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Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors
and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type)
can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while
the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these
enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor
and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly
conserved in both structure and function, however, the F-type peripheral stalks have
divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator
function, as evidenced by several biochemical and recent structural studies. This review
describes the information regarding the organization of the peripheral stalk components
of F, A, and V-ATPases, highlighting the key differences between the studied enzymes,
as well as the different processes in which the structure is involved.

Keywords: peripheral stalk, ATP synthase, coiled-coils, archaea, bacteria, mitochondria, chloroplast

INTRODUCTION

ATP, a key molecule synthesized by ATP synthases, is instrumental for the metabolism of every
living organism (Müller and Grüber, 2003). ATP synthases belong to a family of enzymes known
as rotary ATP synthases, which are multiprotein enzymatic complexes embedded in cellular and
organellar membranes of all organisms across the three life domains. These enzymes work as
nanomotors to synthesize or hydrolyze ATP, and they have been classified in three types: F, V, and
A-type ATPases. It should be acknowledged that there is another type of rotary ATPases that are
Na+-selective and have been named N-type ATPases (Dibrova et al., 2010), however, these enzymes
will not be discussed in this review.

F-type ATPases are found in the bacterial plasma membrane, in the inner mitochondrial
membrane and in the thylakoid membrane of chloroplasts. F-type enzymes use an electrochemical
proton gradient to synthesize ATP, according to the basic mechanism proposed by Mitchell (1961)
in his chemiosmotic theory. These enzymes, in certain physiological conditions, can function in
reverse and hydrolyze ATP to restore the membrane potential (D’Alessandro and Melandri, 2010).
V-type ATPases were first purified from vacuoles, hence their name, and work as proton pumps
dependent on ATP hydrolysis, which is why they are also known as H+-ATPases (Forgac, 2007).
A-type ATPases are found in archaea and can function either synthesizing or hydrolyzing ATP
(Grüber et al., 2014). All rotary ATPases have an ion channel in contact with a central stalk
(or rotor) whose movement induces the conformational changes in the catalytic subunits of the
hydrophilic domain that lead to synthesis/hydrolysis of ATP; and they all have the capacity to
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mechanochemically couple a rotary membrane domain (the
proton channel) with a hydrophilic catalytic domain (Soga et al.,
2017). Among other things, this coupling (pairing) is possible
because of the structure known as peripheral arm or peripheral
stalk, which works as the stator of a motor and whose main role
is to counteract the rotation tendency of the catalytic core that
happens in response to the movement of the rotor (Walker and
Dickson, 2006).

The most widely accepted hypothesis about the origin of
rotary ATPases states that they evolved from a common ancestor,
which gave rise to the three types of enzymes. Initially, it
was proposed that they had at least two transitions in their
evolutionary history: the first was the transition from a proton
pump to an ATP synthase driven by protons, and the second
was the return to a proton pump (Cross and Taiz, 1990).
Later, a third transition back to an ATP synthase was proposed,
in which there was a gain in function, unlike the first two
transitions (Cross and Müller, 2004). It is currently considered
that the last universal common ancestor (LUCA) was in all
likelihood a chemiosmotic organism with an ATP synthase in
its membrane (Mulkidjanian et al., 2007). A-type ATPases are
more closely related to V-type ATPases, although the latter cannot
synthesize ATP in physiological conditions; it can thus be said
that A-type ATPases are more similar to F-type ATPases in terms
of mechanism (Forgac, 2007). Given the common origin of A
and V-type ATPases, their catalytic subunits and their rotor
subunits share 50% identity, while A and F-type ATPases share
25% identity (Müller and Grüber, 2003). On the contrary, the
subunits of the peripheral stalk of F-ATPases are considerably less
conserved, vary from one organism to the next, and no significant
identity has been found among them (Muench et al., 2011).

In terms of structure, the three types of ATPases are built
in a similar way: a membrane domain (classically known as
FO, VO, AO, or RO to refer to this domain in general) that
includes the proton channel and one or more peripheral stalks;
and a soluble domain (classically known as F1, V1, A1, or R1
to refer to this domain in general) that includes: the catalytic
domain (three pairs of catalytic subunits) and the central stalk,
which communicates the activity of the proton channel with the
catalytic subunits (Qi et al., 2007; Wächter et al., 2011; Grüber
et al., 2014). The number of peripheral stalks has been used
to categorize rotary ATPases (Stewart et al., 2013): F-ATPases
have one (Figure 1A), A-ATPases have two (Figure 1B), and
V-ATPases have three (Figure 1C). Although peripheral stalks
have a similar function in all the enzymes, their composition and
topology vary.

THE PERIPHERAL STALK

The Structure of the Peripheral Stalk
As stated above, the peripheral stalk of rotary ATPases works as
a stator and mediates the association of the membrane domain
and the soluble domain of the enzyme. It is the most divergent
component in both sequence and subunit composition, and three
main roles have been attributed to this structure throughout its
study, these will be discussed later. There are currently high

resolution structures of the three types of rotary ATPases from
model organisms: bovine (Zhou et al., 2015), yeast (Zhao et al.,
2015; Hahn et al., 2016; Guo et al., 2017; Srivastava et al., 2018),
and bacteria (Morales-Rios et al., 2015; Sobti et al., 2016), and
of their peripheral stalks (Dickson et al., 2006; Oot et al., 2012;
Stewart et al., 2012). These structures have shown that, in spite
of the lack of sequence homology, the overall architecture of the
peripheral stalk is similar in these enzymes.

The proteins that construct the peripheral stalk of rotary
ATPases have to cover a distance of more than 100 Å from
the membrane to the apex of the enzyme, and in order to
achieve this most of these proteins have adopted long coiled
coil structures (Stewart et al., 2013). Coiled coils are a common
structural arrangement that is usually adopted by helical proteins,
both fibrous and globular, and results from a particular alternate
pattern of hydrophobic and hydrophilic amino acid residues in
the sequence of the protein (Lupas, 1996). Three characteristics
distinguish coiled coils from other amphipathic helices: (i) the
periodicity of the hydrophobic residues (3.5 in coiled coils, 3.65
in other helices), (ii) the length of the helices (Su et al., 1994),
and (iii) the packing interactions of the lateral chains. In coiled
coils, distinctively, each residue of one helix fits in a space
surrounded by two or four residues of the adjacent helix. This
type of packing has been called “knobs into holes” or “in register
packing” (Lupas, 1996). The amino acids of the pattern that
gives rise to coiled coils are essential to maintain the structure of
individual helices (through intramolecular interactions), as well
as to promote specific interactions between more helices (through
intermolecular interactions) (Mason and Arndt, 2004).

When the coiling of the helices is left-handed, it is the result
of repetitive motifs in the sequence of the protein known as
“heptad repeats.” Heptad repeats are a seven-residue pattern with
an abcdefg composition, in which ad correspond to hydrophobic
residues and e.g., to charged residues (Lupas, 1996). The nature
of the residues in positions ad, as well as their equivalents in
longer patterns, determines the number of chains involved in the
formation of one functional unit of coiled coils, as was revealed
by the study of the leucine zipper of the yeast transcription factor
GCN4 (O’Shea et al., 1991). When the coiling of the helices is
right-handed, it can be the result of either “hendecad repeat”
motifs, which are eleven-residue patterns with an abcdefghijk
composition, in which adeh correspond to hydrophobic residues;
or of quindecad repeats (Stewart et al., 2013).

The first report of hendecad repeat patterns in an ATP
synthase was of the subunits of the peripheral stalk of the
F-ATPase from Escherichia coli, along with the prediction of a
right-handed coiling of their helices (Del Rizzo et al., 2002).
This type of coiling was later found in the peripheral stalks of A
and V-ATPases (Stewart et al., 2013, 2014). The peripheral stalk
subunits of mitochondrial F-ATPases show no canonical right-
handed motifs in their sequence, but despite this, the structure
in the yeast and mammalian enzymes is constructed by proteins
with a helical conformation and maintains features reminiscent
of the A and V-type ATPases overall architecture (Stewart et al.,
2012), as will become evident in the following sections. An
interesting insight into the functional implications of the right-
handed coiling of the helices of the peripheral stalk was provided
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FIGURE 1 | Rotary ATPases. (A) Schematic representation of an F-ATPase (Top) and three dimensional structure of the bovine heart mitochondria F-ATPase
(Bottom) (Zhou et al., 2015) EMD 3164. (B) Schematic representation of an A-ATPase (Top) and three dimensional structure of the Thermus thermophilus A-ATPase
(Bottom) (Schep et al., 2016) EMD 5335. (C) Schematic representation of a V-ATPase (Top) and three dimensional structure of the Saccharomyces cerevisiae
V-ATPase (Bottom) (Zhao et al., 2015) EMD 6285. All the three dimensional maps were generated from electron cryo-microscopy images. The colors in the
schematizations represent: catalytic core in dark and light green, central rotor in light pink, c-ring oligomer in blue, subunit a in orange, and peripheral stalks in dark
purple. The arrowheads point to the peripheral stalk(s).

by Stewart et al. (2014), who studied the peripheral stalks of
the Thermus thermophilus A-ATPase and found this direction of
coiling results in an arrangement that makes them rigid in the
direction of rotation. The authors discuss that this observation is
consistent with the evolution of this protein fold to oppose the
twisting force (an average torque value of ≈50 pN·nm; Omote
et al., 1999) of the enzyme while also allowing some flexibility in
the perpendicular direction to accommodate the conformational
changes of the catalytic core subunits (Stewart et al., 2014).

The Peripheral Stalk of F-ATPases
As previously stated, the peripheral stalk of F-ATPases varies
considerably in its subunit composition and topology, from two
subunits in E. coli (Dunn et al., 2000) to nine subunits in
organisms like Polytomella sp. (Vázquez-Acevedo et al., 2006;
Cano-Estrada et al., 2010). Within this variety, the most studied
enzymes are those from bacteria, yeast, and mammals, however,
the available evidence regarding the enzymes from non-model
organisms shows they display interesting and highly divergent
features.

The Peripheral Stalk of the Bacterial F-ATPase
The simplest known version of the F-type ATPase is the bacterial
enzyme: subunits α3β3 of the catalytic core, subunits γ, ε of the

central stalk, the membrane-embedded subunits a and a c-ring
(cx), and a partially membrane-bound b2 dimer forming the
peripheral stalk along with subunit δ (Weber, 2006; Figure 2A).
The proton channel is formed by subunit a and by the interface
of subunit a to the c-ring. The peripheral stalk of the enzyme
from E. coli has been divided in four domains: (i) the N-terminal
domain that crosses the membrane and interacts with subunit a
(Dmitriev et al., 1999; Stalz et al., 2003), (ii) the tether domain,
which contains residues that contact cytoplasmic loops of the a
subunit (McLachlin et al., 2000), (iii) the dimerization domain,
and (iv) the C-terminal domain, through which it interacts with
subunit δ (known as subunit OSCP in eukaryotic enzymes)
(McLachlin et al., 1998; Dunn et al., 2000). Subunit δ interacts
with catalytic subunit α at the top of the enzyme (Rubinstein
and Walker, 2002; Carbajo et al., 2007). It has been determined
that the interaction OSCP-α is strong enough to resist the torque
generated by the movement of the rotor (Weber et al., 2004).

Subunit b of E. coli has been studied extensively, and this has
derived in a better understanding of the structure and function
of this protein and, consequently, of the peripheral stalk. Small-
angle X-ray scattering studies revealed that the dimerization
domain is limited to residues 62–122, and that this part of the
protein in solution forms an extended dimer of approximately
95 Å (Del Rizzo et al., 2002; Figure 2B). Mutations in the
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FIGURE 2 | Peripheral stalk of prokaryotic and eukaryotic F-ATPases. (A) Three dimensional model of the enzyme of Escherichia coli in which the peripheral stalk
and the FO sector are colored. (B) Model that highlights the different domains of the b2 dimer. The C-terminus (C-ter) and N-terminus (N-ter) of subunit b are
indicated. (C) Model to illustrate the right-handed coiled coil domain of the b2 dimer. The model used in A–C corresponds to the structural data deposited with the
PDB 5T4O (Sobti et al., 2016). (D) Three dimensional model of the enzyme of Saccharomyces cerevisiae in which the peripheral stalk and the FO sector are colored.
The helix of subunit α that contacts b, d and F6 is indicated with a red arrow. (E) Peripheral stalk of the yeast ATPase highlighting its components. The additional
helix of subunit h is indicated with a purple arrow. (F) Surface representation to illustrate the coiled coil interactions in the extrinsic part of the yeast peripheral stalk.
The model used in D–F corresponds to the structural data deposited with the PDB 6CP6 (Srivastava et al., 2018). The black horizontal lines indicate the
mitochondrial inner membrane.
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dimerization domain result in an assembled enzyme but a
lack of oxidative phosphorylation (Cipriano et al., 2006). This
observation suggests that the peripheral stalk of the ATPase from
E. coli has a role beyond that of joining FO with F1, for which
the correct interaction of the dimer subunits is necessary (Del
Rizzo et al., 2006). This possibility has also been explored in the
F-ATPase of yeast, in which mutations in the transmembrane
segment of subunit 4 (b) of the peripheral stalk impact the
coupling of proton translocation with catalysis (Razaka-Jolly
et al., 1994).

The b2 dimer associates via a right-handed coiled coil due to
the presence of a conserved hendecad repeat in both b subunits
of E. coli (Figure 2C), as well as in those from other prokaryotic
organisms (Del Rizzo et al., 2002). The study of chimeras of
subunit b has shown that it has functional tolerance as long as the
residues involved in the dimerization are substituted by others
that fit the hendecad repeat pattern and the resulting helices have
a right-handed coiling; left-handed coiling structures assembled
but were unable to support oxidative phosphorylation (Bi et al.,
2008).

It has been proposed that each b subunit has a different
role in the E. coli enzyme, given by the interactions each one
establishes. The ATP synthase is an asymmetric enzyme due to
the stoichiometry of its subunits, subunit b is the only one present
in two copies and so the interactions of it with each monomer
cannot be the same. Accordingly, it has been proven that the b2
dimer is intrinsically asymmetric and that the arrangement of
its helices tends to be “offset” (Del Rizzo et al., 2006; Claggett
et al., 2009). This topology has two important consequences: one
of the helices of the dimer is skewed toward the N-terminus
(bN) and the other toward the C-terminus (bC), so the residues
occupying these positions are in different microenvironments,
thus confirming that the interactions of each subunit b are
different (Wood and Dunn, 2007).

The study of the individual interactions of each b subunit
has been approached with crosslinking experiments (Brandt
et al., 2013; Deleon-Rangel et al., 2013). It was found that the
C-terminus of one of the subunits (bI) is the part involved in
the interaction with δ (see Figure 2B). This bI subunit (or bN)
is the closest to subunit α and is in contact with subunit a
in the membrane. The other b subunit (bII or bC) was found
in close proximity to subunit β. Taken together, these results
confirm the asymmetric nature of the dimer and demonstrate that
each monomer has a different role and position in the enzyme
(Brandt et al., 2013). This asymmetry was further confirmed with
the high resolution structures obtained for the E. coli enzyme
by cryo-electron microscopy, which show the peripheral stalk
contacts alternatively the three α subunits via their N-terminal
helices but in a clearly asymmetrical fashion, using a different
interface for each of them. Furthermore, the N-terminus of the b
subunits bifurcates closely above the membrane to then separate
in two helices within the membrane which contact subunit a from
two sides (see Figure 2A; Sobti et al., 2016). These structures
have showed, for the first time for an F-ATPase, the complete
homodimeric coiled coil structure of the peripheral stalk, which
spans almost the entire complex (212 of 232 Å) (Sobti et al.,
2016).

The Peripheral Stalk of Yeast and Mammals
Mitochondrial F-ATPase
The peripheral stalk of the F-ATPase of mammals and yeast
shares the same subunit composition, with the exception of
subunit h of yeast, which only has a 20% similarity with its
bovine equivalent, F6 (Velours et al., 2001; Fujikawa et al., 2015),
but the latter is sufficient to substitute the absence of subunit
h, as shown by complementation experiments in S. cerevisiae
(Velours et al., 2001). As is the case in the bacterial enzyme,
the C-terminal end of the eukaryotic subunit b interacts with
the C-terminal end of OSCP (equivalent to bacterial subunit δ)
(Figure 2D; Rubinstein and Walker, 2002; Rees et al., 2009; Hahn
et al., 2016). In the bovine enzyme, the exposed part of subunit
b maintains interactions with subunits d and F6, all mediated by
coiled coils, which result in an extensive and stable interaction
between subunits OSCP-b-F6 that spans the complete length of
the peripheral stalk, as shown by the crystallographic structure of
the soluble section of the enzyme (Rees et al., 2009). The structure
of the S. cerevisiae enzyme (at 3.6 Å) shows that subunit h has an
additional helix, not present in its mammalian equivalent, that is
involved in interactions with subunits b and d (Srivastava et al.,
2018; Figure 2E).

A high resolution structure of the dimeric enzyme of the
yeast Yarrowia lipolytica was obtained from X-ray diffraction
data (3.5 Å) and cryo-electron microscopy images (6.2 Å) (Hahn
et al., 2016). The sections obtained with the best resolution
by cryo-electron microscopy were both the exposed and the
transmembrane parts of the peripheral stalk. This model showed
contacts that had not been described previously, such as the
interaction of the N-terminal end of subunit α with subunits
b, h and the N-terminal end of OSCP, all of which define the
union of F1 with the peripheral stalk (see Figure 2D). The most
recent structure of the S. cerevisiae enzyme, obtained by cryo-
electron microscopy, shows that the N terminus of each α subunit
interacts and securely anchors subunit OSCP to the top of F1.
Furthermore, a helix from one of the α subunits (the one known
as αTP) makes contacts with helices from subunits b, d, and h
(Srivastava et al., 2018). These structures show that the peripheral
stalk is securely attached to the catalytic core of the enzyme,
not only indirectly through a b-OSCP interaction but also by
direct contact of three peripheral stalk subunits with a catalytic
subunit.

As for the contacts between subunits of the peripheral stalk
and subunits located in the membrane section of the enzyme,
crosslinking experiments with the bovine enzyme showed that
the membrane subunit A6L (also called ATP8 in mammals and
8 in yeast) is in close proximity to subunits b, d, and F6 through
its C-terminus, which extends 70 Å from the membrane to
reach the peripheral stalk (Lee et al., 2015). The C-terminal
region of subunit 8 in yeast has interactions with subunits b
and h (Stephens et al., 2003). It has been proposed that subunit
A6L/8 derived from one of the bacterial b subunits and is
truncated in mammals and yeast, since there are four conserved
residues (MQPL) in their N-terminal region (Hahn et al., 2016).
Recently, He et al. (2018) have suggested that subunits 6.8PL
and DAPIT of the human enzyme are functional orthologs of
yeast subunits i/j and k, respectively, which would mean that
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the yeast and mammalian enzymes can be considered identical
in composition. Subunit f is located in the FO section in the
bovine and yeast enzymes (Collinson et al., 1994; Spannagel
et al., 1997), and has been found to interact with subunit b
by crosslinking experiments (Spannagel et al., 1998). Finally, as
in the bacterial enzyme, the base of the peripheral stalk of the
enzyme of bovine and yeast contacts the FO section by a b–a
interaction (Spannagel et al., 1998), which has been confirmed
with the high resolution structures obtained to date (Baker et al.,
2012; Zhou et al., 2015; Hahn et al., 2016; Sobti et al., 2016;
Guo et al., 2017; Srivastava et al., 2018; see Figure 2D). A recent
high resolution structure of the yeast ATPase obtained by cryo-
electron microscopy (at 3.6 Å) has shown the arrangement of the
dimeric FO section (Guo et al., 2017). In this structure, subunit b
is shown to have one transmembrane helix that forms a domain
with subunits e and g and that this domain is connected to its
second transmembrane helix by a loop. Subunits f and h both
interact with the peripheral stalk and are thus considered part of
this structure: the N-terminal portion of subunit f contacts the
exposed part of subunit b, and subunit 8 has a transmembrane
helix in contact with one of the helices of subunit a and its
C-terminal portion contributes to the formation of the base of
the peripheral stalk. Finally, the C-terminal part of subunit d,
which had not been resolved in previous structures, wraps around
subunits 8 and b at the base of the peripheral stalk (Guo et al.,
2017; Figures 2E,F). All of these inter-subunit contacts show how
the peripheral stalk is anchored to the membrane section of the
enzyme, and how this can be achieved through one interaction,
as is the case in the bacterial enzyme, or through several, as
is the case in mammals and yeast, both with the same result.
Besides these subunit-subunit contacts in the membrane sector,
the peripheral stalk also attaches to the F1 sector to fulfill its role
as the stator of the enzyme.

The Peripheral Stalk of Protozoan Mitochondrial
F-ATPase
In stark contrast with the F-ATPases described so far,
the mitochondrial enzyme of chlorophycean algae such as
Chlamydomonas reinhardtii and Polytomella sp. has several
striking features, one of which is the presence of a robust
peripheral stalk formed by nine subunits named Asa (ATP
Synthase Associated) (Vázquez-Acevedo et al., 2006; van Lis
et al., 2007; Cano-Estrada et al., 2010), some of which (Asa6
and Asa9) are involved in the dimerization of the enzyme
(Villavicencio-Queijeiro et al., 2009; Cano-Estrada et al., 2010;
Lapaille et al., 2010; Sánchez-Vásquez et al., 2017). This enzyme
has no clear homologs for any of the subunits that typically
form the peripheral stalk, however, some equivalent interactions
have been found: subunit Asa1 contacts the C-terminal end of
subunit OSCP, which is reminiscent of the b-OSCP interaction
in the other F-ATPases (Colina-Tenorio et al., 2016). Some of
the Asa subunits (Asa1, Asa2, Asa4, and Asa7) are predicted
to adopt coiled coil structures (Miranda-Astudillo et al., 2014),
which is consistent with the nature of subunits b in other
F-ATPases and subunits E and G of the peripheral stalk of
A and V-type ATPases (see sections “The Peripheral Stalk of
A-ATPases” and “The Peripheral Stalk of V-ATPases”). Recently,

an Asa6-a interaction was shown in a three dimensional map
generated with cryo-electron microscopy, and it was found that
subunit Asa6 has a V-shape similar to that of the N-terminal
part (transmembrane) of subunit b (Klusch et al., 2017) and
that the Asa6 subunit together with the H5/H6 hairpin of
subunit a form the luminal half-channel. Although a structural
map obtained by cryo-electron microscopy for the Polytomella
enzyme is available at 7 Å resolution (Allegretti et al., 2015)
there is currently no high resolution data to distinguish structural
details of the Asa subunits in the peripheral stalk, nevertheless,
numerous biochemical studies have established several near-
neighbor relationships between the Asa subunits and other
constituents of the peripheral stalk. Thus, based on the low
resolution map available and the biochemical evidence, a model
depicting a possible location of the different subunits can be
inferred (Figure 3).

Recently, a convenient new separation of ATP synthase
complexes was put forward by Mühleip et al. (2017) that
distinguishes the metazoan-type dimers from the protozoan
dimers or those from unicellular algae, the latter included in
the protozoan-type. This separation came about when some
striking differences became evident with the generation of
three-dimensional structures, although the biochemical and
genetic evidence, as well as low resolution negative stain
projection images, much preceded these structures. Metazoan
and protozoan-type dimers differ by both the structure of their
peripheral stalks and by their dimeric interface (Mühleip et al.,
2017). Metazoan-type enzymes have a V-shape and include
mammalian and fungi ATPases. Some examples of protozoan-
type dimers include the F-ATPases from: Polytomella sp. (Cano-
Estrada et al., 2010; Dudkina et al., 2010), Trypanosoma brucei
(Zíková et al., 2009), Tetrahymena thermophila (Balabaskaran
Nina et al., 2010), Paramecium tetraurelia (Mühleip et al., 2016),
and Euglena gracilis (Yadav et al., 2017), all of which have atypical
features (Figure 4). As described above, the general architecture
of the mammalian, yeast and bacterial enzymes (metazoan-type)
is essentially the same and all of their subunits share homology. It
should be noted that the bacterial enzyme has only been detected
in monomeric form and none of the subunits involved in the
dimerization in other organisms have been identified, but since
it shares general features with metazoan-type enzymes and its
subunits share homology with fungi and mammalian subunits,
it has been included in the metazoan-type group. In contrast with
this, the peripheral stalk structures of protozoan-type dimers are
highly divergent and so far no homologs for their subunits have
been identified in the databases.

The Peripheral Stalk of Chloroplast F-ATPase
The F-ATPases of chloroplasts have a very similar subunit
composition to the bacterial enzyme (Seelert and Dencher,
2011) and their peripheral stalk is formed by a bb’ dimer
(also called subunits I and II), both of these subunits are
structurally and functionally similar to the bacterial dimer
(Rühle and Leister, 2015). However, in both chloroplasts and
cyanobacteria, these subunits are not identical and each one
has different secondary structure and dimerization domain
(Poetsch et al., 2007). The peripheral stalk of this type of
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FIGURE 3 | Working model of the dimeric mitochondrial ATPase of Polytomella sp. The image shows the working model of the 3D structure of the enzyme fitted in
the EMD-2852 map contoured at 6 sigma (Allegretti et al., 2015). Color scheme: F1 sector in pink; OSCP in violet; Asa2 in cyan; Asa4 in deep purple; Asa7 in sky
blue; Asa1 in yellow; Asa3 in brown (dirty violet); Asa5 in salmon; Asa6 in gray; Asa8 in orange; Asa9 in leaf green; subunit a in deep teal and c-ring in pale cyan.

FIGURE 4 | Protozoan and metazoan type dimers. Three dimensional maps of dimeric ATP synthases from (A) Saccharomyces cerevisiae (EMD 7067) (Guo et al.,
2017) representing a metazoan-type dimer, (B) Polytomella sp. (EMD 2852) (Allegretti et al., 2015), (C) Paramecium tetraurelia (EMD 3441) (Mühleip et al., 2016),
and (D) Euglena gracilis (EMD 3559) (Mühleip et al., 2017) representing the protozoan-type dimers. The colors in the schematizations represent: peripheral stalks in
dark purple and the inter membrane space density below the c-ring in deep red (C,D).

ATPase was first detected through the averaging and analysis
of electron microscope images (Böttcher et al., 1998). A three
dimensional map was obtained later on at 20 Å resolution

(Mellwig and Böttcher, 2003). This reconstruction was generated
based on cryo-electron microscopy and the peripheral stalk
was found to be a thin structure with more prominence
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in the parts that contact F1 and FO. Mellwig and Böttcher
suggest there must be communication between F1 and FO, and
propose the peripheral stalk as the structure responsible for that
communication.

A three-dimensional structure for a chloroplast F-ATPase was
recently obtained by cryo-electron microscopy at a resolution
of 2.9–3.4 Å (Hahn et al., 2018). The observed peripheral stalk
structure is highly similar to the bacterial one: subunits b and b’
have a helical conformation and associate through a right-handed
coiled coil that ends right above the membrane surface, where the
helices separate and cross the membrane while clamping the a
subunit to the c-ring, just as it happens in the E. coli ATPase. Also
reminiscent of the bacterial enzyme, the C-terminus of subunit b
interacts with the C-terminus of subunit δ, which is shown to be
formed by a four-stranded mixed β sheet and two α helices, all of
which provide the surface for subunit b to attach. Finally, as was
also observed in the yeast structures, the N-terminus of one of
the α subunits interacts with subunit b’ (Hahn et al., 2018). Once
again, all of these interactions confirm the conserved nature of
the overall architecture of the peripheral stalk as well as its role as
the stator of the complex given its contacts with both sections F1
and FO.

The Peripheral Stalk of A-ATPases
Archaea have adapted to the most extreme living conditions in
terms of temperature, salinity, pressure, pH, etc. Many of them
live in substrates that do not allow the synthesis of 1 mole of
ATP per mole of substrate (Mayer and Müller, 2014), which is
why their energy conservation strategies are different to those of
bacteria and eukaryotes, and involve a chemiosmotic mechanism
in which their metabolism is coupled to the generation of sodium
or proton gradients to drive the synthesis of ATP (Deppenmeier
and Müller, 2007). Despite these differences, ATP synthesis
occurs quite, similarly, to how it occurs in F-ATPases, and the
overall architecture of the enzyme among the studied species is
conserved (Mayer and Müller, 2014).

A-ATPases are formed by the sectors A1 and AO, in this
case joined by two peripheral stalks (Figure 5A). Sector A1
contains the catalytic domain A3B3 and subunits C, D, and F
of the rotor; and the membrane sector AO forms the channel
for the translocation of ions and protons with subunits a and c.
Subunit D extends through the hexamer formed by subunits A
and B, thus connecting the site of catalysis with the site of proton
translocation through subunits a–c in sector AO (Grüber et al.,
2014). Subunit A has additional alpha helices in its C-terminus
and a “non-homologous region” in its N-terminus region,
both of these characteristics are shared with its equivalents in
V-ATPases (Radermacher et al., 2001), but not with F-ATPases.
An outstanding feature of A-ATPases is the size variation of the
c-ring and its capacity to couple the binding of different ions with
ATP synthesis (Grüber et al., 2014).

Both peripheral stalks of A-ATPases are formed by
heterodimers of subunits E and G. In solution, these subunits
adopt a helical structure, just as the proteins that form the
peripheral stalk in other ATPases (Kish-Trier et al., 2008). The
EG heterodimer has a coiled coil structure along its N-terminal
region and a globular structure on its C-terminus, the latter has

been shown to interact with the N-terminal end of subunit B
of the catalytic core by magnetic resonance studies (Kish-Trier
and Wilkens, 2009). The interaction of a component of the
peripheral stalk with one of the catalytic subunits appears to be
a conserved feature among rotary ATPases, since it has been
described for every type of enzyme in the family. Subunit G
shares some similarity with the extramembranal part of subunit
b of F-ATPases, which suggests a common origin (Hunt and
Bowman, 1997). Furthermore, the crystallographic structures of
subcomplexes corresponding to the peripheral stalk of an A-type
ATPase (Lee et al., 2010) and an F-type ATPase (Dickson et al.,
2006) show that subunits G and b have a very similar elongated
helical structure (Muench et al., 2011). Sobti et al. (2016) found
that, although sequence identity is low (22%), the general fold of
the soluble portion of the E. coli peripheral stalk is very similar
to that of the T. thermophilus A-ATPase (Lee et al., 2010), which
indicates a strong evolutionary pressure for proteins to adopt
this type of fold (Sobti et al., 2016).

The first three dimensional structures of complete A-ATPases
were obtained with reconstructions from electron microscopy
images, at 23 Å for the H+-ATPase of Thermus thermophilus
(Bernal and Stock, 2004) and at 18 Å resolution for the A-ATPase
of Methanococcus jannaschii (Coskun et al., 2004). With these
structures the presence of two peripheral stalks was established,
as was their connection with both A1 and AO. Additionally, it
was found that these peripheral stalks are asymmetric, one is
bent toward A1 and the other has a more vertical disposition.
This observation was later confirmed when the crystallographic
structure of subunit E was obtained at 3.6 Å for Pyrococcus
horikoshii (Balakrishna et al., 2012). In this work, when adjusting
the obtained structure of subunit E into the three dimensional
map of the enzyme, a better fit was found for the bent peripheral
stalk, while the same subunit crystallized previously (Lee et al.,
2010), showed a better fit to the vertical stalk (Balakrishna et al.,
2012).

The crystal structure of the EG heterodimer of the H+-ATPase
of T. Thermophilus obtained at a 3.1 Å resolution clearly showed
the structure and topology of these subunits (Lee et al., 2010).
Both subunits have an enriched repetitive sequence of alanine,
leucine, glutamate and arginine residues, and they assemble into
an elongated heterodimer with two distinguishable domains: a
140 Å-long right-handed coiled coil region and a globular region
formed mainly by the C-terminus of subunit E (Figure 5B). The
coiled coil region is formed due to a hendecad repeat pattern
in the N-terminus of both subunits, however, in subunit G,
this pattern changes to a quindecad repeat that results in a
tighter coiling (Figure 5C). The structure of heterodimer EG was
fitted into the three dimensional map of the complete enzyme
(Bernal and Stock, 2004), which revealed that it is specifically the
N-terminus of subunit E the part in contact with the catalytic core
(Lee et al., 2010).

Contrary to what happens in F-ATPases, the peripheral stalks
of A-ATPases do not cross the membrane but are anchored
to a collar-like structure in the extramembrane base of the
complex, and extend from there to the A3B3 hexamer (Bernal
and Stock, 2004; Grüber et al., 2014; see Figure 5A). The collar
structure is formed by the N-terminal region of subunit a (this
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FIGURE 5 | Peripheral stalk of the Thermus thermophilus A-ATPase. (A) Three dimensional model of the archaeal enzyme (Schep et al., 2016) PDB 5GAR, in which
the peripheral stalks, the collar-like structure made by subunit a and the c-ring are colored. (B) Model of the EG heterodimer in which the coiled coil domain and the
globular domain are indicated. (C) Model of the EG heterodimer that illustrates the right handed coiling of the helices and the two types of coiling that result from the
hendecad motifs in both subunits, and quindecad repeat motifs in subunit G. The model used in B,C corresponds to the structural data deposited with the PDB
3V6I (Stewart et al., 2012). The black horizontal lines indicate the mitochondrial inner membrane.

subunit has also been called I in these enzymes), which has an
exposed globular domain that can interact with both peripheral
stalks (Vonck et al., 2009; Lau and Rubinstein, 2012). The EG
heterodimer can be considered to be functionally similar to the
b2 homodimer of the bacterial F-ATPase, since it is also an
asymmetric dimer and each subunit has a different role: subunit E
mediates the interaction with the catalytic subunits and subunit
G stabilizes the peripheral stalk (Lee et al., 2010; Grüber et al.,
2014).

The Peripheral Stalk of V-ATPases
V-type ATPases couple the hydrolysis of ATP with ion transport
and they are involved in many cellular processes: vesicular traffic,
processing and degradation of proteins, coupled transport of
small molecules and acidification of organelles, among others
(Stransky et al., 2016). The V1 sector includes the catalytic core
A3B3 where ATP is hydrolyzed, and the central rotor formed by
subunits D and F. The VO sector includes the c-ring oligomer,
subunit d and the membrane part of subunit a (Forgac, 2007).
Both sections are joined by three peripheral stalks formed by
heterodimers of subunits E and G, which are anchored to the base
of the complex through a collar-like structure made by subunits
C, H and the soluble domain of subunit a (Rawson et al., 2016).

A particular feature of V-ATPases is their regulatory
mechanism, which involves the peripheral stalks. In vivo

experiments of V-ATPase from insects (Sumner et al., 1995)
and yeast (Kane, 1995) suggested that V-ATPases are able to
disassemble and reassemble in response to extracellular stimuli.
Both in vivo and in vitro experiments suggest that the regulation
happens as a result of a rearrangement of the subunits of
the enzyme (Oot and Wilkens, 2012; Tabke et al., 2014). The
exact mechanism is still unknown, but the evidence suggests
that the subunits of the peripheral stalk should allow some
degree of movement to the complex, either to disassemble
or reassemble, or to accommodate the rearrangement of its
subunits (Oot et al., 2017). Studies of the structure of the
EG dimer and an EGC subcomplex have shown that the
interaction between these subunits is stronger when they are
part of the holoenzyme than when they are in solution,
which indicates that a conformational change of EG/EGC
can occur at some point of the regulation (Diepholz et al.,
2008).

As mentioned above, sectors V1 and VO are joined by three
peripheral stalks (Figure 6A). These stalks were first observed
in electron microscopy images (Boekema et al., 1997; Ubbink-
kok et al., 2000; Wilkens et al., 2005; Muench et al., 2009)
and a detailed model of the subunits and their interactions
was obtained with the crystallographic structure of the EGC
subcomplex of the yeast V-ATPase (Oot et al., 2012), which
crystallized in two different conformations at 2.91 and 2.82 Å.
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FIGURE 6 | Peripheral stalk of the Saccharomyces cerevisiae V-ATPase. (A) Three dimensional model of the yeast enzyme in which the peripheral stalks and the
subunits of the collar-like structure are colored. (B) Model that illustrates the interaction of each peripheral stalk (EG1, EG2, EG3) with the subunits of the collar. The
different sections of subunit C are indicated. (C) Models of the EG heterodimer to illustrate the right handed coiling of the helices. The model used in A–C
corresponds to structural data deposited with the PDB 3J9V (Zhao et al., 2015). The black horizontal lines indicate the mitochondrial inner membrane.

These structures clearly show that two of the peripheral stalks
(EG1 and EG2) join the highest part of the enzyme with the
exposed N-terminus of subunit a, and the third stalk (EG3)
interacts with subunit C, which has no homologs in A and F-type
ATPases (Figure 6B). The crystallographic structure of subunit
C showed that it is formed by two globular domains, which
have been called “head” and “foot,” separated by a coiled coil
stretch (Drory et al., 2004; Figure 6B). It was later determined
that the EG-C interaction is crucial to maintain the stability of
the EG heterodimer, and that the interaction is mediated by
the “head” domain of subunit C (Oot and Wilkens, 2010). The
complete structure of the V-ATPase of Saccharomyces cerevisiae
was obtained at 11 Å resolution from cryo-electron microscopy
studies of protein particles in ice (Benlekbir et al., 2012). This
structure shows the contact of the three peripheral stalks with V1,
given by the N-terminal end of the E subunits with the B subunits
of the catalytic subunits (see Figure 6A). It can also be seen
that each EG heterodimer interacts with different subunits of the
collar-like structure (subunits a, C, and H): EG1 interacts with the
N-terminal ends of subunits a and H; EG2 with the N-terminal
end of subunit a and the “foot” of subunit C; and EG3 only
contacts the “head” of subunit C (see Figure 6B). In this enzyme
the only contact between a peripheral stalk and the membrane
sector is given by the interaction of EG2 with subunit a (Benlekbir
et al., 2012), since the rest of the subunits that form the collar are
not membrane subunits. This can be contrasted with A-ATPases
in which the collar is formed exclusively by subunit a contacting
both peripheral stalks (see Figure 5).

The EG heterodimer of yeast V-ATPase forms a long structure
(of approximately 150 Å) and when bound to subunit C, the
subcomplex EGChead (of approximately 170 Å) maintains an

elongated shape (Oot et al., 2012; Figure 6C). The interaction
between subunits E and G is stronger in the N and C-terminal
ends and weaker in the middle of the helices, and it is due to
hendecad repeat patterns that cause a right-handed coiled coil
interaction (Oot et al., 2012). The presence of this characteristic
structure reinforces the idea that the right-handed coiling is a
conserved feature of the proteins that build the peripheral stalks
of rotary ATPases (Stewart et al., 2013).

THE ROLES OF THE PERIPHERAL
STALK

All the interactions described so far clearly establish the role of
the peripheral stalk as the structure responsible for connecting
the two sectors that form ATPases, the membrane sector and
the catalytic core. Having discussed that, the following section
describes the different roles that have been attributed to the
peripheral stalks and the latest proposals based on the growing
wealth of structural information.

The Role of the Peripheral Stalk in the
Flexibility of the Complex
Evidently, rotary ATPases are dynamic structures that exhibit
some degree of flexibility that allows all the movements that
are necessary for the enzyme to function correctly (Walker and
Dickson, 2006; Neukirch et al., 2008; Stewart et al., 2012, 2013).
The notion that the peripheral stalk is a flexible structure has
been controversial and has evolved. The flexibility property was
first assigned to the b subunits of the F-ATPase of E. coli,
based on experiments in which residues were added or removed
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from these subunits and the enzyme remained functional
(Sorgen et al., 1998, 1999). Years later it was proposed that the
peripheral stalk is a rigid structure (Dickson et al., 2006; Rees
et al., 2009), and that the need for flexible elements is fulfilled
by other components of the enzyme (Wächter et al., 2011).
In recent years, cryo-electron microscopy studies suggest that
the peripheral stalk, to a certain extent depending on the type
of ATPase, is indeed a flexible structure (Mazhab-Jafari and
Rubinstein, 2016).

Subunits a and c of the FO sector form two aqueous half
channels that define the path followed by protons, which drive
the movement of the rotor (c-ring+ γδε) in order for catalysis to
occur (F1). This fact, as well as the key residues involved in proton
translocation, were first proposed by Vik and Antonio (1994)
based on mutagenesis experiments, and both were confirmed
over 20 years later by cryo-electron microscopy studies (Allegretti
et al., 2015; Guo et al., 2017). It is well known that each complete
turn of the rotor generates, on average, three ATP molecules
(Yasuda et al., 1998), and that each turn requires the translocation
of a certain number of protons, depending on the number of
c subunits present in the c-ring (Pogoryelov et al., 2012). This
difference or asymmetry between what goes into the complex and
what comes out (8–15 H+:3 ATP) requires the temporal storage
of energy during the movement and its gradual release to drive
each 120◦ turn of the rotor (Cherepanov et al., 1999; Walker and
Dickson, 2006; Junge et al., 2009). Another way of looking at this
phenomenon is to consider rotation steps: sector F1 has a three-
step rotation (given by the three β subunits), while sector FO has
an 8–15-step rotation (depending on the number of c subunits).
This difference has been called rotational asymmetry and it is
buffered by the transmission of elastic energy between the two
sectors of the enzyme (Saroussi et al., 2012). Taken together, these
observations imply that there have to be flexible elements in the
enzyme capable of storing and transmitting elastic energy.

Experiments performed with single molecules of the F-ATPase
of E. coli, in which certain domains are “stiffened” by artificial
disulfide bonds and their elasticity is measured, identified the
lower part of the rotor (γε + c-ring) as an elastic domain
(Sielaff et al., 2008). Other studies have evaluated the magnitude
and determinants of the elasticity of the peripheral stalk of the
bacterial ATPase, comparing wild type and mutant enzymes with
modified b subunits, and have concluded that the peripheral stalk
is a rigid structure and the most elastic elements are located in
the central rotor and the lever of subunit β (Wächter et al., 2011).
These authors suggest that, in the E. coli enzyme, the peripheral
stalk works as a scaffold between FO and F1, and that the rotor (at
least ten times more flexible) is responsible for the transmission
of elastic energy between them.

In light of the latest evidence, obtained by cryo-electron
microscopy, the stiffness that had been assigned to the peripheral
stalk is now being reconsidered. Structures in more than
one conformational state have been generated for the bovine
F-ATPase (Zhou et al., 2015), which show the transitions of
the enzyme. Two transitions of the peripheral stalk are visible:
a bend toward the top part of the enzyme close to subunit
OSCP and a bend toward the transmembrane part of subunit
b (Figure 7A). The authors conclude that the flexibility and

FIGURE 7 | Flexibility of the peripheral stalk of rotary ATPases. Flexibility of the
peripheral stalk illustrated with the transitions it goes through during the
process of rotational catalysis. (A) Models that correspond to the transitions of
an F-ATPase peripheral stalk; PDBs 5ARI, 5ARA, 5FIL from Zhou et al. (2015).
The membrane section in these models is not accurately represented due to
the resolution of the maps. Higher resolution maps have been obtained but
only in one rotational state and thus are not useful to illustrate the flexibility of
the peripheral stalk. (B) Models that correspond to three rotational states of
one of the peripheral stalks of the V-ATPase of S. cerevisiae; PDBs 3J9T,
3J9U, 3J9V from Zhao et al. (2015). (C) Models that correspond to three
rotational states of one of the peripheral stalks of the A-ATPase of
T. thermophilus; PDBs 5Y5X, 5Y5Z, 5Y60 from Nakanishi et al. (2018). The
black horizontal lines indicate the mitochondrial inner membrane.

movement capacity of all the components of the enzyme (the
c-ring showed considerable rotational flexibility) contribute
to facilitate the coupling of the rotor movement (FO) with
catalysis (F1). Similarly, cryo-electron microscopy studies from
the V-ATPase of S. cerevisiae allowed the reconstruction of 3D
structures in three conformational states (Zhao et al., 2015). In
this enzyme, as in the bovine enzyme, most of the subunits show
conformational changes. The obtained structures of the yeast
enzyme show that the helical part of rotor subunit D (equivalent
to subunit γ of F-ATPases) remains rigid during rotation, but the
part in contact with subunit d can bend. It is also evident that
the catalytic subunits A and B press on subunits E and G of the
peripheral stalks, which then bend along their coiled coil regions
(Figure 7B). Even more flexibility is observed when considering
the EG-C interaction, since subunit C can twist without losing
contact with the peripheral stalks.

In contrast with what was observed in F and V-type
ATPases, the analysis of the rotational states of the A-ATPase
of T. thermophilus (Schep et al., 2016) revealed that the
conformational changes of its subunits are minimal, which would
suggest a less flexible enzyme. The authors argue that this can
be due to the fact that this enzyme has a larger rotational
asymmetry (3:12) compared to the one of the yeast V-ATPase
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(3:10) and bovine F-ATPase (3:8), which may cause it to adopt
an energetically favorable rotational state in which most of the
images are obtained, resulting in an apparent lack of flexibility.
Recently, a larger data set of single particle images obtained by
Nakanishi et al. (2018) allowed the identification of the missing
third rotational state of the enzyme of T. thermophilus; taken
together, the structures show there is a dynamic rearrangement
of the peripheral stalks in the transitions between each rotational
state (Nakanishi et al., 2018; Figure 7C).

The Role of the Peripheral Stalk in the
Stability and Assembly of the Complex
The study of the role of the peripheral stalk in the assembly
process of the complex and how it contributes to its stability
refers mostly to F-ATPases. The study of different mutations in
the F-ATPase of E. coli revealed that subunit δ (equivalent to
mitochondrial subunit OSCP) is essential for the assembly of
the b2 dimer with the rest of the complex, independent of its
interaction with subunit α (Hilbers et al., 2013). Additionally,
the authors conclude that subunit δ is also important to join
the peripheral stalk with the rotor, therefore contributing to the
stability and functionality of the complex.

Most of the information available concerning the assembly
of F-ATPases has derived from the study of yeast mutants. In
this organism, radioactive and pulse-chase labeling experiments
have allowed the elucidation of a part of the assembly process,
which involves two separate sub complexes: a-8-peripheral
stalk and F1-c10, which are generated in an independent but
coordinated way (Rak et al., 2011). A dimeric complex named
INA (Inner Membrane Assembly) was identified and proposed
to act as a sort of chaperone for the assembly of the enzyme
(Lytovchenko et al., 2014). The loss of this complex, composed
by subunits Ina17 and Ina22, causes the dissociation of sectors
F1 and FO, and it was found that subunit Ina22 associates
transiently with both F1 and the peripheral stalk, but not with
the assembled enzyme, which confirms its role as an auxiliary
factor. Lytovchenko et al. (2014) propose an alternative to the
assembly route proposed by Rak et al. (2011) that includes an F1-
peripheral stalk sub complex. It was then proposed that INAC
prevents premature interaction of assembly intermediates and
promotes the correct assembly of the c-ring with subunit a to
form the proton translocation portion of the enzyme (Naumenko
et al., 2017). A recent study with null mutants of human
ATPase subunits showed that, although the human and yeast
ATPases are highly similar, the assembly pathways of the proton
translocation channel are different (He et al., 2018; Song et al.,
2018).

Native electrophoresis studies have shown that human
F-ATPase can assemble if subunits a and A6L are missing and
even form oligomers, albeit unstable and in low quantities (Wittig
et al., 2010). It has also been shown that human cells fail to
assemble ATPase if the expression of subunit d is inhibited,
causing the accumulation of two subcomplexes: F1-c-ring and b-
e-g, which suggests the complete peripheral stalk is necessary to
maintain the stability of the enzyme (Figure 8A; Fujikawa et al.,
2015). Further studies of the human enzyme have provided new
information regarding its assembly and a branched pathway has

been proposed: one branch starts with an F1-c-ring subcomplex
that is joined first by the peripheral stalk (b-d-F6-OSCP) and
then by subunits e, g, and f. Another branch involves a complete
b-e-g-d-f -F6-OSCP subcomplex joining F1-c-ring (Figure 8B).
The final complex in either branch (peripheral stalk-F1-c-ring) is
necessary for the addition of subunits a and A6L (8 in yeast) (see
Figure 8). The complete assembled complex includes subunits
DAPIT and 6.8PL (He et al., 2018; Song et al., 2018). The
assembly of the peripheral stalk before it joins the F1 domain
remains unclear, however, the evidence so far indicates that one
of the earlier steps is the formation of an assembly intermediate
formed by subunits b-e-g (Fujikawa et al., 2015; He et al.,
2018).

The Role of the Peripheral Stalk in the
Dimerization and Oligomerization of
F-ATPases and on Membrane Curvatures
Another one of the processes in which the peripheral arm
is involved is the dimerization of the enzyme. It is currently
well known that F-ATPases form dimers that are arranged in
rows along the inner mitochondrial membrane (Strauss et al.,
2008; Thomas et al., 2008; Davies et al., 2011), and that such
oligomerization is directly involved in the morphogenesis of
the mitochondrial cristae (Paumard, 2002; Dudkina et al., 2005;
Fronzes et al., 2006; Davies et al., 2012; Mühleip et al., 2016).
Membrane subunits e and g have been identified as responsible
for the stabilization of yeast (Arnold et al., 1998, 1999; Davies
et al., 2012) and bovine (Minauro-Sanmiguel et al., 2005) ATP
synthase dimers. However, it has also been proposed that subunit
i of the peripheral stalk participates in this process, since there
is evidence that this subunit forms homodimers that are located
close to the dimerization interface (Paumard et al., 2002), and that
the enzyme can be found as a dimer in the absence of subunits
e and g (Fronzes et al., 2006). In addition to this, a study of
interactions monitored by FRET showed that the yeast F-ATPase
is capable of forming oligomeric associations in vivo in the
absence of subunit e (Gavin et al., 2005), so the authors propose
the existence of two dimerization interfaces, one mediated by
subunits e and g, and another mediated by the transmembrane
segment of subunit b.

In addition to the biochemical studies, structural studies of
the yeast F-ATPase have provided information about how the
peripheral stalk can participate in the dimerization process.
A study involving the reconstruction of the yeast enzyme (from
electron cryo-tomography images at an estimated resolution of
3.7 nm) and the analysis of dimer and oligomer formation
in situ with molecular dynamics (Davies et al., 2012; Mühleip
et al., 2016) showed that ATPase monomers associate through
the membrane part of the peripheral stalk and that subunits e,
g, and 4 (equivalent to subunit b) are part of the dimerization
interface and essential for that process to occur. Furthermore,
the N-terminal end of subunit g is exposed to the mitochondrial
matrix (Belogrudov et al., 1996), and crosslinking experiments
have proved that this segment is in close proximity to subunit 4
(Soubannier et al., 2002). The proximity of subunits g and 4 is in
agreement with the structure obtained by Guo et al. (2017).
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FIGURE 8 | Assembly process of the human F-ATPase. (A) A possible assembly pathway of the peripheral stalk based on the data of Fujikawa et al. (2015) and He
et al. (2018). (B) One of the possible assembly pathways of the complete enzyme. According to the branched model proposed by He et al. (2018) and Song et al.
(2018), another possibility involves an initial b-d-F6-OSCP subcomplex that first joins F1-c-ring after which subunits f, e, and g recruited. The model used in A,B
corresponds to the yeast enzyme, PDB 6CP6 from He et al. (2018). The black horizontal lines indicate the mitochondrial inner membrane.

The role of subunit 4 in the dimerization/oligomerization of
the yeast enzyme has been studied with directed mutagenesis of
the loop that joins the transmembrane segments of this subunit
(Weimann et al., 2008). This loop is necessary to organize and
stabilize the neighboring subunits a, e, and g, and hence essential
to maintain the supramolecular species of ATPase. In support
of this result, and highlighting the role of the peripheral stalk
in the dimerization process, there is evidence that suggests that
the loss of the first transmembrane segment of subunit 4 results
in a functional enzyme that is incapable of forming dimers or
oligomers (Soubannier et al., 2002). Concerning the formation
and maintenance of ATPase dimers, the dimerization interface
of the yeast enzyme has been proposed to be stabilized by 4–
4, e–g, and a–a interactions (Habersetzer et al., 2013) or by
a/6–i interactions (Guo et al., 2017), but see also the work
of Anselmi et al. (2018), in which dimer stabilization through

4–4 interactions has been put in doubt (Figure 9). The a–a
interface was first demonstrated by Velours et al. (2011) with
crosslinking experiments and it was recently confirmed with
the high resolution structure of the dimeric enzyme, in which
interactions between the C-terminal sections of two i/j subunits
reinforce the a–a mediated interface (Guo et al., 2017).

Peripheral stalks could also play a role in the formation
of dimer rows and cristae shaping. Two mechanisms of row
formation have been described so far (Mühleip et al., 2016,
2017). The first one is found with V-shaped dimers like the
ones of yeast or metazoan organisms. These V-shaped dimers
display angles between monomers ranging from 56 to 120◦
(Minauro-Sanmiguel et al., 2005; Dudkina et al., 2006; Davies
et al., 2011, 2012). It was proposed that the V-shape of the
bovine ATP-synthase dimer could be induced by a “bending
domain” comprising subunits e and g (Baker et al., 2012). This
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FIGURE 9 | Schematic representation of the dimerization of the yeast F-ATPase. Model of the FO section in which all the subunits involved in the dimerization are
colored: subunit a in hot pink, subunit b in cyan, subunit e in brown, subunit g in pale blue, subunit j in dark blue, and subunit k in lemon. The dimerization interface
includes the subunits proposed by Habersetzer et al. (2013) and Guo et al. (2017). The model corresponds to the structural data deposited with the PDB 6B2Z (Guo
et al., 2017).

was later confirmed with the high resolution structure of yeast
dimers (Guo et al., 2017). This cryo-EM structure also revealed
that in addition to subunits e and g, the 50 residues from the
N-terminus of subunit 4 also belong to this “bending domain.”
As shown by molecular dynamics simulations, V-shaped dimers
would impose, at the dimer interface, a local curvature on the
lipid bilayer that would be favorable for the self-association of
other dimers (Anselmi et al., 2018). This mode of association
would be responsible for the formation of dimer rows at the
ridges of lamellar cristae.

A second mechanism has been proposed for the U-shaped
dimer of Paramecium tetraurelia, in which the two monomers
are parallel and there is no membrane curvature at the dimer
interface. The 2.6 nm resolution cryo-EM structure of the
Paramecium tetraurelia dimer has clearly identified a massive
intracrista domain that creates a rigid region at the base of
the dimer. This intracrista domain connects the c-ring of one
monomer to the peripheral stalk of the other monomer. Due
to these interactions, the axis connecting the F1 sectors is tilted
by 30◦ compared to the axis of the intracrista base (Mühleip
et al., 2016). Besides, on the matricial side of U-shaped dimers,
the lateral position of peripheral stalks contrasts with the more
centered position of peripheral stalks of V-shaped dimers. The
offset position of F1 sectors and the lateral position of peripheral
stalks create a wider matricial region than the intracrista domain,
generating a “wedge-shaped” dimer. When they associate, two

consecutive wedge-shaped dimers are rotated by 8◦ in the
direction of the row, generating a helical curvature of the
membrane that matches the curvature of tubular cristae observed
in Paramecium tetraurelia mitochondria.

Although the majority of the studies regarding the
dimerization/oligomerization of ATP synthase focus on the
model organisms (i.e., S. cereviseae and B. taurus), it is
noteworthy that in chlorophycean algae the structural unit of the
enzyme is a dimer that can form highly stable supramolecular
associations (tetramers, hexamers) (Miranda-Astudillo et al.,
2018). Furthermore, the peripheral stalk of the algal ATPase
has an additional dimerization domain outside the membrane
region (see Figure 3; Allegretti et al., 2015). These unique
features reinforce the idea that the protozoan-type enzymes
have additional characteristics, compared with the metazoan
enzymes, such as dimer formation, stability, and oligomerization
(Villavicencio-Queijeiro et al., 2009; Yadav et al., 2017; Miranda-
Astudillo et al., 2018) which allows us to consider them as a
different group inside the F-ATPases.

Finally, the latest structures of F-ATPases have shown that
the membrane part of the peripheral stalk is also involved in
hosting one of the half channels that define the proton path. In the
chloroplast enzyme subunit b was found to be close to the hairpin
helices of subunit a (Hahn et al., 2018), and in the yeast enzyme
the cytoplasmic half channel was found to be formed by residues
contributed by subunits f and b, in addition to the ones provided
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by the hairpin helices of subunit a (Srivastava et al., 2018). These
and all of the observations described in this section suggest the
peripheral stalk is a structure that contributes to the function of
the enzyme way beyond acting as its stator.

CONCLUSION

All the work that has been done to deepen the understanding of
the peripheral stalk has consistently shown that it is an essential
component of all rotary ATPases. The information obtained from
highly diverse organisms, from bacteria to human and including
archaea and parasites, confirms that, in spite of being a variable
structure, the nature of its subunits (from their size and secondary
structure to their arrangement into right-handed coiled coils), as
well as their interactions and functions, are all conserved. That
being said, the organisms whose ATPase has divergent features
also need to be considered, since there is growing evidence
suggesting that they may be the exception to the rule.

High-resolution structures of rotary ATPases have confirmed
most of the previous biochemical evidence and have contributed
relevant new information. These structures have not only
allowed to observe the interactions of each component of
the peripheral stalk, but also the different conformations in
which they can be found, thus confirming both the existence
and the need for flexibility in rotary ATPases, partly due
to the peripheral stalk itself. The observed dynamics allowed
by the nature of the subunits of the peripheral stalk and
the interactions that they keep with the rest of the subunits
of the enzyme have led some to think that sector RO can
communicate and coordinate with what happens in sector
R1, even though they are over 100 Å apart (Stewart et al.,
2013); the available evidence postulates the peripheral stalk as
the main candidate for establishing such communication. In
the case of F-ATPases, the detailed analysis of the structure
of the peripheral stalk has shown that it is involved in
processes beyond the catalytic function of the enzyme. Much
of the evidence related to the dimerization and oligomerization

of F-ATPases indicates that the peripheral stalk, at least
the transmembrane section, is crucial for the formation
and maintenance of the supramolecular associations of the
enzyme and, consequently, of the peculiar mitochondrial
morphology.

Based on all that has been discovered to date, it can be
concluded that rotary ATPases are indeed highly dynamic
enzymes, and that this characteristic is not only imposed by
the mobile elements but also by those that had initially been
considered static, as is the case of the peripheral stalk. Finally,
and especially considering the latest studies, it can be said that
the observed distortions of the enzyme involve the contribution
of individual subunits, from the peripheral stalk and other parts,
and illustrate the fine orchestration that this rotary enzyme is
capable of building up in order to reach its maximal efficiency.
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