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HER2-enriched breast cancer is a complex disease characterized by the overexpression

of the ERBB2 amplicon. While the effects of this genomic aberration on the pathology

have been studied, genome-wide deregulation patterns in this subtype of cancer

are also observed. A novel approach to the study of this malignant neoplasy is the

use of transcriptional networks. These networks generally exhibit modular structures,

which in turn may be associated to biological processes. This modular regulation of

biological functions may also exhibit a hierarchical structure, with deeper levels of

modular organization accounting for more specific functional regulation. In this work,

we identified the most probable (maximum likelihood) model of the hierarchical modular

structure of the HER2-enriched transcriptional network as reconstructed from gene

expression data, and analyzed the statistical associations of modules and submodules

to biological functions. We found modular structures, independent from direct ERBB2

amplicon regulation, involved in different biological functions such as signaling, immunity,

and cellular morphology. Higher resolution submodules were identified in more specific

functions, such as micro-RNA regulation and the activation of viral-like immune response.

We propose the approach presented here as one that may help to unveil mechanisms

involved in the development of the pathology.

Keywords: modular networks, breast cancer, gene regulatory networks, transcription, genetic, signaling

pathways, molecular subtypes

1. INTRODUCTION

Breast cancer is the malignant neoplasy with the highest incidence and mortality among women
worldwide (Ferlay et al., 2014). Breast cancer is a heterogeneous disease, and this poses a challenge
for its treatment: a multitude of clinical, physiological and survival outcomes, all affect the choice of
therapeutic options (Polyak, 2011; Network, 2012). The heterogeneity of breast cancer can be traced
down to the subcellular level, which includes changes in the transcriptional programs through
mutations, alterations of epigenetic regulation, chromosomal aberrations, among others.

HER2-enriched (HER2+) breast cancer is a paradigmatic example of the role of alterations
in the chromosomal structure throughout the development of cancer. HER2+ breast cancer is
characterized by the overexpression of the HER2 receptor, encoded in the ERBB2 gene located on
Chromosome 17: Amplification of the Chr17q12 locus leads to the overexpression of the receptor
that can be identified through immunohistochemical and transcriptomic approaches (Perou et al.,
2000; Burstein, 2005). This HER2 amplicon also includes genes such as STARD3, GRB7, PGAP3,
TOP2, MED1, THRA, RARA, IGFPB4, CCR7, KRT20, KRT19, and GAST.
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While the effects that genes in this region have in the
HER2+ breast cancer phenotype have been extensively explored,
high-throughput technologies that allow genome-wide studies
open the possibility for further exploration of the genomic
landscape of this pathology. Major breakthroughs in the study
of genomic cancer landscapes have been accomplished through
the use of network theory. For instance, relationships between
gene expression levels can be modeled as transcriptional
networks. These networks have proven to be useful to
associate different biological features of interest to a particular
phenotype (de Anda-Jáuregui et al., 2016; Espinal-Enríquez et al.,
2017).

A major topological feature of transcriptional networks
is the fact that these have modular structures. Modules in
networks, also known in some contexts as communities,
are structural sub-units (subnetworks) broadly defined as
subsets of tightly interconnected nodes so that the density of
within-connections is higher than that of between-connections
(Girvan and Newman, 2002; Porter et al., 2009; Fortunato,
2010). One challenge of the community structure finding
algorithms is that there is no consensus in the appropriate
within/between ratio. One measure of the efficacy of
different algorithms with variable ratios is given by the
LFR benchmark (Lancichinetti et al., 2009). In some cases,
modules in transcriptional networks are associated to biological
processes and functions observed in a given phenotype
(Cantini et al., 2015). Thus, modules in a gene transcriptional
network may capture some functional aspects underlying the
phenomenology.

In this work, we explored the modular structure in the
HER2+ breast cancer transcriptional network. We previously
inferred said network (de Anda-Jáuregui et al., 2015), using
a Mutual Information (MI)- based algorithm, from gene
expression patterns measured using microarrays. Then, we
analyzed the modularity of this network at three different
levels: connected components (islands), modules in the largest
component, and submodules in the largest modules. Over-
representation analysis (ORA) was used to identify modular
structures associated with functional categories as defined in
Gene Ontology (GO).

Our analysis identified a transcriptional network with
an explicit modular structure at each level of modularity
resolution explored. We found associations between some of
these modules and biological features of interest. The highest
level of modular organization, that of connected components,
captures the transcriptional relationships associated with
the HER2 amplicon. Modules inside connected components
were identified linked to biological processes, including
Extracellular Matrix (ECM) organization, signaling, and
immune response. Finally, at the finest level of modular
organization, we found groups of genes associated to
more specific processes, such as viral response, plasma
membrane organization, and micro-RNA regulation.
These results show the usefulness of understanding the
transcriptional architecture of disease in order to dissect
the mechanisms behind the appearance of a pathological
phenotype.

2. METHODS

We used the hierarchical map equation (Rosvall and Bergstrom,
2011) to find nested submodules into the HER2+ breast
cancer network, and then, using the approach of Alcalá-Corona
et al. (2016), we identified whether those submodules were
associated to a particular biological function. This section is
divided as follows: network inference, differential expression
analysis, modularity and submodularity detection and the
hierarchical map equation, and functional analysis. A graphical
representation of this methodology can be observed in Figure 1.
It is worth mentioning that all the code used in this work is
publicly available in our Github site https://github.com/CSB-IG/
BioNetworkInference_ModularAnalysis.

2.1. Network Inference
The network architecture of breast cancer molecular subtypes
has been previously analyzed (de Anda-Jáuregui et al., 2016).
There, network inference was carried out by using data on
493 microarray expression profiles for breast cancer samples
processed on the Affymetrix HGU133A platform. Mutual
information calculations were performed by means of the
ARACNe algorithm (Margolin et al., 2006). PAM50-subtyped
gene expression datasets were obtained as in de Anda-Jáuregui
et al. (2015). From PAM50 algorithm we conserved the HER2+
subtypes only. In this work, we built upon such transcriptional
network structure to carry out posterior analyses. As a result
of this network inference, nodes represent genes in the
transcriptional space and edges is the statistical dependence
between two genes, which is a robust measure of the degree
of co-expression existing in any couple of genes, and edges the
statistical dependence between two genes, which is a robust
measure of the degree of co-expression existing in any pair of
genes.

2.2. Differential Expression Analysis
Independent gene-based linear models were adjusted using
limma R package (R Core Team, 2013) to find differential
expressed genes (DEGs) in the tumor samples compared to the
control ones (61 samples in the same array, as described in
de Anda-Jáuregui et al., 2016) using (1):

yij = µ+αi + εj (1)

where yij, is the log2(normalized gene expression); µ, is the
global mean; αi is the ith experimental condition (normal or
tumor) and εj N(0, σ ) is the random error term of the jth
sample. We also used a hypothesis tests based on empirical
Bayes moderation of the standard errors toward a common
value, in order to obtain p-values which were adjusted to control
multiple comparisons using the False Discovery Rate (FDR)
(Benjamini and Hochberg, 1995). We then defined a gene as
differentially expressed if it had a FDR < 1 × 10−5 and a
|log2(fold change)| > 1. As it is observed, Figure 1B reflects
how genes are grouped in a first modular structure, based on
their differential expression, overexpressed genes have more
overexpressed neighbors. Analogously, underexpressed genes are
clustered with other underexpressed genes.
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FIGURE 1 | Graphical pipeline. (A) Data acquisition: The gene expression matrix (samples in columns, genes in rows) is generated with HER2+ samples from the

datasets used in de Anda-Jáuregui et al. (2015). (B) Gene-gene relationships: By means of mutual information between couples of genes in (A), gene expression

across all samples are correlated. (C) High correlations are considered if they pass a certain threshold value (in this case the top 10,000 interactions). (D) First level of

modularity: connected components. The largest level of modularity in this network is associated to certain structures, shown in (E), the amplicon in Chr17 is depicted

there. (F) Second level of modularity: Infomap-derived communities. In different colors, the modules generated by the infomap algorithm are depicted. (G) The

aforementioned modules are enriched with Gene Ontology categories, which apparently represent specific categories (orange, violet and yellow nodes) per module

(dark green centered nodes). (H) Third level of modularity: Hierarchical map equation. In different colorsthe modules obtained in (F) are systematically separated into

submodules, and these are again enriched, as observed in (I).
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2.3. Modularity and Submodularity
Detection and the Hierarchical Map
Equation
In order to find the hierarchical modular structure in the
network, several methods to obtain modules from a given
network have been developed (Girvan and Newman, 2002;
Clauset et al., 2004; Adamcsek et al., 2006; Alves, 2007; Fortunato
and Barthelemy, 2007; Arenas et al., 2008; Amini et al., 2013 for
an in-depth revision, see Fortunato, 2010). Additionally, several
of these algorithms have been used to find modules into gene
regulatory networks (Dey and Meyer, 2015; Binder et al., 2016;
Bonsang-Kitzis et al., 2016; Feng et al., 2016;Miecznikowski et al.,
2016). For this work, we decide to use the generalization of the
map equation, developed by Rosvall and Bergstrom (Rosvall and
Bergstrom, 2011), as this is one of the best performing network
partition algorithms as revealed by several stringent benchmark
tests (Lancichinetti et al., 2009). In general, the hierarchical
map equation method allows for multiple description levels of
the movements of a random walker within the modules and
allows an arbitrary number of such movements inside modules,
submodules, subsubmodules, and so on, to the finest level. This
additional description allows exploiting the fact that fine-level
modules are themselves organized into larger modules. Modules
and submodules are labeled according to the gene with the
highest PageRank, a centrality measure that takes into account
the cumulative weight of adjacent links (Brin and Page, 1998).

Graph partition by means of random walk-based methods
(such as the method used here), generally speaking, optimize
information flow within partitions and over the whole network.
To do so, most of these algorithms perform constrained

optimization over an entropic probability measure. In the present

case, this is done by minimum description length optimization
and bootstrapped permutation over an ensemble of encoded
trajectories to generate an optimumpartition. The outcome of the

method is a maximum entropy partition. Hence, there is no need
to evaluate different partitions, since there is no better partition
compliant with the data than the one obtained. Infomap is one of

the flagship of non-overlapping community detection methods.
It has shown to be robust in the most stringent benchmarks (such

as the LFR, Q-maximization and Spectral matrix-based tests),

its computational complexity is linear in time, i.e., O(N). These
facts have been already tested and are well established within
the complex networks research community (Fortunato, 2010;
Fortunato and Hric, 2016).

2.4. Functional Analyses
Once the modules of the network have been detected, we
explored whether the genes in these modules, arisen from
the connections in the network (co-regulation model), are
associated to a particular biological function. This is achieved
by performing an Over Representation Analysis (ORA) based on
the hypergeometric test over a category of genes whose function
is known or annotated in a database. For this study, we use the
Gene Ontology Consortium databaseGO (Ashburner et al., 2000).
This hypergeometric test represents a null model to calculate how
probable is it that a set of randomly chosen genes k belongs

to a category (biological function) annotated in said database.
Thus, a p-value is associated with this test, so the lower the p-
value the lower the probability that the set k of genes belongs
randomly to the category, and therefore represents a statistical
trust about the particular gene set over the whole category.
Additional analyses included the identification of differentially
expressed genes (DEG) using the limma R package (Ritchie
et al., 2015), and their functional characterization using Ingenuity
Pathway Analysis (IPA) (Krämer et al., 2014).

2.5. Validation
In order to provide validation of our biological findings on
an independent experimental dataset, we used 89 HER2+
samples from the METABRIC database. METABRIC (Molecular
Taxonomy of Breast International Consortium) is a collection
of clinically annotated primary fresh-frozen breast cancer
specimens from tumor banks from the UK and Canada (Curtis
et al., 2012), with transcriptomics data measured with the
Illumina HT-12 v3 microarray platform.

Due to the differences in coverage between the Affymetrix
133A and the Illumina HT-12 v3 microarrays, we decided to
discard for the downstream analysis genes that could not be
simultaneously measured in both platforms.We used this filtered
METABRIC expression matrix to infer the full set of Mutual
Information values for all gene pairs using ARACNE. Then, this
network was pruned by keeping the 10,000 gene pairs with the
highest MI values, which formed our transcriptional network.
The hierarchical modular structure of this transcriptional
network was analyzed using the Infomap algorithm, and the
resulting modules and submodules were inspected for functional
associations following the same criteria previously used for the
discovery network.

3. RESULTS AND DISCUSSION

Complex networks are mathematical models that represent
the intricate interrelationship structure in complex systems. In
the case of biological networks (in particular, gene regulatory
networks), there is a search for modular partitions that may
reflect a semi-mechanistic (ideally, a fully mechanistic) structure
in which particular modules (and submodules) are responsible to
carry out certain biological functions.

Conceptually, one may think of modules within a regulatory
network that perform some functions in a way that it is
not completely independent of the whole genome regulation
program but is, to a certain extent, autonomous. This is thought
to be so, since biological functions are often robust in their
control and hence, resilient to potentially harmful systemic
damage. Control theory has proven that one of the easiest way to
combine robustness, with relative autonomy and global control
is modularization.

The graph partition algorithm used here
(InfoMap/MapEquation) is based on the consideration of an
ensemble of random walkers performing stochastic trajectories
over the network, a coding procedure is performed on the
trajectories generating an ensemble of travel codes that are
then subject to minimum description length optimization. The
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whole process is repeated in a large number of bootstrapped
permutations that aside from the minimum description length
optimization (and the fact that random walk trajectories are
subject to the central limit theorem) ensures that one has the
most probable modular partition of the network. Since this
modular partition is subject to stringent optimization, we may
refer to as the modular partition of the network, because even if
it is not unique, is by far the most likely to happen.

3.1. The Hierarchical Structure of HER2+
Network
Transcriptional networks associated with specific molecular
subtypes of breast cancer have characteristic structures (de Anda-
Jáuregui et al., 2016). In the case of the HER2+ molecular
subtype, we can observe a network with 2,100 nodes and 9,856
edges; this network is integrated by a giant component, along
with several (161) smaller connected components or islands
(Figure 2). The basic topological parameters of this network are
shown in Table 1.

Breast cancer transcriptional networks also exhibit modular
structures, as it has been previously reported (Alcalá-Corona
et al., 2017). The HER2+ molecular subtype is no exception.

The first level of modularity observed in this network is
the aforementioned distribution of nodes into connected
components. As it is shown in Figure 1, the bulk of connections
in the network are part of the giant component. Moreover 1,649
out of the total number of nodes are part of it. It is in the
giant component where we can analyze the modular hierarchical
structure of HER2+ breast cancer network.

In Figure 3 we show different visualizations of the giant
component, highlighting different properties: In panel A, we
show this largest component using a spring-embedded layout. In
panel B, we color the nodes according to differential expression
(ranging from blue to red in terms of under and over expression);

TABLE 1 | Network metrics.

Parameter Value

Nodes 2,100

Edges 9,856

Avg. node degree 4,583

Char. path length 5,917

Connected components 162

FIGURE 2 | The network architecture of Her2+ breast cancer. The visualization shows the connected components (islands) of this network separately. In this

representation nodes are colored and sized according to their node degree (i.e., the number of neighbors connected to a gene). The layout and arrangement of the

network showcases the giant component (Left) and several small islands (Right).
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FIGURE 3 | Hierarchical levels of modularity in the HER2+ network. In each panel, the giant component of the HER2+ breast cancer network is depicted. The colors

of the nodes in each panel represent different groupings: (A) all nodes are colored the same, as they belong to the same connected component. (B) Nodes are

colored by expression levels (blue: underexpressed, red: overexpressed) regardless of connectivity patterns. Notice that genes are grouped together depending on the

differential expression pattern. (C) Nodes are colored according to modules detected by Infomap; in (D) nodes are colored by submodules inside the modules, these

submodules were detected using the hierarchical map equation.

nodes with similar expression values are arranged together and
have a higher density of connections among them, which is in
accordance to the fact that connections in this network arise from
common expression patterns. This in turn leads to panels C and
D, that show modules and submodules, respectively, based on
the connectivity patterns exhibited in the network, as identified

using the Infomap algorithm based on the hierarchical map
equation.

Previously, we have shown that modular structures in
transcriptional networks are usually associated with biological
features (Alcalá-Corona et al., 2016, 2017). Here we show that
new insights on the biological features of HER2+ breast cancer
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may be revealed by exploring the functionality related to different
layers of modularity.

3.2. The HER2 Amplicon Genes Are
Modularly Isolated in the Transcriptional
Network
As we have previously mentioned, the nodes that integrate the
HER2+ transcriptional network are distributed in 162 different
connected components. The vast majority of nodes belong
to a single giant component, whereas the rest of connected
components are much smaller: the next component in size has
only 39 nodes, and 120 components are composed by two nodes
each. At this level of modularity, it is hard to systematically
analyze functionality of connected components, as it is unlikely to
identify biological functions and processes that can be associated
with two or three molecules alone.

However, an important exception is the case of a component
integrated by four genes that belong to the HER2 amplicon:
ERBB2, GRB7, PGAP3, and STARD3. These four genes are
closely located at the core of the HER2 amplicon, which is
the single, most important hallmark of this particular subtype
of cancer (Kauraniemi and Kallioniemi, 2006). Their fully
connected pattern (clique), is indicative of a close coexpression
exhibited by these four genes, which may be related to their
genomic proximity in the amplified region (Figure 4). In
previous work (Espinal-Enríquez et al., 2017) we have shown that
transcriptional networks of breast cancer recover connections
between genes belonging to the same chromosome, which are
related to a loss of trans regulation associated with breast
cancer. In the case of the network analyzed in this work, it
appears that the more statistically significant connections that
are recovered for the ERBB2 gene are to its closest genomic
neighbors.

3.3. Functional Role of Modules in HER2
Transcriptional Network
To analyze the modular structure of the giant component and
their functionality is important to have a more detailed vision of
these genes in the disease. This giant component has a modular
structure composed of six modules. In Figure 5 we see that

the functionality associated with these different modules can be
clearly divided along functional themes, indicating a functional
compartmentalization reflected in the transcriptional program.

We can observe that the three largest modules (labeled
CNR2, LCK, and COL5A2 based on the genes with the highest
PageRank in each module) are related to processes of signaling
and transport, immunity, and extracellular matrix organization
respectively. We can also observe the existence of two processes
that connect these communities at a functional level: GO:007186
(G-protein coupled receptor signaling pathway) which is
associated with both the CNR2 and the LCK modules; and
GO:0005576 (Extracellular region) which is associated with
both the LCK and COL5A2 modules. In this regard, it is
important to recall that the hierarchic map equation recovers
non-overlapping modules: therefore, the fact that these processes
can be associated with two distinct modules indicates that the
regulation of those processes involves two different sets of
genes.

3.3.1. The CNR2 Submodules Are Associated With

the Regulation of Signaling and Micro-RNA Assembly
The largest module in the giant component of the HER2+
network has 763 genes with 4,574 links between them. The
gene with the highest PageRank in this community is the
CNR2 gene, which codifies for the cannabinoid receptor type
2 (CB2). This CNR2 module is composed by 49 submodules.
Additionally, two of these modules: GPATCH4 and ZBTB38,
have sub-submodular structures themselves (with 4 and 5 sub-
submodules, respectively). As mentioned before, the CNR2
module is associated with signaling and transport processes.
Interestingly, few of their submodules show enrichment (each
submodule contains genes that participate in a specific function):
these are the CNR2, PGLYRP4, and ZBTB38 submodules.

The aforementioned modules may be associated with specific
cellular components, with the first twomodules being involved in
the cell membrane, while the last one correlates to the cytosolic
region. Furthermore, the ZBTB38 submodule (defined by the
gene that encodes zinc finger and BTB domain containing 38) is
also associated with protein binding processes; taken into account
together, this may be indicative that the ZBTB38 submodule

FIGURE 4 | Genes of the HER2 Amplicon. In this figure we show (A) the chromosomal location of HER2 Amplicon genes (adapted from Kauraniemi and Kallioniemi,

2006), and (B) The transcription interactions of those genes in the regulatory network. Notice that in (B), only genes belonging to the amplicon appear in said

component.
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FIGURE 5 | Gene Ontology Categories associated with HER2+ modules. This network depicts the different biological features (hexagons) to which the modules (green

circles) in the giant component of the HER2+ network are associated. Processes are colored according to the general biological function in which they participate.

is more related to intracellular signaling than to membrane
receptor-dependent signaling.

When the expression levels of these genes are taken into
account (as seen in Figure 6A) we may observe a clear separation
in this submodule, where only the ZBTB38 submodule is
overexpressed, while the rest of the submodules in the CNR2
module are underexpressed. Inside the ZBTB38 we can also
find two crucial genes for micro-RNA assembly and regulation:
DICER1 and AGO (Figure 6B). These two are the main
components in the RISC complex (Daugaard and Hansen, 2017).
It has been shown that micro-RNA regulation is crucial for
the induction of both epithelial-to-mesenchymal transition and
mesenchymal-to-epithelial processes in breast cancer Drago-
Garca et al. (2017). Hence a submodule related to micro-RNA-
gene regulation may be relevant to identify novel therapeutic
options.

3.3.2. The Submodules of COL5A2 Are Involved in

Extracellular Matrix Organization
A module containing 169 nodes and 789 edges was identified in
the giant component, containing the COL5A2 gene as the node
with the highest PageRank. This COL5A2 module was associated

with Extracellular Matrix (ECM) organization. This module in
turn is composed by 18 submodules, with COL5A2 being the
defining gene of the largest one. This COL5A2 submodule again
is associated with ECM organization, collagen organization and
cell adhesion. The COL5A2 gene codifies for the Collagen 5A2
protein, a key participant in shaping the ECM. Other genes in
this subcommunity that are widely known to play important roles
in ECM organization include genes such as LUM, fibronectin,
VCAN and members of the collagen family beyond COL5A2,
among others.

In Figure 7 the expression patterns of these genes can be
seen. It shows that overall the members of this submodule
are overexpressed. This is a clear indicative that in HER2+
breast cancer subtype, remodeling of extracellular matrix is a
key participant in shaping the phenotype, it is fundamental for
invasiveness, migration, Epithelial-to-mesenchymal transition
(EMT) and other processes ubiquitous in cancer.

3.3.3. The Role of the Submodules of LCK in Immune

Response
The third largest module of the giant component is composed
by 371 genes with 3,011 connections among them, with the
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FIGURE 6 | Expression profile of CNR2 Community. (A) This community is roughly divided in two based on expression levels: the genes in the communities depicted

on the upper side of the network are underexpressed (blue); these are genes involved in plasma-membrane associated processes. Meanwhile, the genes in the

community depicted at the bottom are overexpressed; these are genes involved in intracellular signaling. (B) Expression profile of ZBTB38 Submodule of CNR2

module. Genes in this module are mostly overexpressed. Two of the genes in this submodule are DICER and AGO3, crucial elements of micro-RNA regulation (bold).

FIGURE 7 | Expression profile of COL5A2 module. This submodule is composed mostly by overexpressed genes. Interestingly the underexpressed genes (depicted

in light blue) have a small number of connections, compared to the number of links that the majority of overexpressed genes have.

highest Page-Ranked one being the LCK gene (which encodes
the lymphocyte-specific protein tyrosine kinase). This module is
subdivided into 27 submodules, with one of them (the OAS2L
module) in turn having three sub-submodules. In Figure 8A, a
visualization of this module is provided.

The LCK module is associated to the functioning of the
immune system. In turn, five submodules of LCK: LCK,
OAS2, PSMB9, SLAMF8, and TNFRSF17 show enrichment,
again related to functions of the immune system. The OAS2L

submodule in particular called our attention. At the level
of submodular structure, this module can be associated
with processes related to the response to viral infections:
“defense response to virus,” “type I interferon signaling
pathway,” “response to virus,” and “negative regulation of
viral genome replication.” When the three sub-submodules of
OAS2L (DDX60, IFITM1, OAS2) are analyzed independently,
they in turn are associated with seven processes that are
also involved in viral infection response: this includes the
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FIGURE 8 | The LCK module. (A) The LCK module, with genes colored based on their expression levels. (B) The OAS2L submodule of the LCK module, which

exhibits mostly overexpressed genes; this module is involved in processes related to response to viral infection.

aforementioned “defense response to virus,” “type I interferon
signaling pathway,” “response to virus,” and “negative regulation
of viral genome replication,” as well as new emerging processes
“response to interferon-gamma,” “negative regulation of viral
entry into host cell,” and “interferon-gamma-mediated signaling
pathway.”

These results are complemented by the findings of analyzing
the gene expression data using Ingenuity Pathway Analysis. The
results of such analysis are shown in Figure 9. In particular, we
highlight the appearance of the “infectious diseases” category;
importantly, notice that the response detected is associated
only to viral (as opposed to, for instance, bacterial) infection.
The expression patterns of the OAS2L submodule (as seen in
Figure 8B), leads us to argue that an activation of immunity with
mechanisms used for the response to viral infections is found in
HER2+ breast cancer subtype.

3.4. Validation
In the validation network we were able to recover several of the
previously discussed findings regarding modular structure and
biological functional associations (see Supplementary Material).

By applying the same methodology as in our discovery
approach, we were able to recover an independent component
that is composed by genes in the HER2 amplicon. In the
discovery network, this component contains STARD3, GRB7,
PGAP3 and ERBB2, whereas in the validation network it was
composed by, GRB7, PGAP3, MIEN1, TCAP and ERBB2.
MIEN1 and TCAP are also part of the amplicon. In both cases
the important functional finding is the tight co-expression of the
genes in the amplicon, and how these are completely isolated

from other elements of the transcriptional network, including the
largest connected component.

A largest connected component also appears in the validation
network. As previously mentioned, this component is completely
disconnected from HER2 amplicon regulation, suggesting
independent mechanisms of regulation. We were also able
to recover modular and sub-modular structure in this largest
connected component with similar functional associations to
those found in the discovery network. Some of these functional
enrichments are described in the following lines:

We recovered a module containing several collagen-encoding
genes, analogous to the COL5A2 module in the discovery
network. Furthermore, this module was significantly associated
to Extracellular Matrix processes, as well as other structural
functions, concordant with the significant functional associations
found in the discovery network.

We were also able to find a module functionally associated to
immune system processes, as observed in the LCK module in the
discovery network; in both cases, these were the largest modules.
Furthermore, this validation immune module contain modular
substructures, including a small group (25 genes), including
OAS1, 2, and 3, as well as interferon alpha-inducing protein
family members. This submodule was statistically associated to
viral response processes, just like the one found in the discovery
network.

Even though the node composition of these modules
was not identical (due to the aforementioned differences in
microarray technologies), they were functionally coincident.
At the level of inquiry used here, some findings were not
replicated in the validation network, in particular a module
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FIGURE 9 | Heatmap of Diseases and Functions associated with HER2+ breast cancer. In this figure we observe the whole set of Diseases and Functions associated

with the gene expression signature of HER2+ breast cancer. The heatmap in the upper part represents High-level functional categories: Cancer, Cellular movement,

etc. Square color is the z-score of the function, it reflects the direction of change of the function, based on the differential expression of the genes in said function.

Orange color represent a positive z-score, which indicates a trend toward an increase. Blue squares represent a decrease. Square size is proportional to the number

of genes in said function. In turquoise is delimited the High-level category corresponding to Infectious Disease. This category is zoomed-in at the bottom of the figure.

Notice that every process but bacterial infection are consistently increased, and those correspond to viral infection-related processes.

associated to cell signaling processes in the largest connected
component.

4. CONCLUSIONS

The modular structure of transcriptional networks and its
relationship to biological functionality are topics of current
biomedical interest. In this work, we have implemented a
hierarchical module detection method to identify the highest
resolution of modular structure of the transcriptional network
of HER2+ breast cancer, and the functions associated with each
network module.

Using this approach, we have identified biological features
associated with different levels of modular structure in this
network. At the highest level of modularity we observe a
distribution of genes into different connected components,
with more than half the genes detected belonging to a
giant connected component. Furthermore, we may observe
connectivity among genes of the HER2-amplicon, the most
important genomic element associated with the development
of HER2+ breast cancer, in an independent, specific connected
component.

At a higher modular resolution, we identified communities in
the largest connected component, some of which are statistically
associated with sets of Gene Ontology categories related to
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specific biological functions: immune system processes, cellular
shape and remodeling, and cell signaling. Furthermore, some of
these Gene Ontologies are associated with more than one non-
overlappingmodule, indicating the need for joint regulation from
specialized sets of genes.

Finally, submodular structures in the HER2+ network reveal
finer details of the processes involved in the pathological state.
For instance, specific modules responsible of the regulation of
intracellular signaling, micro-RNA assembly, and viral infection
were identified inside, more general modules. As such, we show
that a higher modular resolutions allows for the emergence of
more specific biological function regulation.

Our work showcases the importance and usefulness of
analyzing the phenomenon of transcriptional regulation using a
complex network approach. We present cases in which the study
of the modular structures beneath the transcriptional network
architecture unveil mechanisms associated with the pathological
state, which may lead to insights relevant to the biomedical
community.
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