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Non-alcoholic fatty liver disease (NAFLD) is the worldwide most common cause
of chronic liver pathology, which prevalence strongly correlates with the increasing
incidence of diabetes, obesity and metabolic syndrome in the general population. Simple
steatosis, the earliest NAFLD stage, usually remains asymptomatic, and appropriate
changes in the lifestyle, as well as the diet, can reverse the affected liver into
the healthy state. The potential of simple steatosis to progress into severe fibrotic
stages and to facilitate carcinogenesis necessitates timely NAFLD detection and risk
stratification in community-based healthcare settings. Since their initial discovery a
decade ago, extracellular circulating miRNAs have been found in all human biological
fluids including blood and shown to hold great promises as non-invasive biomarkers.
Normally, intracellular miRNAs participate in the regulation of gene expression, but once
released by dying/dead cells they remain highly stable in the extracellular environment
for prolonged periods. Therefore, circulating miRNA profiles can reflect the ongoing
pathogenic processes in body’s tissues and organs, and enable highly sensitive non-
invasive diagnosis of multiple disorders. A non-urgent character of the NAFLD-related
decision-making justifies the use of chronic liver diseases as an excellent test case
for examining the practical utility of circulating miRNAs as biomarkers for longitudinal
monitoring of human health. In this review, we summarize the state-of-the-art in the field
of early diagnosis of NAFLD using circulating blood miRNAs, and stress the necessity
of additional experimental validation of their diagnostic potential. We further emphasize
on the potential diagnostics promises of other cell-free RNA species found in human
biological fluids.

Keywords: cell-free RNA, NAFLD, early diagnosis, extracellular nucleic acids, circulating microRNA, liver
diseases, liquid biopsy, non-coding RNA

NON-ALCOHOLIC FATTY LIVER DISEASE

Non-alcoholic fatty liver disease (NAFLD) is a common chronic pathology associated with
progressive histological alterations of the hepatic parenchyma (Marra et al., 2008; Starley
et al., 2010; Chalasani et al., 2012). These NAFLD-associated changes range from a simple fat
accumulation in hepatocytes, also known as hepatic steatosis or fatty liver, to a more severe
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histological picture, characterized by liver cell injury, fibrosis
and inflammation, which hallmark the more advanced condition
known as non-alcoholic steatohepatitis (NASH) (Marra et al.,
2008; Starley et al., 2010) (Figure 1). Hepatic steatosis per se
does not usually have any serious impact on health; however,
in some individuals it may eventually progress into NASH,
and subsequently, lead to more severe pathologies including
liver cirrhosis and hepatocellular carcinoma (HCC) (Starley
et al., 2010; Baffy et al., 2012; Michelotti et al., 2013). In
fact, up to 20% of patients with NASH may develop cirrhosis
(McCullough, 2004). Moreover, recent studies suggest that
NAFLD may predispose patients to HCC even in the absence
of cirrhosis through the linoleic acid-induced suppression
of tumor surveillance (Ma et al., 2016). It is important to
note that NAFLD is a multisystem disease that affects other
organs including the pancreas, heart and cardiovascular system
(Schwenger and Allard, 2014; Yki-Jarvinen, 2014). Consistent
clinical and epidemiological data strongly indicate that simple
steatosis is an independent risk factor for type 2 diabetes,
coronary artery disease and cardiac mortality (Targher et al.,
2007; Ratziu et al., 2010; Targher et al., 2010; Musso et al., 2011;
Yki-Jarvinen, 2014). Finally, some research studies have shown
that NAFLD-associated morbidity and mortality could be due to
the cardiovascular complications rather than to the liver disease
itself (Ekstedt et al., 2006; Rafiq et al., 2009; Torres and Harrison,
2015).

The prevalence of NAFLD has recently reached global
epidemic proportions both in adults and children (Ratziu et al.,
2010; Vernon et al., 2011; Welsh et al., 2013), representing
a looming healthcare burden which is being increasingly
recognized (Younossi et al., 2016; Tanajewski et al., 2017). For
instance, a recent biomarker-based survey of population-wide
cohorts revealed NAFLD prevalence in 21.9% of United States
adults, with a quarter of these having fibrosis of stage F2
or higher (Wong et al., 2017). Notably, between 0.5 and
1.5% of adult individuals are likely to have hepatic fibrosis of
stage F3 or higher (Wong et al., 2017) and are expected to
develop a decompensated cirrhosis, on average, in 2.3 years
or less (Hagstrom et al., 2017). In other developed countries,
the prevalence of NAFLD is similar to that observed in the
United States and Europe (Younossi et al., 2018), while its
diagnoses in developing states are catching up proportionally
to the growth of GDP (Zhu et al., 2015; Seyda Seydel
et al., 2016). As an example, in Russia, a population-wide
ultrasound screening has detected signs of NAFLD in 25–
30% of individuals, while advanced fibrosis and cirrhosis were
found in 2.3% and 0.8% cases, respectively (Drapkina et al.,
2015). A similar prevalence of NAFLD (17–46%) and NASH
(3–9%) were reported for European, American and Asian
populations (Browning et al., 2004; Bedogni et al., 2005; Park
et al., 2006; Zelber-Sagi et al., 2006; Lazo and Clark, 2008;
Williams et al., 2011; Chalasani et al., 2012; Blachier et al.,
2013; Fan, 2013; Li et al., 2014; Lazo et al., 2015; Younossi
et al., 2018). Furthermore, NAFLD is frequently accompanied
by other complications including cardiovascular diseases and
type-2 diabetes, particularly in old-aged individuals (Leite et al.,
2009; Chalasani et al., 2012; Schwenger and Allard, 2014).

In fact, among the obese individuals and diabetic patients the
incidence of NAFLD is between 70 and 90% (Targher et al., 2007,
2010).

The average prevalence of NAFLD in the developing countries
has increased almost twofold over a decade (Fan, 2013), and
has paralleled a rise in the incidence of NAFLD-associated
disorders including metabolic syndrome, obesity, cardiovascular
disease and type-2 diabetes (Lim et al., 2010). Interestingly,
the growing incidence of both NAFLD and NAFLD-associated
disorders strongly correlates with the dramatically increased per
capita consumption of monosaccharide fructose (ingested mainly
with sucrose) observed in the industrialized states within the
last 30 years (Ouyang et al., 2008; Lim et al., 2010). Several
case-controlled studies have further confirmed that the incidence
of NAFLD correlates with the intake of either sugar-sweetened
drinks (Assy et al., 2008; Abid et al., 2009) or fructose (Ouyang
et al., 2008). The consumption of trans-unsaturated fats has been
also attributed to higher NAFLD risks by some researchers (Tetri
et al., 2008; Alkhouri et al., 2009). On the other hand, diets
enriched with cis-unsaturated lipids have been shown to decrease
intrahepatic fats accumulation and alleviate NAFLD (Nagao et al.,
2005; Assy et al., 2009; Cussons et al., 2009). However, trans-
unsaturated fats promote the formation of fatty liver only when
accompanied by ingestion of carbohydrates (Lim et al., 2010).
Consequently, long-term low carb high fat (LCHF) diets do not
significantly increase the risk of NAFLD development (Stern
et al., 2004; Lim et al., 2010). Overall, the elevating incidence
of NALFD, especially in the well-developed countries, may stem
from significantly increased daily caloric intake (Lim et al.,
2010).

The observed trends and prevalence statistics prompt focusing
on the non-alcoholic liver disease as a public health priority
and necessitate implementing earlier detection of NAFLD in
community-based healthcare settings. It is widely recognized that
opportunistic screenings based on AST/ALT liver tests which are
currently utilized by primary care physicians are insensitive and
poorly specific for NAFLD (Drapkina et al., 2015; Petrick et al.,
2015; Kwo et al., 2017).

CURRENT TECHNIQUES TO DIAGNOSE
NAFLD AND THEIR LIMITATIONS

Simple steatosis, which is the most common form of NAFLD,
remains non-progressive in the majority of individuals and
may resolve with proper modifications of lifestyle (Vilar-Gomez
et al., 2015; Sung et al., 2016). Therefore, early population-
wide diagnosis of NAFLD and, in particular, monitoring the
transition of simple steatosis into NASH remains of paramount
importance for the subsequent prevention of more severe and
irreversible stages such as fibrosis and cirrhosis (Starley et al.,
2010; Baffy et al., 2012; Michelotti et al., 2013). Currently, liver
biopsy remains the only reliable option to determine NAFLD
severity and to differentiate individuals with simple steatosis
from NASH patients (Brunt, 2012). However, liver biopsy is
(1) an invasive and expensive procedure; (2) associated with
complications related to liver damage; (3) prone to sampling
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FIGURE 1 | The progression and stages of non-alcoholic fatty liver disease (NAFLD). The steatosis (also referred as “simple steatosis” or “fatty liver”) is the initial
NAFLD stage and is characterized by the excessive accumulation of fat in the hepatic cells. Upon developing inflammation, the liver steatosis may subsequently
transform into NASH and finally, lead to the liver cirrhosis in some individuals. In turn, both NASH and cirrhotic liver has an increased chance to develop a
hepatocellular carcinoma (HCC) within the affected parenchyma. Both simple steatosis and NASH are reversible stages of NAFLD, while the cirrhotic tissue cannot
revert to the healthy state.

error and (4) limited in accessibility and reproducibility (Bedossa
and Paradis, 2003; Nugent and Younossi, 2007; Sumida et al.,
2014). Importantly, all three NAFLD-related pathophysiological
processes (steatosis, inflammation of liver parenchyma and
fibrosis) may co-exist within the same liver, and have a
varied extent depending on particular regions; this variability
is especially prominent when the extent of fibrosis is evaluated
(Baranova et al., 2011). Along with the semi-quantitative nature
of biopsies analysis (scoring), this fact can directly influence
a reliability of the biopsy-based assessment of the liver status
and complicate comparative studies of non-malignant conditions
of human liver. The necessity for a non-invasive predictive
staging of NAFLD also stems from the variability of its prognosis
depending on an extent of the underlying histopathological
changes in liver parenchyma.

Several non-invasive imaging strategies, including ultrasound,
computer tomography (CT), magnetic resonance imaging
(MRI) and proton magnetic spectroscopy, have been recently
introduced to replace or complement biopsies; however, all
these techniques are heavily dependent on skills of an operator
and the availability of costly equipment. Less expensive types
of imaging, including ultrasound, suffer from the lack of
an objective quantitative analysis; while more robust and
quantitative measurements such as proton density fat fraction
(PDFF) scores (Noureddin et al., 2013) require specialized
equipment that is rarely available at point-of-care stations (Di
Martino et al., 2017). Finally, transient elastography, which is
currently the most common non-invasive diagnostic modality
for point-of-care assessment of NAFLD, is prone to significant
sampling variability with probe location influencing diagnostic
outcomes in at least 30% of patients (Zelber-Sagi et al.,
2011).

Several approaches for NAFLD diagnostics are based on the
detection of certain blood proteins and measuring individual
clinical parameters. The predominant utility of these blood-based
biomarkers is in the non-invasive estimation of liver fibrosis
across the variety of conditions, including those related to chronic
viral infections (Baranova and Younossi, 2008; Baranova et al.,
2011). However, their sensitivity and specificity in the context of
NAFLD remain highly limited (Baranova and Younossi, 2008).
The commonly accepted NAFLD Fibrosis score (NFS), which is
recommended by both the American Association for the Study
of Liver Diseases (Chalasani et al., 2012) and the European
Association for the Study of the Liver (European Association for
Study of Liver and Asociacion Latinoamericana para el Estudio
del Higado, 2015), differentiates a presence of the advanced
fibrosis from mild or moderate fibrotic changes of stage 0–2
with an areas under the receiver operating characteristic curve
(AUROC) in range of 0.82 – 0.85 (Angulo et al., 2007; Musso
et al., 2011). When used as a sole screening tool, NFS places a
considerable proportion of patients – between 20 and 58% – into
indeterminate “gray zone” (Musso et al., 2011).

To some degree, “gray area” discrimination problems may be
solved by combining several blood molecules and other clinical
predictors into diagnostic or prognostic panels (Robin et al.,
2009). Unfortunately, biomarker panels suffer from relatively low
reproducibility of results when tested in independently collected
sets of samples (Ein-Dor et al., 2006). One possible way to
overcome these challenges is to develop biomarker panels for
quantification of the particular pathophysiological process, rather
than the overall “severity” of the condition which often reflects a
variety of the histopathological changes confounding each other.
Another way is to expand the search for reliable biomarkers
into novel classes of the accessible molecules, for example, into
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circulating nucleic acids in general, and circulating miRNAs in
particular.

The ideal biomarkers for NAFLD would possess not only
high specificity and sensitivity, but also be minimally invasive,
inexpensive to measure and easily quantifiable. The biomarker
utility of the molecules in the serum or the whole blood
is well-recognized. Moreover, the collection of the venous
blood is routinely performed at point-of-care stations, as it
does not require the involvement of highly skilled personnel.
As diagnostic or prognostic assessments of chronic liver
disease do not require rapid turnaround time, the costs of
blood biomarker assays may be driven down by shifting
from point-of-care testing, which is usually more expensive
(Lee-Lewandrowski and Lewandrowski, 2009), to a central
laboratory. In turn, centralized diagnostic services are more
suitable for implementing the tests which require highly
standardized, specialized or moisture/temperature/human-error-
sensitive laboratory equipment, while providing less of the
challenges for maintaining regulatory compliance. The logistics
described in Figure 2 allows widening the spectrum of
molecules suitable as biomarkers beyond commonly utilized
serum proteins.

To conclude, significant limitations of the existing
technologies pose a demand for highly sensitive, quantitative
and non-invasive approaches suitable for routine diagnosis of
NAFLD, as well as its stratification into risk groups and, finally,
its response to lifestyle modifications and other treatments.
Recently discovered circulating miRNA molecules offer great
promises as a mine for novel biomarkers for a variety of human
disorders. Importantly, miRNAs are renowned for their stability
in the serum, making the separation of blood/serum collection
and actual biomarker quantification steps feasible (Figure 2).
Moreover, unlike proteins, nucleic acids can be detected by a
polymerase chain reaction (PCR) that implies an exponential
amplification of the original template; thus, circulating miRNAs
might provide for much higher sensitivity as compared to
protein biomarkers. The non-urgent character of NAFLD-related
decision-making suggests NAFLD as an excellent test case
for examining the practical utility of circulating miRNAs as
biomarkers for longitudinal monitoring of human health. In
addition, certain circulating miRNA profiles can reflect various
histopathological events occurring in the liver and have a highly
reliable predictive power to distinguished simple steatosis and
NASH.

EXTRACELLULAR CIRCULATING miRNA
IN THE DIAGNOSIS OF TISSUE DAMAGE

MicroRNAs (miRNAs) are short (18–24 nt) non-coding RNA
molecules that regulate gene expression by repressing the
translation and enhancing the hydrolysis of target mRNAs
(Ambros, 2004; Bartel, 2004). All miRNAs are originally
transcribed as primary transcripts (pri-miRNAs), which are then
hydrolyzed to shorter hairpin-carrying pre-mature miRNA (pre-
miRNAs) molecules (Lee et al., 2003; Lee et al., 2004). The
latter are exported into the cytoplasm where they are further

cleaved to form mature 18–24 nt long single-stranded miRNAs
(Liu et al., 2004; Meister et al., 2004; Chendrimada et al., 2005).
Surprisingly, after the death of the parental cells, miRNAs remain
stable in the nuclease-rich extracellular space for the prolonged
periods predominantly due to their association with proteins of
Argonaute family (Arroyo et al., 2011; Turchinovich et al., 2011;
Turchinovich and Burwinkel, 2012). As a result, cell-free miRNAs
have been consistently detected in all types of human biological
fluids, including blood, urine, tears, breast milk, amniotic fluid,
cerebrospinal fluid, saliva and semen (Turchinovich et al., 2012).

Multiple research reports have confirmed that cell-free
circulating miRNA profiles reflect the well-being of the
body and can be used to monitor the pathophysiological
processes occurring in certain organs and tissues (Cortez
et al., 2011; Etheridge et al., 2011; Sayed and Abdellatif,
2011). Furthermore, some circulating miRNAs, stabilized by
Argonaute proteins and/or associated with membrane vesicles,
are hypothesized to act as signaling molecules and mediate cell-
to-cell communication between distant organs and tissues (Valadi
et al., 2007; Hunter et al., 2008; Turchinovich et al., 2016). Finally,
circulating miRNAs have been hypothesized to affect certain
metabolic processes including those contributing to fatty live
progression. Importantly, the techniques of proteins detection
are fundamentally less sensitive than those developed for nucleic
acids. Unlike proteins, nucleic acids (including miRNA) can be
determined with an aid of a PCR that implies a multimillion
amplification of the original template. Because of that, the
detection of circulating miRNAs may be achieved with a much
higher degree of sensitivity as compared to that for protein
biomarkers (Figure 3). In theory, even a single miRNA molecule
in the solution can be specifically detected by quantitative PCR.

The reports demonstrating a remarkable diagnostic capacity
of circulating miRNAs began to appear shortly after their
discovery in 2008. In a pioneering work, Wang et al. (2009)
used acetaminophen-induced liver injury in the mouse model to
document significant differences in the spectrum and levels of
cell-free miRNAs in the blood of control and treated animals.
In particular, serum levels of liver-specific miR-122 and miR-
192 exhibited a dose-dependent increase that correlated with
the rise of ALT activity; however, the changes of the miRNAs
levels were detected significantly earlier (Wang et al., 2009). In
another report, Laterza et al. (2009) have documented elevation
of blood plasma concentrations of miR-122, miR-133a, and miR-
124 that corresponded to injuries in liver, muscle and brain
tissues, respectively. The activity of ALT and AST enzymes were
both higher after the induction of cell death in either organ,
while miR-122 and miR-133a increases were specific for the
toxicity in liver and muscle, respectively. Furthermore, miR-122
exhibited a diagnostic sensitivity superior to that of ALT (Laterza
et al., 2009). Likewise, the concentration of brain-specific miR-
124 was significantly increased in blood plasmas of rats after the
induction of brain ischemia, while the miR-122 and miR-133a
levels remained at baseline values (Laterza et al., 2009).

In human studies, Zhang et al. (2010) have further confirmed
that the change of miR-122 levels in the blood can be detected
much earlier than the increase in liver aminotransferases
activity. In addition, miR-122 changes were correlated with the
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FIGURE 2 | The logistics of a population-wide blood-based biomarkers examination. The blood samples collected initially at point-of-care stations upon first
appointments with patients are transported to the central lab where they are analyzed for the presence of NAFLD-related soluble biomarkers (proteins or nucleic
acids). After receiving the initial blood test results, the corresponding patients might be recommended to undergo further (more complex) tests including liver
biopsies.

histological status of the human liver and were specific for liver
injury. Xu et al. (2011) have later shown that median serum
levels of miR-21, miR-122, and miR-223 are significantly higher
in chronic hepatitis and HCC patients as compared to that
in healthy controls. Similar findings were also reported by an
independent research group which proposed a microRNA panel,
consisting of miR-122, miR-192, miR-21, miR-223, miR-26a,
miR-27a, and miR-801, to diagnose HCC with high accuracy in
chronic hepatitis B patients and individuals having liver cirrhosis
(Zhou et al., 2011). This finding is essential, as it is more
difficult to correctly evaluate the patients with underlying chronic
pathologies for the presence of superimposing malignancy.

The diagnostic potential of cell-free miRNA to reflect the
extent of cardiac muscle damage was also consistently reported.
Thus, Corsten et al. (2010) have found that in AMI patients,
the levels of cardiac myocyte-associated miR-208b and miR-499
were elevated 1600-fold and 100-fold, respectively as compared
to that in healthy controls. Importantly, plasma miRNA levels
were not affected by a wide range of clinical parameters, including
age, gender, BMI, kidney function, systolic blood pressure, and
white blood cell count (Corsten et al., 2010). Likewise, Akat and
colleagues have documented up to 140-fold increases in blood
levels of heart-specific circulating miRNAs during the onset of
advanced heart failure, which coincided with a similar increase in

cardiac troponin protein, the common marker for heart injury
(Akat et al., 2014). Furthermore, the levels of those miRNAs
decreased after the implantation of a ventricular assist device
that amended myocardial cell death. The finding that a cardiac
damage initiates the detectable release of cardiomyocyte-specific
miRNAs into the circulation gives promise for an early detection
of impending myocardial infarction.

The miRNA-375, which is expressed at high levels only in
the pancreas cells, has shown a great potential as a biomarker
for β-cells death and an early predictor of diabetes. In mice,
administration of high-doses of streptozotocin led to substantial
increases in the blood levels of cell-free miR-375, detected prior
to the onset of hyperglycemia (Erener et al., 2013). In addition,
in mouse models of autoimmune diabetes, circulating miR-375
levels were dramatically higher 2 weeks before the onset of the
diabetes (Erener et al., 2013). In another report, Higuchi et al have
documented a remarkable increase in miR-375, as well as miR-
101 and miR-802 content, in the sera of type-2 diabetes patients
as compared to subjects with unimpaired glucose tolerance
(Higuchi et al., 2015).

Similar to all other tissues, malignant tumors also release
their endogenously expressed miRNAs into the extracellular
environment. Indeed, many cancer-specific miRNAs have been
consistently found in patients’ blood plasma/serum at different
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FIGURE 3 | The advantage of circulating nucleic acids (including cell-free miRNA) over protein biomarkers. Circulating RNAs can be protected from nuclease
degradation either by the associated proteins (I), encapsulation within the membrane vesicles (II), or both (III). Circulating nucleic acids-based biomarkers have a
potential for a much higher sensitivity as compared to proteins due to the fundamentally more sensitive (PCR-based) methods of detection and quantification. In
addition, circulating miRNAs are highly stable in extracellular fluids due to their association with proteins of Argonaute family and have a unique distribution of
expression among different organs and tissues. Examples of organ-associated soluble protein biomarkers: ALT (alanine transaminase), AST (aspartate
transaminase), GGT (gamma-glutamyltransferase), troponin T, hPASP (human pancreas-specific protein). Examples of organ-associated nucleic acids biomarkers:
miR-122, miR-208b, miR-499, miR-375.

stages of the disease (Mitchell et al., 2008; Skog et al., 2008; Taylor
and Gercel-Taylor, 2008; Rabinowits et al., 2009). Besides tumor-
derived miRNAs, the diagnostic relevance of circulating miRNAs
originating from cells within the tumor microenvironment
(including the immune cells) has been also extensively validated
(Schwarzenbach et al., 2014).

Importantly, most (if not all) research works were so far
focused on liver-, muscle-, cardiac-, pancreas-, immune cells-
and tumor-specific miRNAs. The recently generated human
miRNA expression atlas contains the data on the abundance
of 1997 miRNAs in 61 biopsies from different organs (Ludwig
et al., 2016). While most miRNAs (82.9%) are not specific for
a single tissue, many distinct miRNAs and miRNA families are
predominantly expressed in certain cell types (Ludwig et al.,
2016). Interestingly, for many organs, inter-organism variability
of organ-specific miRNA expression was significantly lower than
their inter-organ variability (Ludwig et al., 2016).

Thorough description of each reported miRNA signature
associated with certain diseased states goes well beyond the
scope of this review. Despite great strides toward clinical
acceptance, the diagnostic utility of circulating miRNAs for
multiple pathologies remains to be tested and validated. In the
following part of the article, we will concentrate on the utility

of circulating miRNA for diagnosis and risk stratification of
NAFLD.

EXTRACELLULAR CIRCULATING miRNA
PROFILES FOR THE DIAGNOSIS OF
NAFLD AND ASSOCIATED DISORDERS

Multiple previous studies have been focused on discriminating
various NAFLD stages by analyzing miRNA expression profiles
in liver parenchyma (Guo et al., 2016; Soronen et al., 2016;
Latorre et al., 2017). However, only several research groups
have so far investigated NAFLD-associated changes in the
spectrum of extracellular miRNAs present in human blood
(Cermelli et al., 2011; Yamada et al., 2013; Miyaaki et al.,
2014; Tan et al., 2014; Becker et al., 2015; Pirola et al.,
2015; Akuta et al., 2016; Liu et al., 2016; Raitoharju et al.,
2016; Salvoza et al., 2016; Thompson et al., 2017) (Table 1).
These reports strongly suggest that circulating miRNAs can
be utilized as more sensitive and specific biomarkers of
liver damage as compared to currently employed biochemical
tests based on measuring the relative activity of serum
transaminases.
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In a pioneering work, Cermelli et al. (2011) observed that
serum levels of miR-122, miR-34a and miR-16 were substantially
higher in NAFLD patients than in healthy controls and were
positively correlated with the disease stage. On average, in
NAFLD patients the levels of miR-122 and miR-16 were increased
by 7.2-fold and 5.5-fold, respectively, as compared to controls,
while miR-34a content had risen from undetectable levels to
about of 10000 copies per mL of serum. Furthermore, patients
with simple steatosis exhibited 5.7-fold and 5.3-fold increases
in levels of miR-122 and miR-16, respectively, while in the
NASH group these levels were further up to 2–3-fold higher as
compared to those in the simple steatosis cohort. Importantly,
steady increases of concentrations of the same miRNAs were also
observed along the course of acute HCV infection (Cermelli et al.,
2011). While serum levels of miR-122 and miR-16 were correlated
with ALT and AST enzyme activities, on receiver–operator
characteristic (ROC) curve analysis these miRNAs performed
significantly better than the enzymes. Later, gradual increases
in serum levels of miR-122 in parallel with the progression of
NAFLD were independently reported by several other research
groups (Yamada et al., 2013; Miyaaki et al., 2014; Pirola et al.,
2015).

In particular, Yamada et al. (2013) assessed the presence
of intrahepatic steatosis and the blood serum levels of five
selected miRNAs (miR-21, miR-34a, miR-122, miR-145, and miR-
451) in 403 Japanese subjects who attended ordinary health
examinations. The serum level of four out of five miRNAs (miR-
21, miR-34a, miR-122, and miR-451) were markedly higher in
participants with NAFLD (92 out of 403), moreover, the levels of
miR-122 were correlated with the severity of steatosis. The study
of Miyaaki and colleagues, which was also performed on Japanese
patients, has further confirmed a strong correlation of miR-122
expression in serum with the severity of steatosis (Miyaaki et al.,
2014). Interestingly, serum miR-122 levels correlated to the liver
fibrosis stage inversely, with lower miR-122 expression levels
associated with the advanced fibrosis (Miyaaki et al., 2014). This
observation agrees with the fact that hepatocytes are the main
source of miR-122 in the blood (Chang et al., 2004). Indeed, liver

fibrosis is accompanied by a persistent replacement of miRNA-
producing hepatic cells with the extracellular matrix.

In another, more technically advanced study, circulating
miRNA panel, consisting of miR-122, miR-1290, miR-27b, and
miR-192 showed its high diagnostic accuracy for NAFLD (Tan
et al., 2014). The expression patterns within total circulating
miRNAs were initially detected by deep sequencing of RNA
isolated from 20 controls and 20 NAFLD sera. Subsequently, real-
time PCR assay was applied to measure the levels of selected
miRNAs in training (90 healthy vs. 152 NAFLD patients) and
validation (80 healthy vs. 103 NAFLD patients) cohorts of
participants. The resultant miRNA panel showed sensitivity and
specificity superior to that of ALT and FIB-4 tests and had
satisfactory diagnostic performance regardless of the NAFLD
activity score (NAS) status (Tan et al., 2014).

By using global serum profiling of 84 different miRNAs,
Pirola et al. (2015) identified six circulating miRNA species
which were upregulated more than 2-fold in individuals with
either simple steatosis or NASH. The most dramatic fold changes
were observed in levels of miR-122 which showed 7.2-fold
higher expression in the sera of NASH patients vs. controls, and
3.1-fold change in NASH patients vs. individuals with simple
steatosis (Pirola et al., 2015). Subsequent ROC analysis revealed
that three miRNAs (miR-122, miR-192, and miR-375) could
differentiate NASH and simple steatosis, however, only miR-
122 levels were instrumental in distinguishing liver fibrosis. It
has to be mentioned that another research group was not able
to correlate serum levels of miR-122 to histological features of
NAFLD in the presence of inflammation, while still confirming
the elevation of its concentrations in the blood of NAFLD patients
well over the baseline (Salvoza et al., 2016). Finally, one research
study has failed to detect the differences in miR-122 levels
between NAFLD and controls (Celikbilek et al., 2014).

Becker et al. (2015) showed that serum levels of miR-122,
miR-192, and miR-21 strongly correlate with the levels of various
known NASH biomarkers and isolated pathophysiological
parameters reflecting NASH severity, including a degree
of steatosis, ballooning, lobular inflammation and fibrosis.

TABLE 1 | Current reports of circulating miRNA expression in NAFLD individuals.

Upregulated cf-miRNAs Number of participants Reference

miR-122, miR-34a, miR-16 19 healthy vs. 34 NAFLD Cermelli et al., 2011

miR-122, miR-21, miR-34a, miR-122, miR-451 311 healthy vs. 92 NAFLD Yamada et al., 2013

miR-122 17 mild NAFLD vs. 34 severe NAFLD Miyaaki et al., 2014

miR-122; miR-1290, miR-27b, miR-192 90 healthy vs. 152 NAFLD
80 healthy vs. 103 NAFLD

Tan et al., 2014

miR-122, miR-192, miR-19a, miR-19b, miR-125b, miR-375 16 healthy vs. 16 simple steatosis vs. 16 NASH
19 healthy vs. 30 simple steatosis vs. 47 NASH

Pirola et al., 2015

miR-122, miR-21, miR-192 61 healthy vs. 137 NAFLD Becker et al., 2015

miR-122, miR-34a 36 healthy vs. 28 NAFLD Salvoza et al., 2016

miR-122, miR-885 724 healthy vs. 147 NAFLD Raitoharju et al., 2016

miR-122 36 NAFLD patients (different stages) Akuta et al., 2016

miR-122, miR-122b, miR-146b, miR-16, miR-192, miR-21,
miR-27b, miR-34a

37 healthy vs. 48 NAFLD (17 simple steatosis, 31 NASH) Liu et al., 2016

16 miRNAs, with largest increases detected in levels of
miR-122 and miR-199a

20 obese children with NAFLD and 10 healthy controls Thompson et al., 2017

Frontiers in Physiology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 1256

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01256 September 18, 2018 Time: 16:51 # 8

Turchinovich et al. Cell-Free Nucleic as Early Biomarkers of NAFLD

Subsequently, serum concentrations of these miRNAs were
used as inputs into a relatively simple scoring system with a
range from 0 to 3, which could be used for a non-invasive
prediction of NASH either alone, or in combination with
similarly scored levels of cytokeratin-18 fragment Asp396 (CK18-
Asp396) that was previously described as a biomarker of NAFLD
progression (Younossi et al., 2008). Surprisingly, the combined
miRNA scoring model had the same diagnostic performance for
discriminating NASH as CK18-Asp396 fragment serum levels,
while adding the CK18-Asp396 to the three-miRNA profiles
improved the diagnostic efficiency of the resultant panel only
marginally (from AUCOR of 0.81 to AUROC of 0.83) (Becker
et al., 2015).

Raitoharju et al. (2016) reported the association of blood
miR-122 and miR-885 concentrations with ultrasonically assessed
fatty liver in Finns study participants aged 34–49 years. As this
study cohort was unusually large, the confidence of the reported
findings was impressive; thus, Bonferroni-corrected p-values for
miR-122 and miR-885 constituted 1.92× 10−15 and 2.58× 10−4,
respectively. For the prediction of NAFLD, the levels of miR-
122 were comparable in its performance to liver transaminases
levels. However, combining miR-122 and miR-885 levels with
common NAFLD risk factors improved the risk stratification
only marginally; therefore, the authors were convinced against
the clinical value of blood miRNA levels for the diagnostics of
NAFLD in general population (Raitoharju et al., 2016).

In the research reports discussed above (Table 1), only
circulating miR-122 was consistently shown to be upregulated
in sera of NAFLD individuals. Moreover, its serum levels were
affected by significantly higher degree as compared to other
miRNAs. These observations also accord well with the fact
that miR-122 is expressed almost exclusively in the hepatocytes,
comprising up to 70% of the total pool of liver miRNAs
(Chang et al., 2004). Besides miR-122, several inflammation-
related circulating miRNAs including miR-21, miR-34a, miR-451,
miR-200a, miR-199, and miR-155 could be strongly associated
with NAFLD and contribute to liver inflammation, fibrosis, and
cirrhosis (Cheung et al., 2008; Murakami et al., 2011; Sun et al.,
2014; Ding et al., 2015). Therefore, the elevation of these miRNAs’
levels in the blood circulation could be anticipated.

Finally, NAFLD is frequently accompanied by the associated
disorders such as type-2 diabetes and various cardiovascular
pathologies. While the precise mechanistic links between NAFLD
and those diseases are not completely understood, monitoring of
extracellular miRNAs derived from non-liver tissues commonly
affected in NAFLD patients may be of value. In particular,
the detection of pancreas-derived miR-375 and cardiac muscle-
specific miR-208b/miR-499 in human biological fluids could
further enhance the sensitivity and specificity of diagnosis of
NAFLD severity (Corsten et al., 2010; Erener et al., 2013; Akat
et al., 2014; Higuchi et al., 2015).

The description of putative biological roles of miR-122
and other NAFLD-associated circulating miRNAs goes well
beyond the scope of this manuscript. However, those miRNAs
may contribute to various pathological processes by targeting
certain genes involved in key intracellular pathways. For
instance, miR-122 has been shown to regulate proliferation,

apoptosis and epithelial-to-mesenchymal transduction (EMT)
in HCC cells by targeting the Wnt/β-catenin pathway (Xu
et al., 2012; Jin et al., 2017). In addition, Wnt/β-catenin
signaling directly controls the expression of the laminin-5 gene
whose product enhances the invasiveness of cancer cells by
favoring cell-substrate adhesion (Hlubek et al., 2004). Therefore,
downregulation of miR-122 could facilitate the formation of
tumor promoting microenvironments in the liver by inducing
EMT and remodeling the laminin-containing extracellular
matrix. Indeed, miR-122 was significantly downregulated in liver
cancers with intrahepatic metastasis, while the restoration of
miR-122 expression in metastatic HCC cells in culture decreased
their motility and invasiveness (Tsai et al., 2009).

The initial appeal of circulating miRNA molecules for the
diagnosis of various liver diseases has not so far resulted in
a substantial improvement over the existing (imperfect but
inexpensive) techniques. It is likely that different miRNAs
play distinct roles at different stages of NAFLD development,
or that more intricate interplay between miRNAs, soluble
proteins and various NAFLD-associated pathophysiological
processes is in place (Makarova et al., 2016; Galatenko et al.,
2018). Therefore, from diagnostic and stratification standpoints,
circulating miRNAs should be combined into a diagnostic panel
based on their ability to reflect individual pathophysiological
components, which intertwine in NAFLD, and define the course
and the outcome of the disease in a given individual. Moreover,
concentrations of individual miRNAs in the serum may not
be collinear with the temporal pattern of deterioration of liver
parenchyma.

CURRENT LIMITATIONS AND
EMERGING TECHNOLOGIES OF cf-RNA
DETECTION

The molecular methods employed so far for the detection
and characterization of extracellular nucleic acids include
microarrays, RT-qPCR and next-generation sequencing (NGS)
(Cortez et al., 2011; Etheridge et al., 2011). Microarrays had
been widely used to define circulating miRNA expression in early
reports. However, due to their limited sensitivity microarrays
can only screen the most abundant miRNAs in biofluids. On
the contrary, both RT-qPCR and NGS can detect low abundant
miRNAs and remain currently the methods of choice. Even
though NGS allows both the discovery of novel miRNAs
and the identification of other RNA species, until recently it
was associated with significant costs, labor-intensiveness and
requirement of high RNA inputs which are hardly obtainable
from adequate sample volumes of liquid biopsies. In contrast,
RT-qPCR is a more convenient, sensitive and cost-effective
approach, however, its ability to detect other RNAs (including
fragments derived from mRNAs and lncRNAs), which are also
present in the extracellular fluids (Turchinovich et al., 2014;
Freedman et al., 2016; Wei et al., 2016; Yuan et al., 2016;
Yeri et al., 2017; Max et al., 2018), is limited due to their
highly degraded state. Another disadvantage of RT-qPCR-based
methods is a relatively high false-positive rate that could partially
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explain multiple inconsistent results among various studies on
circulating miRNA as biomarkers (Turchinovich et al., 2016).

A number of other factors can affect circulating RNA
quantification and may accord for the inconsistency among
independent research reports. For instance, a certain level of
hemolysis that occurs during the collection of blood samples
can mask those circulating miRNAs which are also present in
blood cells. Thus, human erythrocytes contain high levels of
miR-451a, miR-16 and miR-21 and, therefore, their cell-free
levels in blood plasma/serum can be significantly altered upon
hemolysis. Likewise, the lysis of other blood cell types can
affect extracellular levels of certain miRNAs by up to 50-fold
(Pritchard et al., 2012). Therefore, some previously reported data
(including diagnostic miRNA panels) may require re-evaluation
and validation on the adequately processed blood samples.
Finally, the heterogeneity of technical methods employed for the
detection and characterization of circulating miRNA signatures
in the past imposes a more comprehensive standardization and
harmonization of biological assays.

Until recently, cell-free RNAs in biological fluids have been
analyzed almost exclusively with qPCR-based methods and were
limited to only miRNA detection. The advent of NGS has
enabled detection of the whole spectrum of RNA species in
extracellular fluids; nonetheless, sequencing of trace amounts of
RNA remained a major challenge (Turchinovich et al., 2014;
Freedman et al., 2016; Wei et al., 2016; Yuan et al., 2016; Yeri
et al., 2017; Max et al., 2018). Most currently available commercial
kits and published protocols for NGS library preparation rely on
significantly higher inputs of RNA than those obtainable from
standard volumes of liquid biopsy samples. However, a number
of highly sensitive NGS library preparation approaches has been
suggested and are available on the market since recently. For
instance, Capture and Amplification by Tailing and Switching
(CATS) technology allows deep sequencing of low amounts
of nucleic acids with unprecedented sensitivity (Turchinovich
et al., 2014). Unlike other methods, CATS can generate NGS
libraries from pictogram inputs of highly fragmented nucleic
acids and allows characterization of the whole spectrum of
circulating RNAs in biological fluids including mRNA and
lncRNA (Turchinovich et al., 2014). Importantly, while the
capacity of cell-free miRNAs for diagnosis of various disorders
has been assessed in many studies, the relevance of other
circulating RNA species has not been addressed so far.

CONCLUSION AND FUTURE
PERSPECTIVES

Despite multiple research reports demonstrating amazing
promises of circulating miRNAs for diagnostic application,

this field is still in its infancy. Primarily, harnessing novel
more sensitive nucleic acids detection technologies is necessary
to confirm whether cell-free miRNAs can reflect the physio-
pathological status of the liver in NAFLD patients and to
serve as early-stage fingerprints of the fatty liver in biological
fluids. Secondly, ultrasensitive NGS-based approaches have not
yet been applied to characterize the changes in overall cell-
free RNAs occurring in the biofluids of NAFLD individuals.
It remains to be tested whether other RNA species (including
mRNA and lncRNA), which are also highly abundant in the
blood plasma, could serve as more reliable biomarkers for
NAFLD condition as compared to common liver enzymes tests.
Finally, determining correlations of extracellular RNAs changes
with an early onset of NAFLD-related conditions remains of
paramount interest. Developing a simple, highly reliable, cost-
efficient and non-invasive diagnostic test system to screen and
identify early NAFLD stages without the use of a liver biopsy
would significantly reduce both the mortality and the economic
burden associated with NAFLD and related diseases.

Importantly, liver biopsy, along with other approaches which
are highly dependent on skilles of an operator and the availability
of costly equipment could hardly fit into a model of screening
tests performed in point-of-care stations. Therefore, despite
inherent limitations of blood biomarkers (Ein-Dor et al.,
2005, 2006; Veytsman and Baranova, 2015), the absence of
clear alternatives prompts the development of functionalized
diagnostic panels where each individual component would,
ideally, reflect certain pathophysiological process contributing
to the NAFLD progression in a given individual and predict
its outcome. The fundamental advantage of circulating RNA
over protein biomarkers is that, unlike proteins, nucleic acids
can be detected by a PCR which has, in theory, the sensitivity
threshold of a single molecule. Finally, miRNA-based diagnostic
panels could, if necessary, be augmented by other blood-based
biomarkers including liver-specific proteins or metabolites.
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