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Gene expression is a vital process through which cells react to the environment and
express functional behavior. Understanding the dynamics of gene expression could
prove crucial in unraveling the physical complexities involved in this process. Specifically,
understanding the coherent complex structure of transcriptional dynamics is the goal of
numerous computational studies aiming to study and finally control cellular processes.
Here, we report the scaling properties of gene expression time series in Escherichia coli
and Saccharomyces cerevisiae. Unlike previous studies, which report the fractal and
long-range dependency of DNA structure, we investigate the individual gene expression
dynamics as well as the cross-dependency between them in the context of gene
regulatory network. Our results demonstrate that the gene expression time series display
fractal and long-range dependence characteristics. In addition, the dynamics between
genes and linked transcription factors in gene regulatory networks are also fractal
and long-range cross-correlated. The cross-correlation exponents in gene regulatory
networks are not unique. The distribution of the cross-correlation exponents of gene
regulatory networks for several types of cells can be interpreted as a measure of the
complexity of their functional behavior.

Keywords: gene expression, gene regulatory network, fractals, dynamics, entropy

INTRODUCTION

Protein synthesis is fundamental for biological systems to perform a variety of functions.
They control the organism’s shape or can function as enzymes catalyzing specific metabolic
pathways to regulate specific cellular processes. These cellular functions include responding to
stimuli, transporting molecules and catalyzing metabolic reactions. In order to program cells
for performing the desired functionality, one should regulate the protein synthesizing process.
The process of protein synthesis from the activation of a specific gene is called gene expression
(Lockhart and Winzeler, 2000; Teichmann and Babu, 2004; Huang et al., 2005; Düvel et al., 2010).

Gene expression (briefly shown in Figure 1a) is the process in which the genetic information of
a cell causes a cell to generate a functional gene product and, finally, perform specific cell functions
(Niedenthal et al., 1996). In other words, it is the process by which genotype information gives rise
to phenotype (observable characteristics). It is a vital process, which causes cellular differentiation,
morphogenesis, and the versatility and adaptability of any organism (O’Connor et al., 2010).
Controlling the production process of the desired gene expression product (e.g., a protein) refers
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FIGURE 1 | (a) Gene expression process is initiated with the triggering of a gene in the DNA strand and continues with the generation of RNA, mRNA and, finally, the
protein product. (b) Part of the gene regulatory network of Escherichia coli reported by Lockhart and Winzeler (2000), which consists of genes and transcription
factors (TFs). The diamonds represent TFs and the circles represent genes. (c) Time series of TFs of E. coli obtained from Marbach et al. (2012) and explained in the
methods section. (d) Time series of genes of E. coli obtained from Marbach et al. (2012) and explained in the methods section.

to the regulation of the gene expression process. The regulation
of gene expression controls the amount and timing of production
of target proteins (Malone et al., 2009). Hence, investigating
the dynamics of gene expression enables to understand the
mechanisms driving biological organisms. This knowledge helps
us from both scientific and engineering perspectives. It can
be exploited to detect an anomaly or disease or to engineer
cells for performing specific tasks (e.g., drug delivery for cancer
treatment) as it is the target of synthetic biology.

The biophysical mechanism affecting the regulation process
has been actively studied (Elf et al., 2007; Kolesov et al., 2007;
Kuhlman and Cox, 2012; Bauer and Metzler, 2013; Pulkkinen and
Metzler, 2013). For instance, searching for the target gene by the
transcription factors (TFs) is discussed in Kolesov et al. (2007);
Pulkkinen and Metzler (2013) and the diffusion process of

search for the target genes is studied in Elf et al. (2007);
Bauer and Metzler (2013). Also, the spatial distribution of gene
products is reported in Kuhlman and Cox (2012). However,
these prior studies were not concerned with the mathematical
characterization of the gene expression dynamics for several
gene regulations in a network of genes. To identify the main
mathematical characteristics of gene expression dynamics, we
investigate individual and cross-dependent gene expression time
series. First, we investigate the statistical properties of single
(isolated) gene expression time series (shown in Figures 1c,d),
and, then, we analyze the cross-correlation between pairs
consisting of a gene and a TF in the gene regulatory network
(Figure 1b). In contrast to the previous study (Tsuchiya et al.,
2016) in which regulation of cell fate through genome-wide
expression by temporal-spatial self-organization is considered,
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here, we mainly analyze the temporal variability of individual
genes. We then investigate the correlation of linked TF and genes.
Moreover, we analyze the expression level of single cells without
considering population effect (Tsuchyia et al., 2007).

The remaining of this paper is organized as follows: In
the first part of the Results section, we present our findings
on the individual and cross-dependence dynamics of gene
expression time series. Then, we report the distribution of
the cross-dependencies and a complexity quantification strategy
for the gene expression networks. In the latest section of
Results, we investigate whether the observed multifractality can
be explained by a well-known model such as the Mandelbrot
analytical cascade model. The Discussion section concludes our
findings and outlines some future research directions. Lastly, the
Methods section summarizes the mathematical strategies used for
obtaining the findings reported here.

RESULTS

Gene Expression Dynamics Exhibits
Long-Range Dependency and
Multifractal Properties
We investigate the statistical properties of gene expression data
and compute the Hurst exponents of gene expression time series
in Saccharomyces cerevisiae (S. cerevisiae) and Escherichia coli
(E. coli). Figures 2a,b show the log–log plot of the fluctuation
function as a function of the scale for the time series of a TF
(ynel) in S. cerevisiae and E. coli, respectively. In these plots, the
slope of the curve represents the Hurst exponent. We observe

that 95 and 98% of the time series of genes from the S. cerevisiae
and the E. coli gene expression networks, respectively, exhibit
a long-range dependency property. More precisely, their Hurst
exponent was greater than 0.5. To demonstrate this important
property, Figures 2c,e show the histogram of the Hurst exponent
of gene expression time in S. cerevisiae and E. coli, respectively.
Generally speaking, a Hurst exponent that exceeds the 0.5
threshold value denotes a persistent (positively correlated)
behavior in the sense that a high value is likely to be followed by
another high value with nonzero probability. In addition, because
the Hurst exponent for most of the genes is significantly higher
than 0.5, the gene and TF time series cannot be regarded as
a random process and modeled through Markovian formalism
(Kantelhardt et al., 2001). This mathematical characteristic
provides a clue as to how to construct stochastic models for gene
expression processes, but this is left for future work. We observe
the same property in the time series of TFs in S. cerevisiae and
E. coli. More precisely, 97% of the TFs in S. cerevisiae and E. coli
possess the long-range dependence property. The histogram of
the Hurst exponent of TFs in S. cerevisiae and E. coli are shown in
Figures 2d,f respectively.

Employing fractal analysis is also helpful to gain insight into
other interesting properties. Here, we see a bimodal characteristic
in the Hurst exponent distribution, shown in Figures 2c–f. This
feature is especially visible in Figures 2c,e where the histogram
of genes in S. cerevisiae and E. coli is presented. This may
be explained by a possible bimodal diffusion potential, as in
Muzychuk (2006). Since gene expression includes a diffusion
process with multiple diffusion potentials (inside and outside the
nucleus), this bimodality can be explained by non-equilibrium
Brownian motion with multiple potential profiles. However,

FIGURE 2 | (a) Scaling of fluctuation function of a gene time series in Saccharomyces cerevisiae, (b) Scaling of fluctuation function of ynel gene time series in E. coli,
(c) Histogram of cross-correlation exponent of genes in S. cerevisiae, (d) Histogram of cross-correlation exponent of TFs in S. cerevisiae, (e) Histogram of
cross-correlation exponent of genes in E. coli. (f) Histogram of cross-correlation exponent of TFs in E. coli.
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further experimental studies are required to elucidate the nature
and implications of these bimodal statistics.

By employing the multifractal detrended fluctuation analysis
(MFDFA) (Kantelhardt et al., 2002) (see Materials and methods
section) to examine the multifractal characteristics of gene
expression time series, we observe that both genes and TFs have
pronounced multifractal properties. For monofractal behavior,
the generalized Hurst exponent displays a linear dependency with
the order q of the cross moments. Instead, if the generalized
Hurst exponent exhibits a nonlinear dependency (such as the
S-shape displayed in Figure 3b) as a function of the order q
of the cross-moments, then the stochastic interdependence is
considered to possess multifractal characteristics.

To provide a more in-depth report, we use the bootstrapping
technique (Efron, 1982) to investigate the existence of the
long-range dependence property, considering the limitations
related to the length of the experimental time series. For every
gene expression time series, we have sampled 10 randomized
subintervals of the gene expression time series, each containing
90% of the ordered piece of the original time series. Then,
we calculate the Hurst exponents for all the randomized
versions. The difference between the percentage of the long-range
dependency for the gene expression time series and the
randomized versions was approximately 0.006 for E. coli and

0.0001 S. cerevisiae. We also investigate whether the observed
Hurst exponent varies in different conditions. We observed that
for time series of E. coli, the Hurst exponent varies in different
acidic levels and osmotic stress level and we have reported them
in Supplementary Material.

Time Series of Interactions Within the
Gene Regulatory Networks Demonstrate
Long-Range Cross-Correlation and
Multifractal Properties
We analyzed the cross-correlation between linked pairs of
genes and TFs in gene regulatory networks. By computing the
cross-correlation exponent (Podobnik and Stanley, 2008), we
noticed that 98% of the linked pairs of genes and TFs in gene
regulatory network for E. coli and S. cerevisiae possess the
long-range dependence property. Figure 3a shows the scaling
of the detrended covariance function for a pair of gene and TF
(link) in E. coli (ihfB to ompR) and S. cerevisiae (YLR256W
to YKL020C). We have applied the multifractal detrended
cross-correlation analysis for pairs of genes and TFs (links) in the
gene regulatory network of E. coli and S. cerevisiae and found that
there is a pronounced multifractal cross-correlation signature
in these gene regulatory network links. Figure 3b shows the

FIGURE 3 | (a) Scaling of detrended covariance function in a gene-TF link in E. coli (ihfB to ompR) and S. cerevisiae (YLR256W to YKL020C) regulatory network.
(b) Generalized cross-correlation exponent of a gene-TF link in E. coli and S. cerevisiae. (c) Histogram of cross-correlation exponents of gene regulatory network
links in S. cerevisiae and (d) Histogram of cross-correlation exponents of gene regulatory network links.
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generalized Hurst exponent H(q) as a function of the order of the
cross moments q in Figure 3a. For a mono-fractal behavior, the
generalized Hurst exponent displays a linear dependency with the
order q of the cross-moments. Instead, if the generalized Hurst
exponent exhibits a nonlinear dependency (such as the S-shape
displayed in Figure 3b) on the order q of the cross-moments,
then the stochastic interdependence is considered to possess
multifractal characteristics. In conclusion, the causal relationship
between TFs and genes in gene regulatory networks was mainly
also long-range dependent. The concentration level of a gene not
only depends on the current concentration level of the linked TF
but also on the previous values of that gene. This dependency
obeys a power-law-like relationship.

The Distribution of Cross-Correlation
Exponents of Pairs of Genes and
Transcription Factors of Gene Regulatory
Networks Has a Wide Range of Variation
Although we observe the fractal and long-range cross-correlation
in linked pairs of genes and TFs in the gene regulatory
networks, the cross-correlation exponents were not the same
in all the links. We have shown the distribution of the
cross-correlation exponents for pairs of genes and TFs in the
S. cerevisiae and E. coli gene regulatory networks in Figures 3c,d
respectively. Inspired by Shannon entropy (Shannon, 2001), we
use this histogram for measuring the entropy, and hence, the
information content of a gene regulatory network across different
cell types for quantitative analysis and specification of gene
regulatory networks. The computed Shannon sample entropy
for S. cerevisiae and E. coli was 4.18 and 5.29, respectively.
Consequently, we conclude that the gene expression network of
E. coli has more complex dynamics than that of S. cerevisiae.
Also, considering a static gene regulatory network and having
traces of gene expression time series for a cell at different
times, we can compute the cross-correlation exponents for
the links at a different time. This can be useful to compare
statistical properties and complexity of dynamics. Similarly, by
having different time series of gene expression dynamics, we can
compare normal vs. disease affected (for example cancer typed)
cells.

Multifractal Characteristics of
Interactions Within the Gene Regulatory
Network Can Be Modeled by Random
Cascades on Wavelet Dyadic Trees
We analyzed the multifractal property of the cross-correlation
of pairs of genes and TFs in a gene regulatory network.
We investigated whether the observed multifractality can be
explained by the known analytical cascade models including the
Mandelbrot bimodal cascade model (Mandelbrot et al., 1997)
(see Materials and methods section) and the random cascades
on wavelet dyadic trees (Arneodo et al., 1998). We observe
deviations of the empirical spectrums from the Mandelbrot
model and an approximate agreement to the random cascades on
wavelet dyadic trees model.

Based on the range of the Holder exponent values in the
multifractal spectrum, we observe that only 0.04 of the links in
a gene regulatory network of S. cerevisiae and none of the links in
the network of E. coli can be modeled by the Mandelbrot cascade
model for multifractal spectrums (see Materials and methods
section). We observe that even for the few links that we could
find a closest Mandelbrot model spectrum, the deviation from
the Mandelbrot model and the data we had for gene regulatory
network was significant. We show two such samples in Figure 4.
Figure 4a shows several multifractal spectrums for the links in
E. coli gene networks. Note that the peak of the multifractal
spectrum for these spectrums was lower than the value 1, which
does not fit with the Mandelbrot Binomial Cascade Model
(Mandelbrot et al., 1997). Figure 4b shows several multifractal
spectrums for the links in S. cerevisiae. Figure 4c shows the closest
Mandelbrot Model we could fit for the links in the S. cerevisiae
gene regulatory model. There is a significant deviation between
the Mandelbrot model and the spectrum from gene regulatory
network data.

We also investigated the agreement between the observed
multifractality of the cross-dependencies in the gene regulatory
network of S. cerevisiae and E. coli, respectively, and a few
well-known multifractal models such as the random cascades
on wavelet dyadic trees (Arneodo et al., 1998). We investigated
whether the log-normal W-cascade model can be fitted to
the cross-dependencies (links) in the two above-mentioned

FIGURE 4 | (a) Multifractal spectrum of several randomly picked links of gene regulatory network of E. coli. (b) The multifractal spectrum of several randomly picked
links of gene regulatory network of S. cerevisiae. (c) The multifractal spectrum of a link between the gene regulatory network of S. cerevisiae and the best spectrum
from the Mandelbrot binomial model.
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gene regulatory networks. We extracted the parameter of the
estimated log-normal W-cascade model based on the peak of
the empirical spectrum and the variation of the singularity
spectrum (see the Methods section). We observed very similar
spectrums for a significant number of links. We computed the
overlapping area under the curve for both the estimated and
the empirical multifractal spectrums. The ratio of the area of
the overlapping fitted spectrum to the area of the empirical
spectrum can be used to either accept or reject the postulated
multifractal model as a good fitting for the empirically estimated
multifractal spectrums. In this study, we used two threshold
values of 70 and 75% for the ratio of mentioned areas. For the
gene expression cross-dependencies in E. coli, we observed a
74 and 38% agreement between the postulated model and the
empirically estimated multifractal spectrums when considering
overlapping area ratio thresholds of 70 and 75, respectively.
For the gene expression cross-dependencies in S. cerevisiae,
we observed a 59 and 31% agreement between the postulated
multifractal model and the empirically estimated multifractal
spectrums when considering overlapping area thresholds of 70
and 75%, respectively. Figures 5A,B show a best fitting scenario
between the postulated multifractal model and an empirically
estimated spectrum for a cross-dependence in the gene regulatory
network of E. coli and S. cerevisiae, respectively.

We also investigated the agreement between the empirical
multifractal spectrums and the log-Poisson W-cascade model
(Arneodo et al., 1998). We observed that the empirical
multifractal spectrums could not be described by this cascade
model since the second derivative of the mass exponent should
follow a power law (see Methods section) while the empirical data
has a significant deviation from a power law trend (see Figure 6
in the Methods section).

DISCUSSION

A genome expression vector is the most informative descriptor of
a cell state, as the functional state of an organism is determined

largely by the pattern of expression of its genes (O’Connor et al.,
2010). Gene expression is the process in which information from
a gene is used to synthesize a functional gene product. It is
the process in which the information flows within a complex
biological system. As the search for patterns in nature and
their interpretation is one of the main purposes of science,
unveiling the DNA patterns in those sequences has become
an exciting challenge to the present generation of biologists,
statistical physicists, and information scientists. Toward this
end, many researchers have studied the statistical properties of
coding and non-coding segments of DNA sequences. They have
reported interesting results showing fractal nature of coding
DNA regions (Lockhart and Winzeler, 2000; Teichmann and
Babu, 2004; Huang et al., 2005; Düvel et al., 2010). However,
these studies fail to address the dynamical properties of the
biological systems. Since biological systems are dynamic, their
study requires monitoring their activity at multiple time points.

To investigate the causal relations in gene expression,
numerous biophysical mechanisms affecting the regulation
process were studied in Elf et al. (2007), Kolesov et al. (2007),
Kuhlman and Cox (2012), Bauer and Metzler (2013), Pulkkinen
and Metzler (2013). It is demonstrated by several simulations
that rapid and reliable gene regulation requires that the TF
be close to their target site on DNA (Kolesov et al., 2007). In
Pulkkinen and Metzler (2013), the authors use an explicit model
for numerical analysis. The authors report that the observed
variations in regulation efficiency are linked to the magnitude of
the variation of TF concentration peaks as a function of binding
site distance from the source. In Bauer and Metzler (2013), the
authors have presented a semi-analytical model for the in vivo
target search of the TFs within a diffusion framework. They
have shown that alternating between three-dimensional bulk
diffusion and one-dimensional sliding along the DNA contour
can provide a quantitative approach to gene regulation in living
bacteria cells. Their proposed model agrees with experimental
findings regarding the mean search time of lac repressor in a
living E. coli. In Elf et al. (2007), the authors have reported
their observation of kinetics of the gene expression process

FIGURE 5 | (A) The multifractal spectrum of a cross-dependency (link) between the gene regulatory network of E. coli (soxR and soxS genes) that can best be fitted
by the log-normal cascade multifractal model. (B) The multifractal spectrum of a cross-dependency (link) between the gene regulatory network of S. cerevisiae
(YKL032C and YKL043W genes) that can best be fitted by the log-normal cascade multifractal model.
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FIGURE 6 | (A) The second derivative of the mass exponent for cross-dependencies in E. coli. (B) The second derivative of the mass exponent for
cross-dependencies in S. cerevisiae.

at the single-molecule level in living cells by labeling with
a fluorescent protein, which agrees with 1D diffusion along
DNA segments and 3D diffusion. In Kuhlman and Cox (2012),
the authors test the expectation of previous theoretical models
using high-throughput single-molecule microscopy to determine
the average spatial distribution of lac repressor. Their finding
shows inconsistency between expectations and experimental
findings. They show that the gene products distribution is
spatially inhomogeneous and dependent on the location of the
repressor gene in bacteria and eukaryotes. However, they do
not consider the gene expression dynamics from a network of
genes perspective and do not account for cross-correlations and
multiscale phenomena.

To study the dynamic nature of gene expression processes,
researchers must monitor activity levels of genes and TFs at
multiple time points. The most informative source of information
regarding gene expression activity is the gene expression
time-series. With advances in gene array technology, the level
of gene expression of thousands of genes (by providing the
concentration level of gene expression products) can be measured
simultaneously. By accessing a high- throughput data collection,
a wide range of insights, such as characterizing the functions of
specific genes, the relationships among these genes, and their
regulation and coordination can be gained. These insights can
also be used to understand the gene regulatory network as a
complex network. There are many studies which try to infer
the underlying gene regulatory network from empirical time
series (Marbach et al., 2012). However, little is known about the
mathematical characteristics of the gene expression dynamics
from a complex systems perspective.

In this paper, we investigated the scaling properties of gene
expression dynamics. Unlike previous work that demonstrated
the fractal properties in DNA sequences (Peng et al., 1994;
Arneodo et al., 1996; Zhang et al., 2011; Marbach et al.,
2012), we investigate the dynamics of cross-dependencies

between genes and TFs within the gene regulatory networks.
We show that the gene expression time series (which is the
concentration of gene expression products in the process of gene
expression) have fractal and long-range dependence properties
in E. coli and S. cerevisiae. We also investigate the cross-
correlation of gene-TFs, which are linked together in gene
expression networks. We report the fractal and long-range
cross-dependency of linked genes and TFs of gene expression
networks in E. coli and S. cerevisiae. We also show that the
multifractal nature of these cross-correlations cannot be modeled
through a Mandelbrot binomial cascade model. In contrast, we
found very good agreement between the empirical multifractal
spectrum of the cross-dependencies in the gene regulatory
networks and the log-normal W-cascade model. We suggest
investigating more cascade models on empirical data (Bacry
and Muzy, 2003; Chainais et al., 2005; Kiyono et al., 2007) as
future work. In summary, there is a need for more advanced
theoretical models that can capture the multifractality observed
in this critical biological process. One possible method for
modeling gene expression dynamics can exploit the multifractal
Fokker-Planck formalism, as discussed in Xue and Bogdan
(2017).

We also propose using the distribution of cross-correlation
exponent of the links in gene regulatory network as a measure
of the complexity for the regulatory networks. Having this
complexity measure enables a quantitative descriptor for different
cell types or to differentiate different cell fates when the
system undergoes transitions. We report the distribution of
cross-correlation exponent of links in regulatory networks
of E. coli and S. cerevisiae as case studies. We suggest
investigating this property on a wider range of biological
systems when enough data sets are available. We also propose
using this property as a network property in general. We
propose using the distribution of cross-correlation exponents
of gene-TF links in a complex network to measure the
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complexity of the interactions in the network. Also, the computed
cross-correlation exponents of a network can be used by other
algorithms, such as those proposed in Anand and Bianconi
(2009), Anand et al. (2011), Teschendorff and Enver (2017) for
computing the entropy of a network. This has a variety of
applications in distinguishing the different status of cells (e.g.,
healthy vs. disease affected states). This can reveal insightful
results in many complex networks either in biology, social,
financial and many other interesting examples of complex
networks.

Our findings explain the inherent variability in gene
expression processes, even among isogenic cells situated
in an identical environment. Because of the long-range
cross-dependency of a gene and its linked TF, the current
concentration level of a gene depends both on current and
previous values of its own and its linked TF. As explained in
previous studies, this leads to phenotypic diversity, which can be
helpful for surviving in an uncertain and fluctuating environment
(Ji et al., 2013). Also, the endogenous cellular mechanism
through positive and negative feedback controls variability in
gene expression to prevent disruption from normal development.
Hence, unlike the usual assumption about noise as a nuisance,
variability in gene expression makes the population of cells more
robust against environmental fluctuations. Interestingly, there
are other examples in nature in which the presence of noise makes
the system smarter. For example, in Maass (2014), they have
shown how the presence of noise in a network of spiking neurons
in the human brain enables probabilistic reasoning and creative
problem-solving.

This study is the first to demonstrate the long-range
dependency of gene expression dynamics. In contrast to
previous studies (Bernaola-Galván et al., 1996), which have
shown the long-range dependency for the structure of
DNA, we investigate the dynamics of gene expression time
series. Previous studies show that coding regions of DNA
structure, which store the biological information for the
gene expression process, possess the long-range dependency
property (Bernaola-Galván et al., 1996). In contrast, our results
report the same property in gene expression time series.
Of note, these dynamics stem from the transformation of
information from the structure to dynamics by producing
gene products. This is an insightful empirical result that can
trigger more studies on other examples from nature, as well
as analytical and mathematical investigations. For example,
investigating other processes that follow a rule from a static
structure to generate dynamical products and process (such
as the central dogma of biology) can be interesting. Lastly,
mathematical and analytical investigation of the relation between
structure and dynamics of processes are also fundamental in
theory. It would be revealing to investigate how long-range
dependency (and/or fractal/multifractal properties) evolves
from structure to dynamics (and vice versa) in processes.
Answering to the question of how long-range dependency
transfers between structure and dynamics and how the degree of
fractality/multifractality of structure and dynamics are like each
other would have a huge impact on predicting the behavior of
complex systems.

MATERIALS AND METHODS

We use the data set from the publicly available DREAM project1

(Stolovitsky and Califano, 2007), which is for assessment of
network inference methods. It is organized around annual
challenges where the community of network inference experts
is solicited to run their algorithms on benchmark data sets.
The data is provided from Gene-expression microarray datasets
for E. coli and S. cerevisiae2. A compendium of microarray
data is compiled for E. coli, where all chips are on the
same Affymetrix platform, the E. coli Antisense Genome
Array. In total, 805 chips with available raw data Affymetrix
files were compiled. Completion of microarray normalization
and filtering resulted in a total of 4,297 genes over the
805 microarrays. Also, a compendium of microarray data
was compiled for S. cerevisiae, where all chips are on the
same Affymetrix platform, the Affymetrix Yeast Genome S98
Array. Chips were downloaded from GEO (Platform ID: GPL).
In total, 536 chips with available raw data Affymetrix files
were compiled. The completion of microarray normalization
and filtering resulted in a total of 5,667 genes over the
536 microarrays. Transcriptional interactions and, hence, gene
regulatory networks for E. coli and S. cerevisiae are collected
from strong experimental supports in Marbach et al. (2012).
Known transcriptional interactions for E. coli are collected
from manually curated Ecocyc (Gama-Castro et al., 2010) and
RegulonDB (Keseler et al., 2010) databases. A gene regulatory
network for E. coli is constructed from RegulonDB Release
6.8. Only transcriptional interactions with at least one strong
piece of evidence were included (2,066 interactions). For
S. cerevisiae, we use the network based on the most stringent
thresholds from MacIsaac et al. in MacIsaac et al. (2006)
compared to other studies (Hu et al., 2007; Abdulrehman
et al., 2010). By varying the thresholds required for binding
and evolutionary conservation of motifs, different versions
of the network were obtained. Based on the most stringent
thresholds, which includes only interactions with strong evidence
of binding and a strongly conserved motif, the interactions in
the regulatory network are obtained. There are 5950 time-series,
each having 536 data points for S. cerevisiae, and 4511 time-
series, each having 805 data points for E. coli expression
series.

Noise in Gene Expression Time Series
Since DNA, RNA, and proteins involved in the gene expression
process can be present and active at a few copies per cell,
this process is sensitive to stochastic fluctuations (Raser
and O’shea, 2005). The four most important sources of
variation in gene expression dynamics include (i) the
inherent stochasticity of biochemical processes that are
dependent on the small number of molecules, (ii) differences
in the internal states of cells, (iii) subtle environmental
differences, and (iv) genetic mutations (Raser and O’shea,
2005). The existence of this variation causes genetically

1http://wiki.c2b2.columbia.edu/dream
2https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
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identical organisms with identical environmental exposure
to varying in behavior and shape. The fluctuation in
the gene expression process is inevitable and does not
follow the law of mass action. Hence, in this study, we
have investigated the process independently of assuming
stationarity and the MFDFA method explained below is
used.

The Hurst Exponent and Multifractal
Detrended Fluctuation Analysis (MFDFA)
In this paper, we have used the MFDFA method for analysis
of gene expression time series. This method, which is the
extension of detrended fluctuation analysis (DFA) to extract
the Hurst exponent (Kantelhardt et al., 2002), is introduced in
Kantelhardt et al. (2002) for analysis of multifractal properties of
nonstationary time series. Since we do not have the stationarity
assumption for gene expression time series, MFDFA method is a
suitable one for studying them. Scaling properties and long-range
dependency of time series can be obtained by the DFA method.
However, for time series with multifractal properties and different
scaling exponents on different scaling regimes or different time
intervals, it is essential to exploit the multifractal detrended
fluctuation method (MFDFA) to reveal the multifractal property.

The MFDFA method consists of five steps to estimate the
multifractal spectrum of a nonstationary time series. Similar to
the DFA method, the profile of the time series is obtained first,
which is determined by the integration of the difference of the
time series with its average value (̂x):

y(i) =
k∑

i=1

(x(i)− x̂)

Second, it divides the profile into non-overlapping segments (or
scales (n = N/s), where s is the scale). For each of these boxes, a
least squared local trend is fitted.

Third, it calculates the local trend within each segment. For
each of these boxes, a least squared local trend is fitted. The value
of the fitted time series obtained for boxes of length (n) is denoted
by yn.

Fourth, it computes the average of the fluctuation function
over all segments to obtain the qth order fluctuation function.

F(s)q =

Ns∑
k=1

((y(i)− yn(i))2)q/
Ns

Finally, the Generalized Hurst exponent is estimated by fitting a
linear line to the log-log plot of the F(s)q with respect to scale (s),
according to the following equation:

F(s)q = sH(q)

The Hurst exponent is the value of the Generalized Hurst
exponent (H(q = 2)), which is a special case and is used
usually when one is interested only in analyzing the long-range
dependency of a signal and not the multifractal chrematistics.

Finally, the multifractal spectrum of the multi-variable signal
(α, f (α)) is estimated by the Legendre transform:

τ(q) = H(q)∗(q− 1)

α(q) = dτ(q)
/

dq

f (α) = qα− τ(q)

Detrended Cross-Correlation Analysis
(DCCA)
This method is designed to investigate the power law
cross-correlation between two time-series (Podobnik and
Stanley, 2008). Similar to the DFA (discussed in the previous
sub-section), which computes the scaling behavior of the
auto-correlation function, the DCCA method computes the
scaling behavior of the cross-correlation function between two
time-series and analyzes its scaling behavior.

DCCA method first computes the integrated profile of each
time series:

y1(i) =
k∑

i=1

(x1(i)− x̂1)

y2(i) =
k∑

i=1

(x2(i)− x̂2)

Second, both the entire time series is divided into non-
overlapping intervals. Third, it computes the local trend in
each interval for each time series (y1,n(i), and y2,n(i)). Fourth,
it calculates the covariance of the residual of profiles from local
trends. It calculates the detrended covariance (H(q)) by summing
over all segments of the nonstationary time series:

F̂(s)q =

Ns∑
k=1

((y1(i)− y1,n(i)2(y2(i)− y2,n(i))2)q/
Ns

The cross-correlation exponent (λ ) is estimated by fitting a linear
line to the log-log plot of the F̂(s)q with respect to scale (s):

F̂(s)q = sλ

The Mandelbrot Binomial Cascade Model
This model is proposed by Mandelbrot et al. (1997) to better
explain an alternative for probability distribution for the erratic
or fractal appearance of a probability measure. It starts with a
probability measure (µ), which is self-similar:

µ([a,b]) = m0 µ([2a,2b]) + m1 µ([2a−1,2b−1])

Once the unit interval [0,1] is divided into two subintervals, m0
mass is assigned to the left subinterval and m1=1−m0 is assigned
to the right subinterval. Repeating this step for each of the
subintervals for n times will result in the Mandelbrot model with
n iterations. Mandelbrot has proved that the limit behavior of
this model when n is infinitely large (∞) can be best illustrated
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by multifractal formalism. He formulated the (α, f(α)) spectrum
on the basis of the parameters of the Mandelbrot Cascade model.
We have compared the observed multifractality spectrum in gene
expression time series to the closest one obtained by Mandelbrot
cascade model.

Random Cascades on Wavelet Dyadic
Trees
This model (Arneodo et al., 1998) is proposed to model
multifractal objects. The notion of cascade here refers to a self-
similar process whose properties are defined multiplicatively
in different scales. In summary, in this model, the wavelet
coefficients of a function are self-similar at different scales.
Two types of W-cascades are proposed: Log-Normal W-cascades
and Log-Poisson W-cascades. For the log-normal cascade (with
µ and σ for parameters of the normal random variable), the
following equation holds for singularity spectrum:

F(α) = −
ln 2
2σ2 (α+ µ

/
ln 2)2

For the Log-Poisson W-cascades, the following equation holds
for the mass exponent:

τ(q) = 1
ln 2 (λ(1−δq)−γq) − 1

As can be seen, the second derivative of the mass
exponent for Log-Poisson W-cascade model has the following
equation:

τ′(q) = λ
/

ln 2(− ln δ δq)− γ
/

ln 2

τ′′(q) = −λ
/

ln 2(ln δ )2δq

We have reported the similarity of the multifractal spectrum
of cross-dependencies in gene expression time series to the
log-normal W-cascades model. Also, we have reported the
disagreement of the multifractal spectrum of cross-dependencies

in gene expression time series to log-Poisson W-cascade model
due to its deviation from power-law shape as shown in Figure 6.

Entropy and Entropy of a Network
Shannon entropy (Shannon, 2001) is a measure of the
unpredictability of the state, or equivalently, of its average
information content. Shannon defined the entropy of a discrete
random variable X with possible values of {x1 ,x2 ,...,xk } and
probability mass function P(X) as:

H(X) = E[I(X)] = E[− log P(X)]

More explicitly, entropy can be written as:

H(X) = −

n∑
i=1

P(xi) log P(xi)

Entropy is a measure of the unpredictability of the state or
its average containing information. One example to illustrate is
when there is no uncertainty and the random variables take only
one value in which the value of the entropy will be zero. As the
number of possibilities increases, the entropy increases as well.

We have used the notion of entropy in the context of networks.
We consider the weight of the links in the network as the random
variable and we discuss entropy of the weight of the weighted
links. Given an undirected binary graph of gene regulatory
networks and time series of genes and TFs in the network (which
are the nodes in the gene regulatory network), we construct
a weighted network (shown in Figure 7). In the constructed
weighted network, the weight of each link is the cross-correlation
exponent of the time series of two time-series linked together
in the gene regulatory network. Then, in the new constructed
weighted network, we consider the distribution of the weights
of the links and entropy of them as a measure of the entropy of
the network. Also, this weighted network can be used for other
algorithms measuring the entropy of complex networks proposed
in Anand and Bianconi (2009), Anand et al. (2011). Figure 7
illustrates this method by showing how the weights are assigned

FIGURE 7 | Extracting a weighted graph from cross-correlation exponents of the linked nodes in a gene regulatory network
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to each link. In this figure, γ1,2,. . ., γ1,9 are the cross-corrections
of the time series of the TF and genes which are linked together in
the gene regulatory network in the left part of the figure. Hence,
this shows how knowing the existing interactions in the network
and having the time series of each node’s dynamics can lead us to
know cross-correlation exponents and then assigning the concept
of entropy to the network dynamics.
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