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By controlling the function of various sarcolemmal and mitochondrial ion transporters,
intracellular Nat concentration ([Na*]) regulates Ca®* cycling, electrical activity, the
matching of energy supply and demand, and oxidative stress in cardiac myocytes.
Thus, maintenance of myocyte Na™ homeostasis is vital for preserving the electrical
and contractile activity of the heart. [Na™]; is set by the balance between the passive
Na™ entry through numerous pathways and the pumping of Na* out of the cell by
the Nat/K+-ATPase. This equilibrium is perturbed in heart failure, resulting in higher
[Na™];. More recent studies have revealed that [Na™]; is also increased in myocytes from
diabetic hearts. Elevated [Na™]; causes oxidative stress and augments the sarcoplasmic
reticulum Ca®t leak, thus amplifying the risk for arrhythmias and promoting heart
dysfunction. This mini-review compares and contrasts the alterations in Na™ extrusion
and/or Na™ uptake that underlie the [Na*]; increase in heart failure and diabetes, with a
particular emphasis on the emerging role of Na™ - glucose cotransporters in the diabetic
heart.

Keywords: heart failure, type-2 diabetes, Na'-glucose cotransporter, Na*/H* exchanger, Nat/K+-ATPase,
Na*/Ca2* exchanger

MAINTENANCE OF MYOCYTE Nat HOMEOSTASIS IS VITAL
FOR PRESERVING HEART FUNCTION

All mammalian cells maintain a low intracellular Na* concentration ([Na'];) by actively extruding
Na™ through the Na*/K™-ATPase (NKA) at the expense of metabolic energy. The energy stored
in the electrochemical Na™ gradient is then used for the transmembrane transport of other ions
(e.g., Ca®T through the Nat/Ca?* exchanger, NCX, H' via the Na*/H" exchanger, NHE, etc.),
uptake of energy substrates (glucose through the family of Na™-glucose cotransporters, SGLTs, and
aminoacids through Na™-aminoacid cotransporter) and, in the case of excitable cells, generation of
action potentials (via voltage-gated Na™ channels). Changes in [Na™]; critically affect the function
of these transporters, therefore [Na™]; homeostasis is essential for numerous cellular processes.

In cardiac myocytes, NCX is the main route for Ca?* extrusion from the cells (Bers, 2001),
which intimately links Ca?* cycling to [Na*];. Even a small (few mM) increase in [Na™]; alters
Ca** fluxes through NCX, resulting in higher Ca?* levels in the cytosol and sarcoplasmic
reticulum (SR) and consequently larger contractions (Figure 1). This mechanism is responsible
for the inotropic effect of cardiac glycosides such as digoxin. However, as demonstrated clinically
with digoxin, the beneficial effect of enhanced contractility is counteracted by a higher risk for
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ectopic arrhythmias, as larger SR Ca?* load increases
the incidence of spontaneous Ca’* waves and delayed
afterdepolarizations (Bers, 2014).

[NaT]; also controls the level of Ca?t in the mitochondria
([Ca®*],) through the mitochondrial Nat/Ca?t exchanger
(mitoNCX), which is the main route for mitochondrial Ca?*
extrusion in the heart (Griffiths, 2009). MitoNCX is half-
maximally activated at [Na®]; in the physiological range
(5-10 mM) (Boyman et al., 2013). Therefore, mitoNCX is very
sensitive to changes in [Na'];. An increase in [Na't]; accelerates
mitochondrial Ca?t efflux and thus reduces [Ca%T ], (Cox and
Matlib, 1993; Maack et al., 2006). Because [Ca®t];, stimulates
several dehydrogenases involved in the tricarboxylic acid cycle
(McCormack et al., 1990), regeneration of NADH and NADPH
from their oxidized forms slows down at lower [Ca2™],,. Slower
restoration of the NADH pool limits the rate of electron transport
and thus diminishes mitochondrial ATP production. Notably
however, glycolytic ATP also drives cellular processes in the
heart, particularly NKA (Glitsch and Tappe, 1993). NADPH
is utilized to neutralize the H,O, produced by the electron
transport chain and lower NADPH levels may result in oxidative
stress (Bertero and Maack, 2018). Abnormally low [Na']; is
likely to have the opposite effect and cause mitochondrial Ca?™
overload, which also has detrimental effects on myocyte function.
This notion is supported by the recent finding that elimination
of mitochondrial Ca?* efflux through deletion of the gene
encoding mitoNCX results in increased generation of superoxide
and necrotic cell death leading to heart failure (Luongo et al,,
2017).

In summary, [Na*]; regulates Ca?* cycling, electrical activity,
and oxidative stress in cardiac myocytes. Thus, maintenance of
myocyte Nat homeostasis is vital for preserving heart function.

MYOCYTE [Na*]; IS ELEVATED IN
HEART FAILURE AND TYPE-2 DIABETES

[Na™]; is in the 4-8 mM range in resting ventricular myocytes
from healthy rabbit, guinea-pig, dog and human hearts (Harrison
etal, 1992; Yao et al., 1998b; Gray et al., 2001; Despa et al., 2002a;
Pieske et al., 2002; Gao et al., 2005) and somewhat higher (10-15
mM) in rat and mouse myocytes (Donoso et al., 1992; Yao et al.,
1998a; Despa et al., 2002a, 2005). [Na']; increases in a frequency
dependent manner when myocytes are excited electrically. This
[Na™]; rise is caused by enhanced Na* entry due to the regular
opening of the voltage-gated Na™ channels and activation of NCX
during Ca?* transients. As [Nat]; rises, NKA is activated to
extrude more Nat and a new steady-state is reached when the
higher Na™ influx is balanced by an elevated Na* efflux.

The balance between the passive Na™ entry and Na* pumping
out of the cell is perturbed in both humans and animal models
with heart failure (HF), resulting in elevated [Na'T];. Pieske
et al. (2002) found that [Na't]; is ~4 mM higher in myocytes
from failing human myocardium compared to non-failing hearts.
A comparable [Na']; increase was reported in myocytes from
rabbits with heart failure induced by volume and pressure
overload (Despa et al,, 2002b; Baartscheer etal., 2003) or by

rapid pacing (Schillinger et al., 2006). [Na™]; is also elevated in
myocytes from mice with heart failure caused by conditional,
cardiomyocyte-specific deletion of SERCA gene (Louch et al,
2010). These studies found that [NaT]; was elevated at all
stimulation rates in the 0-3 Hz range. While a few mM rise
in [Na']; may seem modest, Despa et al. (2002b) showed
that, compared to other HF-induced alterations such as smaller
Ca’* transients and longer action potentials, it has the greatest
impact on NCX function, and thus on cellular and SR Ca?™
load.

Diabetes is a systemic disease that leads to structural,
contractile and electrical abnormalities of the heart, even in the
absence of coronary artery disease or hypertension (Taegtmeyer
et al., 2002; Young et al., 2002, 2009; Guha et al., 2008; Boudina
and Abel, 2010). Diabetic cardiomyopathy is characterized by
diastolic dysfunction (>50% prevalence) that progresses to
systolic dysfunction and heart failure at more advanced diabetic
stages (Ingelsson et al., 2005; Kostis and Sanders, 2005; Masoudi
and Inzucchi, 2007; Pataky et al., 2011; Chaudhary et al., 2015).
Some studies reported alterations in myocyte Na™ transport
consistent with elevated [Na™]; in animal models of both type-
1 and type-2 diabetes (see below). However, whether or not
[Na™]; is altered in diabetic hearts was largely unknown until we
recently found higher [Na™]; in resting and contracting myocytes
from rats with late-onset type-2 diabetes that display a cardiac
phenotype that closely resembles the diabetic cardiomyopathy
in humans (HIP rats) (Lambert et al., 2015). Interestingly, the
[Nat]; rise that we measured in diabetic HIP rat hearts is
comparable to the increase in [Na™]; that occurs in HF.

As discussed above, high [Na']; may amplify the risk
for arrhythmias and cause oxidative stress. Indeed, elevated
[Nat]; was shown to cause oxidation of NAD(P)H and to
increase the H, O, level in myocytes from guinea-pigs with heart
failure induced by aortic constriction (Liu and O’Rourke, 2008).
These effects were prevented by pharmacological inhibition of
mitoNCX (Liu and O’Rourke, 2008). In a guinea pig model of
heart failure and sudden cardiac death (aortic constriction +
daily PB-adrenergic receptor stimulation), mitoNCX inhibition
attenuated cardiac hypertrophic remodeling and prevented
cardiac dysfunction and sudden cardiac death, likely through
normalizing [Ca2* ], (Liu et al., 2014). Therefore, the increase
in [Nat]; is an active contributor to heart dysfunction in
HF. Similar mechanisms are likely also in play in diabetic
cardiomyopathy. In support of this assertion, Babsky et al.
(2001) found that higher [Na%] had a larger negative effect
on state 3 respiration, rate of oxidative phosphorylation and
ATP production in mitochondria isolated from rats with
streptozotocin-induced diabetes compared to control.

MECHANISMS UNDERLYING THE [Na*];
RISE IN HEART FAILURE AND DIABETES

Since [Na™]; is at steady-state when the active Na™ efflux through
the Nat/KT-ATPase and the total Na™ influx through various
pathways (Figure 1) are at equilibrium, the [Na™]; rise in HF and
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FIGURE 1 | Nat transport pathways and consequences of elevated [Na*]; in cardiac myocytes. Several pathways, including the Nat/Ca?+ exchanger (NCX), Na*t
channels, Nat/H* exchanger (NHE), Na™-glucose cotransporter (SGLT), and Na*-aminoacid cotransporter, contribute to the entry of Na* into cardiac myocytes,
while the Na*/K*-ATPase (NKA) is the essential route for Na* efflux. Either enhanced Na* influx or impaired Na* extrusion result in higher [Na*];. Elevated [Na*];
leads to (i) increased cellular and SR Ca?* load, which augments the risk for the occurrence of delayed afterdepolarizations (DADs), and (ii) reduced mitochondrial
Ca?™ levels, which leads to lower ATP production and causes oxidative stress. ETC — electron transport chain.

diabetic cardiomyopathy could be caused by both reduced Na™
extrusion and enhanced Nat entry.

Na*/K*-ATPase Expression and

Function in Heart Failure and Diabetes

Numerous studies in human myocardium and animal models
reported lower protein expression of various NKA subunits
in HF. Schwinger et al. (1999) found reduced expression of
NKA a;-, a3-, and pi-subunits in failing human hearts. Protein
expression of all three a-subunit isoforms is decreased in hearts
from rabbits with pressure and volume overload-induced HF
(Bossuyt et al., 2005). In contrast, expression of a; isoform is
unchanged while o is reduced and a3 is increased in most rat
HF models (Verdonck et al., 2003a). These data suggest that
NKA activity might be reduced in HF. However, NKA function
depends strongly on regulation by various modulators, including
the endogenous inhibitor phospholemman. Indeed, Boguslavskyi
et al. (2014) reported hypophosphorylation of phospholemman
with no change in NKA expression following aortic constriction
in mice, which resulted in a progressive decline in NKA current
and elevation of [Nat];. Thus, functional measurements in
live cells and intact beating hearts are needed in order to compare
NKA activity in failing and control hearts. By measuring the
rate of [Na't]; decline as a function of [Na*t]; in live myocytes,
we found no changes in either the maximal Na™ transport rate
or the apparent affinity for internal Na' in myocytes from
failing rabbit hearts compared to controls (Despa et al., 2002b).

Decreased maximal Na™ extrusion rate (mainly through NKA-
a2 isoform) but unchanged [Na'];-affinity were reported in
myocytes from rats with HF following myocardial infarction
(Semb et al., 1998; Swift et al., 2008) as well as in mice with
end-stage HF following genetic deletion of SERCA2 (Louch
et al, 2010). In contrast, myocytes from dogs with chronic
atrioventricular block and hypertrophy have unaltered maximal
NKA current but reduced NKA [Na*];-affinity (Verdonck et al.,
2003b). Overall, NKA activity is decreased in some but not all HF
models investigated, which may contribute to the rise in [Na™];.
There are significantly fewer studies of NKA expression and
function in diabetic cardiomyopathy. NKA activity is reduced by
21% in the myocardium of rats with streptozocin-induced type-
1 diabetes (Kjeldsen et al., 1987). Hansen et al. (2007) found
decreased NKA current measured with 10 mM Na™ but not with
80 mM Na™ in the pipette solutions in myocytes from rabbits
with alloxan-induced type-1 diabetes, which indicates a reduction
in the affinity of NKA for internal Na™ but no change in the
maximal NKA activity. Myocytes from type-2 diabetic HIP rats
showed no change in NKA-mediated Na™ extrusion for [Na™];
in the physiological range (0-20 mM) compared to their control
littermates (Lambert et al., 2015). In agreement with this result,
we also found that NKA-al expression is unaltered, while there is
~50% decrease in NKA-a2 (Lambert et al., 2015). Since NKA-
a2 represents less than 25% of the total NKA in rat myocytes
(Despa and Bers, 2007; Swift et al., 2007), a ~50% reduction in
its expression has only a minor effect on total NKA function.
However, NKA-a2 has a preferential localization in the t-tubules
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(Despa and Bers, 2007; Swift et al., 2007, 2010; Despa et al., 2012a)
and therefore reduced NKA-a2 expression might affect Ca?™
cycling and contractility through local, subcellular, effects.

Na* Influx Pathways in Heart Failure and

Diabetes

We (Despa et al.,, 2002b) and others (Baartscheer et al., 2003)
found that higher [Na™]; is caused by enhanced Na% influx
rather than reduced NKA activity in hearts from rabbits with
pressure and volume-overload induced HF. This is also the case
in myocytes from type-2 diabetic HIP rats, where Na™ influx
is increased by ~40% compared to myocytes from control rats
(Lambert et al., 2015). While not directly measuring the rate
of Na' entry, several other studies reported upregulation of
membrane transporters that facilitate Nat import in HF and
diabetic cardiomyopathy (see below), supporting an essential role
for Na™ influx in the [Na™]; rise that occurs in these pathological
conditions.

Na* Current in Heart Failure and Diabetes

We found that the excess Na™ influx in myocytes from rabbits
with HF is TTX-sensitive, which suggests that it is carried
by Nat channels (Despa et al., 2002b). There are numerous
reports of increased late Na™ current in HF (Maltsev et al.,
1998; Valdivia et al., 2005; Mishra et al., 2015; Hegyi et al.,
2018), a slowly inactivating current that may be carried by both
cardiac and neuronal Na*t channels present in myocytes. While
the amplitude of late Na™ current is small (~0.1-0.5% of the
amplitude of the peak Na™ current), the current is long lasting
(hundreds of milliseconds) and thus may contribute to myocyte
Na® homeostasis. However, the role of late Na™ current in
elevating Na™ influx and [Na™]; in HF is controversial. On one
hand, ranolazine, a late Na® current inhibitor, reduced [Na™];,
and diastolic Ca>* overload in failing human hearts (Sossalla
et al., 2008). Moreover, the CaMKII-dependent increase in late
Na™ current produced by exogenous reactive oxygen species
was associated with a TTX and ranolazine-dependent rise in
[Na*t]; (Wagner et al., 2011). On the other hand, computational
modeling predicts that higher late Nat current measured in
myocytes from failing hearts generates only a modest increase
in [Na™];, smaller than measured experimentally (Wagner et al.,
2011; Cardona et al., 2016). Alternatively, HF may also enhance a
background Na™ channel conductance that is responsible for the
higher rate of Na™ entry.

Independent of a potential effect on [Na'];, increased late
Na® current contributes to the prolongation of the action
potential in HF, which may result in early afterdepolarizations.
Moreover, via NCX, longer action potentials favor Ca’*
loading of the myocyte, which increases the propensity for
delayed afterdepolarizations. Indeed, ranolazine significantly
abbreviated the action potential and prevented the occurrence
of delayed afterdepolarizations in myocytes from mice with HF
induced by aortic constriction (Toischer et al., 2013). Ranolazine
prevented ventricular fibrillation in rabbits with pacing-induced
HF (Frommeyer et al., 2012) Thus, while the contribution of
increased late Na™ current to the rise in [Na't]; is not fully

elucidated, late Nat current inhibition has proven beneficial
effects in HF.

Nat/Ca?* Exchanger in Heart Failure and Diabetes
NCX, which exchanges three Na* ions for one Ca?*, is the main
route for Ca2t extrusion (Bers, 2001) and the most prominent
contributor to Na' influx (Despa et al., 2002a) in cardiac
myocytes. Cardiac NCX expression is generally increased in both
animal models of HF (O’Rourke et al., 1999; Pogwizd et al., 1999;
Louch et al,, 2010) and failing human hearts (Hasenfuss et al.,
1999). However, higher NCX expression does not necessarily
translate into higher rate of NCX-mediated Na%t entry. This is
because the higher [Na*]; and smaller Ca?* transients typically
seen in HF shift the balance of fluxes through NCX to disfavor
the Ca?* out/Na™ in mode of function and may even cause the
reversal of the exchanger during an action potential. In agreement
with this reasoning, we found no change in the NCX-mediated
Na™ influx in failing rabbit myocytes (Despa et al., 2002b) despite
a 100% increase in NCX expression (Pogwizd et al., 1999).

In contrast to HE, NCX expression and function is decreased
in rats with streptozotocin-induced type-1 diabetes (Chattou
et al., 1999; Hattori et al., 2000) and in type-2 diabetic HIP rats
(Despa et al., 2012b). It is thus unlikely that NCX contributes to
the enhanced myocyte Na* entry in diabetes.

Nat/H* Exchanger in Heart Failure and Diabetes
NHE is markedly upregulated in HF (Yokoyama et al., 2000;
Leineweber et al., 2007; Fliegel, 2009; Packer, 2017) and its
inhibition improved heart function in various animal models
of HF (Kusumoto et al., 2001; Engelhardt et al., 2002; Aker
et al., 2004; Kili¢ et al., 2014). Baartscheer et al. (Baartscheer
et al., 2003) reported that increased Na™/H™ -exchange activity is
responsible for elevated [Na™]; in myocytes from failing rabbit
hearts. Moreover, chronic treatment with cariporide, an NHE
inhibitor, prevented the onset of HF in rabbits with pressure
and volume overload (Baartscheer et al,, 2005). The activity
of myocardial Na*/H* exchanger (NHE) is enhanced and
contributes to left ventricular hypertrophy in the Goto-Kakizaki
rat model of T2D (Darmellah et al., 2007). Increased NHE activity
leads to higher [Na™]; gain during ischemia-reperfusion in hearts
from T2D db/db mice (Anzawa et al., 2006). Moreover, reducing
[Na™]; gain during ischemia-reperfusion by NHE inhibition was
associated with a lower incidence of ventricular tachycardia and
fibrillation in db/db hearts (Anzawa et al., 2006). These data point
to an important contribution of NHE to the excess cardiac Na*t
influx in HF and diabetic cardiomyopathy.

Na*t-GLUCOSE COTRANSPORTER AND
[Nat]; DYSREGULATION IN DIABETIC
HEARTS

One transporter known to be present in the heart but rarely
discussed in the context of myocyte Na™ homeostasis is the Na™ -
glucose cotransporter (SGLT), which couples Na* transport to
glucose uptake and thus to energy substrate metabolism. The
major SGLT isoforms, SGLT1, and SGLT2, have distinct tissue
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distribution and systemic role. SGLT1 is found predominantly
in epithelial cells from the intestine, where it participates in
dietary glucose absorption, whereas SGLT2 is the major isoform
expressed in renal epithelial cells and is essential for glucose
reabsorption from the forming urine. Highly specific SGLT2
inhibitors are the latest class of blood glucose lowering drugs.
Recently, SGLT2 inhibitors were demonstrated to have beneficial
cardiac effects in patients with type-2 diabetes and HF (Zinman
et al., 2015). However, reports from several labs (Nishimura
and Naito, 2005; Wright and Loo, 2011; Van Steenbergen
et al,, 2017) indicate that SGLT2 is not expressed in the heart.
This suggests that the cardioprotection conferred by SGLT2
inhibitors is mediated by interaction with a different cardiac
target and/or by effects in extracardiac tissues. Intriguingly, two
recent studies (Baartscheer et al.,, 2017; Uthman et al., 2018)
found that SGLT2 inhibitors (empagliflozin, dapagliglozin, and
canagliflozin) block the Na*/H* exchanger, possibly by binding
to the Na™-binding site of NHE, and thus lower myocyte [Na™];
in multiple species. Furthermore, empagliflozin and canagliflozin
also induced vasodilation (Uthman et al., 2018). While these
measurements were performed in healthy hearts/myocytes, the
effects uncovered are likely to play a part in the improvement of
heart function by SGLT2 inhibitors that was observed clinically
in patients with HF and type-2 diabetes.

In contrast to SGLT2, SGLT1 is highly expressed in the heart
(Zhou et al., 2003; Banerjee et al., 2009, 2010; Wright and
Loo, 2011). Recently, SGLT1 upregulation was causally linked
to PRKAG2 cardiomyopathy that is caused by mutations in
the gene encoding the y2 subunit of AMP-activated protein
kinase (Banerjee et al., 2010) and cardiac-specific SGLT1 deletion
attenuated the cardiomyopathy (Ramratnam et al, 2014).
Moreover, cardiac-specific overexpression of SGLT1 in mice
causes hypertrophy and left-ventricular dysfunction (Ramratnam
et al.,, 2014). Thus, there is increasing evidence that enhanced
SGLT1 activity harms the heart.

Banerjee et al. (2009) reported that the mRNA level of SGLT1
is increased in hearts from humans and mice with type-2 diabetes
and ischemic cardiomyopathy. In agreement with this result, we
found higher SGLT1 protein expression in failing hearts from
T2D patients compared to failing hearts from lean, non-diabetic
individuals and in hearts from type-2 diabetic HIP rats vs. control
rats (Lambert et al, 2015). Obesity, in the absence of type-
2 diabetes, was also associated with elevated levels of cardiac
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