion by interacting with its receptors, PlexinB2 and
PlexinB1, implying that non-platelet Sema4D may participate in
atherogenesis as well. However, Zhu et al. (2007, 2009) did not
observe the reduction in the infiltration of Sema4D-expressing
cells, including T cells, B cells, and monocytes/macrophages
in atherosclerotic lesions when investigating whether the
reduction of hyperlipidemia is by the global absence of Sema4D.
Whether the role of Sema4D in the platelet function is
directly related to its ability to enhance atherogenesis needs
to be examined by a megakaryocyte-selective deletion of
Sema4D.

The neovasculature originates from the adventitia to
nourish blood vessels and the thickened atherosclerotic intima
(Kumamoto et al., 1995; Moreno et al., 2006). Neovascularization
in atherosclerotic plaques is thought to exacerbate atherosclerosis
by fueling plaques with metalloproteases from blood, resulting
in plaque rupture and thrombosis (Jonsson-Rylander et al.,
2005). Therefore, neovascularization is considered to be one
of the major causes of atherosclerotic plaque growth and
destabilization (Barger et al., 1984). Subsequent to the role of
Sema4D in enhancing platelet hyperreactivity in atherosclerosis,
Yukawa et al. (2010) reported that it accelerates atherosclerosis
by facilitating intimal neovascularization and monocyte-
macrophage infiltration in apolipoprotein E (ApoE)-deficient
mice. Furthermore, they found that Sema4D was expressed
in the invasive lymphocytes of atherosclerotic lesions and
that the degree of plaque neovascularization in Sema4D−/−

ApoE−/− mice was significantly reduced. They concluded
that Sema4D plays an integral role in the development
of atherosclerosis by promoting neovascularization of the
intima, facilitating macrophage infiltration in atherosclerotic
plaques.

The mechanism for the role of Sema4D in angiogenesis
has been well studied. It is not likely to be mediated by
upregulating VEGF or angiogenin (Conrotto et al., 2005).
A study on tumor-induced angiogenesis showed that Sema4D
may function as a direct inducer of endothelial cell migration
to promote neovascularization instead of promoting endothelial
cell growth like VEGF. It has been found that angiogenesis
has a spatial preference for atherosclerosis (Moulton, 2001;
Moulton et al., 2003). Therefore, unlike VEGF, Sema4D
may regulate neovascularization in atherosclerotic plaques by
modulating local endothelial cell migration. In-depth studies
showed that Sema4D exerts proangiogenic efficacy by binding
to PlexinB1 that is expressed on the surface of endothelial
cells. Instead of activating the Rho kinase pathway, the
binding of Sema4D to PlexinBl activates the Met receptor for
signal transduction (Basile et al., 2004; Conrotto et al., 2005).
Interestingly, R-Ras, whose activity is downregulated during
the signal transduction of Sema4D to PlexinBl, also functions
to inhibit intimal growth and tumor angiogenesis (Komatsu
and Ruoslahti, 2005). Similarly, studies conducted by Yukawa
et al. (2010) indicated that cleaved Sema4D from infiltrated
T lymphocytes may promote atherosclerosis by inducing the
migration of regional endothelial cells to form new blood vessels,
causing macrophage infiltration and atherosclerosis development
(Figure 4B).
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FIGURE 5 | Mechanistic diagram of Sema7A in atherosclerosis. Endothelial Sema7A is upregulated in response to d-flow in the lesser curvature of mouse aortic
arch, which is potentially regulated by the inhibition of cAMP response element-binding protein (CREB) signaling. Sema7A promotes the expression of adhesion
molecule ICAM-1/VCAM-1 via NF-κB activation and leukocyte recruitment through integrin β1, accelerating atherosclerosis.

Sema7A

Semaphorin 7A (Sema7A) is the only membrane-associated
glycosylphosphatidylinositol (GPI)-anchored semaphorin (Xu
et al., 1998) with an N-terminal seven-bladed β-propeller
sema domain, a plexin-semaphorin-integrin domain, an
immunoglobulin-like domain, and a C-terminal GPI-anchoring
domain (Lange et al., 1998; Liu et al., 2010). The sema domain
contains an RGD motif commonly found in integrin-binding
proteins (Pasterkamp et al., 2003). The expression of Sema7A
and its known membrane receptors, integrin β1 and PlexinC1,
were found in neurons (Pasterkamp et al., 2007), endothelial cells
(Morote-Garcia et al., 2012; Hu et al., 2018), platelets (Jaimes
et al., 2012), monocytes (Holmes et al., 2002), T cells (Czopik
et al., 2006; Suzuki et al., 2007), dendritic cells (DCs) (Scott
et al., 2008), lung fibroblasts (Esnault et al., 2017), and cancer
cells (Garcia-Areas et al., 2013, 2014, 2017). The expression
and binding properties of Sema7A suggest that it could play an
important role in both the adult nervous system and immune
function modulation (Xu et al., 1998). It has been reported that
Sema7A complexes with the semaphorin-binding module of
PlexinC1. Two PlexinC1 molecules are symmetrically bridged by
Sema7A dimers, in which the Sema7A and PlexinC1 β propellers
interact (Liu et al., 2010).

The first evidence for Sema7A in the nervous system was
provided by the work on axon outgrowth in the olfactory system.
Sema7A promotes the outgrowth of olfactory bulb axons and is
required for the development of the lateral olfactory tract that
carries olfactory bulb axons (Pasterkamp et al., 2003). Increasing

evidence suggests that Sema7A plays important roles beyond
the nervous system. Sema7A binding to PlexinC1 mediates
tumor growth (Scott et al., 2009), while Sema7A binding
to integrin β1 initiates T-lymphocyte-mediated inflammatory-
immune response (Suzuki et al., 2007). More recently, Sema7A
is implied in endothelial homeostasis. When exposed to
hypoxia, Sema7A expression is significantly upregulated in
vascular endothelial cells and promotes neutrophil adhesion and
transmigration to the subendothelial layer (Morote-Garcia et al.,
2012). Besides, Sema7A was reported to stimulate monocyte
chemotaxis and cytokine production. Suzuki et al. (2007) showed
that Sema7A, which is highly upregulated on activated T
lymphocytes, irritates monocytes and macrophages to produce
inflammatory cytokines via integrin α1β1.

Given the wide expression of Sema7A and its receptors
in blood cells (Garcia-Areas et al., 2013) and its well-known
function in immunity and inflammation, Hu et al. (2018) recently
hypothesized that Sema7A may be an inflammatory responsive
protein in the endothelial cells and examined the role of Sema7A
in atherogenesis using ApoE−/−mice. They showed that Sema7A
deficiency attenuates plaque formation in ApoE−/− mice on
a high-fat diet, with reduced accumulation of macrophages in
the plaques (Hu et al., 2018). Interestingly, the reduction in
the plaque size was primarily in the aortic arch exposed to
d-flow. Further studies showed that Sema7A is upregulated in
the lesser curvature of mouse aortic arch endothelium, carotid
artery exposed to d-flow in mice subjected to partial carotid
artery ligation (PCL), and human umbilical venous endothelial
cells (HUVECs) under oscillatory shear stress, potentially
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FIGURE 6 | Network regulation of semaphorins in atherosclerosis. When exposed to oxLDL or injured by disturbed blood flow, endothelial cells undergo major
phenotypic changes, e.g., upregulation of inflammatory cytokines, leading to leukocyte adhesion and infiltration into the intima wall. Accumulating immune cells
including macrophages and T cells fuel the immune response, leading to the transition of a fatty streak to a complex atherosclerotic plaque. Plaque rupture and
thrombus formation may lead to fatal cardio-cerebrovascular events. D-flow upregulates endothelial Sema7A and downregulates endothelial Sema3A and
VSMC-Sema3E, leading to the infiltration of inflammatory leukocytes and VSMCs. Following cell infiltration and plaque formation, intraplaque Sema4D, shedding
from activated T lymphocytes, interacts with PlexinB1 on endothelial cells, resulting in endothelial cell migration and intraplaque angiogenesis. In the advanced
plaque, Sema3E interacts with PlexinD1 on macrophages to regulate macrophage emigration. Upon plaque rupture, platelet Sema4D binds leukocytes as well as
injured endothelial cells to support thrombus formation, exacerbating the pathological process.

associated with the inhibition of cAMP response element-binding
protein (CREB) signaling. Functionally, Sema7A deficiency
remarkably reduced leukocyte rolling and adhesion on TNF-
α-primed endothelium and leukocyte–endothelium interaction.
Mechanistically, Sema7A overexpression enhances intercellular
cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1) expression and THP-1 adhesion to
HUVECs in a β1 integrin-dependent manner that involves
its downstream FAK/MAPK/NF-κB signaling pathway. They
concluded that Sema7A upregulation by d-flow mediates
endothelial dysfunction and atherosclerosis in a β1 integrin-
dependent manner (Figure 5).

MISCELLANEOUS

In addition to Sema3A, Sema3E, Sema4D, and Sema7A that have
been extensively described for their role in the development
of atherosclerosis, other members of the semaphorin family
are potentially involved in atherogenesis due to their role in
endothelial activation and dysfunction, neovascularization, and
immune response. Semaphorin 6A (Sema6A), a transmembrane
semaphorin protein expressed in endothelial cells, sustains the
homeostasis of endothelial cells by regulating the vascular
endothelial growth factor receptor 2 (VEGFR2) expression
and signaling (Segarra et al., 2012). Segarra et al. (2012)
identified Sema6A as a crucial regulator of vascular development
and potential therapeutic target for ocular pathologies by
contributing to the formation and remodeling of hyaloid vessels,
indicating that Sema6A may be involved in angiogenesis and

vessel remodeling that play indispensable roles in advanced
plaque development.

Atherosclerosis is the consequence of a chronic inflammatory
response in the arterial wall and the activation of the innate
immune system has been recognized to be fundamentally
involved in atherogenesis (Chavez-Sanchez et al., 2014).
More recently, evidence has been provided that adaptive
immunity is also involved in the initiation and progression of
atherosclerosis (Luchtefeld et al., 2010). In particular, Sema4A
has been investigated extensively. Expressed on dendritic
cells and B-lymphocytes, Sema4A increases the activity of T
lymphocytes (Suzuki and Kumanogoh, 2006), including cell
activation and differentiation, and regulates the generation of T
lymphocytes both in vitro and in vivo (Kumanogoh et al., 2002).
However, there is no report on whether Sema4A participates in
atherosclerosis. Like Sema4A, Sema4D, Sema3A, and Sema7A,
reported to participate in atherosclerosis, are also widely
investigated in immune cells. Sema4D has been shown to be
critical for B-lymphocyte (Kuklina et al., 2017) and dendritic
cell activation (Wang et al., 2001; Suzuki et al., 2003). Sema3A
is highly expressed on many immune cells and responsible for
T-cell and dendritic cell activation, inhibiting T-cell proliferation
and proinflammatory cytokines production (Lepelletier et al.,
2006; Vadasz and Toubi, 2014). Suzuki et al. (2007) reported that
Sema7A, abundantly expressed on activated T lymphocytes, may
potently stimulate monocyte-macrophages at the immunological
synapse where Sema7A protein accumulates at the contact
site between T lymphocytes and macrophages . Therefore,
semaphorins in the immune system may provide a link between
immune response and atherosclerosis. How such mechanisms of
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semaphorins would be started up in response to inflammatory
injury in the context of atherosclerosis remains to be investigated.

Semaphorins, netrins, slits, and ephrins make up the four
families of neuronal guidance cues that regulate neuronal
growth and migration via multiple signaling pathways. Growing
evidence suggests that members from other families participate
in the regulation of atherosclerosis. Similar to Sema3A, netrin-
1 was found to be involved in the initiation of atherosclerosis.
Netrin-1 was detected by immunostaining in endothelial cells
of the greater curvature but was significantly downregulated
in endothelial cells at the lesser curvature of the aortic
arch. In vitro, netrin-1 suppresses leukocyte recruitment
by inhibiting the production of proatherogenic chemokines
monocyte chemotactic protein-1 (MCP-1) and fractalkine.
A consistent result was observed in the adhesion of monocytes
to endothelial cells, suggesting that netrin-1 functions as a
negative regulator of atherosclerosis (van Gils et al., 2013).
Besides, recent studies showed that Slit2 inhibits monocyte
adhesion on activated human endothelial cells and chemotaxis of
monocytes to chemokines stromal cell-derived factor-1 (SDF-1)
and MCP-1. In addition, the inhibition of monocyte recruitment
by supplementing Slit2 was found to delay atheroprogression in
mice (Mukovozov et al., 2015). On the other hand, ephrinB2
was demonstrated to be upregulated in endothelial cells by
proatherogenic stimuli and remarkably promote monocyte
recruitment (Poitz et al., 2015).

CONCLUSION

Growing evidence indicates that semaphorins have distinct
biological activities, which are not only limited to the nervous
system but also branching into other pathophysiological
processes, including inflammation, immune response,
angiogenesis, and especially atherogenesis, of which several
mechanisms work in concert to modulate the initiation,
progression, and regression of atherosclerosis. When exposed
to disturbed blood flow or injured by inflammatory factors,
endothelial cells upregulate Sema7A and downregulate Sema3A

while VSMCs reduce Sema3E expression. The upregulation
of Sema7A and downregulation of Sema3A and Sema3E
function as proatherogenic factors to induce cell adhesion
and transmigration via several mechanotransduction pathways.
Meanwhile, inflammatory stimulation may induce platelet
Sema4D activation, enhancing leukocyte adhesion and
transmigration into the subendothelium to accelerate the
development of atherosclerosis. In the plaques, Sema4D
may shed from activated T lymphocytes and interact
with PlexinB1 on endothelial cells, causing endothelial cell
activation, leukocyte migration, and intraplaque angiogenesis.
Subsequently, Sema3E interacts with PlexinD1 on macrophages
to impair their emigration from advanced plaques, thereby
promoting macrophage retention and chronic inflammation.
Upon plaque rupture, platelet Sema4D binds to leukocytes
and injured endothelial cells to exacerbate thrombosis and
inflammation (Figure 6). Future investigation using the state-
of-the-art technologies on the role of additional semaphorin
family members in atherogenesis, their potential network
regulation in atherosclerosis and their association with other
proatherosclerotic or antiatherosclerotic factors will not only
shed light on the full picture of the functional role of semaphorins
in atherogenesis but also identify potential therapeutic targets
and pharmacological interventions for atherosclerosis.
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