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Optical mapping is a high-resolution fluorescence imaging technique, which provides

highly detailed visualizations of the electrophysiological wave phenomena, which trigger

the beating of the heart. Recent advancements in optical mapping have demonstrated

that the technique can now be performed with moving and contracting hearts and

that motion and motion artifacts, once a major limitation, can now be overcome

by numerically tracking and stabilizing the heart’s motion. As a result, the optical

measurement of electrical activity can be obtained from the moving heart surface in

a co-moving frame of reference and motion artifacts can be reduced substantially.

The aim of this study is to assess and validate the performance of a 2D marker-free

motion tracking algorithm, which tracks motion and non-rigid deformations in video

images. Because the tracking algorithm does not require markers to be attached to

the tissue, it is necessary to verify that it accurately tracks the displacements of the

cardiac tissue surface, which not only contracts and deforms, but also fluoresces

and exhibits spatio-temporal physiology-related intensity changes. We used computer

simulations to generate synthetic optical mapping videos, which show the contracting

and fluorescing ventricular heart surface. The synthetic data reproduces experimental

data as closely as possible and shows electrical waves propagating across the deforming

tissue surface, as seen during voltage-sensitive imaging. We then tested the motion

tracking and motion-stabilization algorithm on the synthetic as well as on experimental

data. The motion tracking and motion-stabilization algorithm decreases motion artifacts

approximately by 80% and achieves sub-pixel precision when tracking motion of 1–10

pixels (in a video image with 100 by 100 pixels), effectively inhibiting motion such that

little residual motion remains after tracking and motion-stabilization. To demonstrate the

performance of the algorithm, we present optical maps with a substantial reduction in

motion artifacts showing action potential waves propagating across the moving and

strongly deforming ventricular heart surface. The tracking algorithm reliably tracks motion

if the tissue surface is illuminated homogeneously and shows sufficient contrast or texture

which can be tracked or if the contrast is artificially or numerically enhanced. In this study,

we also show how a reduction
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in dissociation-related motion artifacts can be quantified and linked to tracking precision.

Our results can be used to advance optical mapping techniques, enabling them to image

contracting hearts, with the ultimate goal of studying the mutual coupling of electrical and

mechanical phenomena in healthy and diseased hearts.

Keywords: fluorescence imaging, optical mapping, motion tracking, computer vision, cardiac arrhythmias,

ventricular fibrillation, atrial fibrillation, heart rhythm disorders

1. INTRODUCTION

Optical mapping is a high-resolution fluorescence imaging
technique, which is widely used in basic cardiovascular science
(Herron et al., 2012). It employs optical probes or fluorophores,
excitation light, high-speed cameras and filtering equipment and
is typically used to image the electrophysiological activity that
triggers the beating of the heart. With voltage- and calcium-
sensitive dyes, for instance, it is possible to image action
potential and calcium waves propagating across the heart surface
in great detail and at very high speeds. To avoid undesired
motion artifacts during such highly sensitive measurements,
it has been necessary to suppress the beating of the heart
during optical mapping by using pharmacological excitation-
contraction uncoupling substances such as Blebbistatin (Fedorov
et al., 2007) or DAM. Recent developments, however, have
demonstrated that action potential and calcium waves can also
be imaged as they propagate across the strongly contracting and
deforming heart surface (Zhang et al., 2016; Christoph et al.,
2017, 2018). In combining optical mapping with computer vision
techniques and numerically tracking the heart’s motion, the
optical imaging of electrical activity during heart contraction is
possible. The tracking inherently also allows the measurement
of the cardiac deformation and thus the mechanical activity.
The simultaneous imaging of both the heart’s contractile motion
and the electrochemical processes that generate the heart’s
contractions is pivotal for a better understanding of the heart’s
electrophysiology and mechanics and their mutual coupling.

In this work, we validate and discuss the performance of a 2D
numerical motion tracking and motion compensation algorithm,
which reliably tracks both the heart’s rigid and non-rigid body
motion and planar movements within video images obtained
with a single camera during optical mapping. In previous studies,
we used the algorithm tomap action potential waves during sinus
rhythm on the contracting three-dimensional heart surface using
multiple cameras (Christoph et al., 2017) and to map arrhythmic
action potential and calcium vortex waves during ventricular
tachycardia and fibrillation on the surface of contracting rabbit
and pig hearts (Christoph et al., 2018). Processing various
optical mapping recordings obtained with different species and
sensitivities (Di-4-ANEPPS, Di-4-ANBDQPQ, Rhod-2AM), we
were able to retrieve motion-stabilized optical maps and co-
moving optical traces, in which the fluorescent signals could
be measured along a trajectory describing the movement of the
tissue through the video image. After motion-stabilization, we
were able to measure sequences of action potentials and calcium
transients and their spatio-temporal evolution across the moving
heart surface with a substantial reduction in dissociation-related

motion artifacts. Dissociation-related motion artifacts occur due
to a loss of the correspondence between a particular pixel of
the camera sensor and a particular piece of cardiac tissue that
is imaged with the pixel when the tissue moves. Furthermore,
using the tracking data, we were able to measure and analyze
the rapid mechanical deformations that the ventricular cardiac
muscle exhibits during fibrillation, and were able to relate elasto-
mechanical patterns arising in the heart wall to the turbulent
electrical activity that causes the heart’s fibrillatory contractions
(Christoph et al., 2018). While the aim of our previous multi-
camera study (Christoph et al., 2017) was to provide a proof-
of-concept that three-dimensional electromechanical optical
mapping is possible, our aim in the present study is to discuss
the performance of the 2D tracking itself. In this study, we
carefully assess and demonstrate the algorithm’s efficacy and
robustness in reliably detecting shifts of the tissue in the video
images using both experimental and synthetic optical mapping
data generated with computer simulations. In particular, the
synthetic optical mapping data allows the comparison of the
tracking outcomes to ground-truth data, as it becomes possible
to precisely measure mismatches between the simulated and
tracked tissue configurations. We reproduced experimental data
as closely as possible and used the electromechanical computer
simulations to mimic key video properties such as different
contraction strengths, image contrasts and fractional intensity
changes of the fluorescence. We then used the simulations
to systematically generate optical mapping videos containing
motion and motion artifacts and applied the tracking algorithm
to track and stabilize the motion and remove the motion artifacts
under various conditions.

2. MATERIALS AND METHODS

Experimental and synthetic optical mapping video data was
generated and analyzed, the video data showing the contracting
and fluorescing heart surface filmed through a monocular
imaging setup with one camera. In particular, video data with
varying amplitudes of motion and fluorescent signal strengths
was analyzed.

2.1. Experimental Setup and Imaging
Protocol
Contracting isolated Langendorff-perfused rabbit hearts (N = 2)
were filmed during regular rhythm and ventricular arrhythmias
using a single-camera optical mapping system, see Figure 1.
Pharmacological excitation-contraction uncoupling agents such
as Blebbistatin were intentionally not administered. Any other
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FIGURE 1 | Electromechanical optical mapping with beating, strongly deforming and fluorescing hearts. (A) Schematic drawing of experimental setup with single

high-speed camera filming ventricular surface of rabbit heart (side view). Tracking of motion is possible only within the image plane (2D). (B) Raw video image

(128× 128 pixels) showing heart surface during optical mapping with voltage-sensitive staining (front view). ROI see (E). (C) Tracked displacements and mechanical

configuration χt at time t (left: every 8th vector, right: every 2nd vector). Points (black) indicating displacements of single tissue segment with respect to reference

position (gray). See also Supplementary Video 1. (D) Trajectory of tracked tissue segment moving during ventricular fibrillation through pixel plane. Motion

amplitudes are in the order of a few pixels (maximal 3–4 pixels from initial position, 2 ms temporal resolution). (E) Tracking of tissue movements during pacing with

displacement amplitudes in the order of |Eu| ≈ 10.0 pixels. Points (black) indicating movements of single tissue segment (i, j) with respect to reference position (gray) in

reference video image Ir (shown is every 10th segment or vector for illustration purposes).

mechanical constraints were avoided to let the heart beat freely.
The optical mapping system consisted of a single EMCCD
camera (Evolve 128, Photometrics Inc., 128 × 128 pixels, 16 bit
dynamic range), using a high-aperture lens (objective Fujinon
1.4/9mm, approx. 2 × 2 cm field of view, Fujifilm Corp.) and
long-pass filtering (Edmund Optics, transmission > 610 nm) to
filter the fluorescent light emitted from the heart surface. Hearts
were stained with voltage-sensitive dye (Di-4-ANEPPS, 20ml of
1mMol/l concentrated dye-Tyrode solution, 605 nm emission
peak, bolus injection, recirculated). The dye was excited using
four light-emitting diodes operating at wavelengths of 532 nm,
powered by batteries (12V , 26Ah, rechargeable) to maintain
constant, low-noise illumination. The diodes were positioned
close to and around the camera lens and directed onto the
central part of the ventricular wall, to establish a homogeneous
illumination. For even distribution of the dye in the tissue,
filming was started not earlier than 5 min after the dye was
administered. Camera triggers were provided from an external
triggering source (wave form generator, 33220A, Agilent) and
recordings were obtained at a frame rate of fps = 500Hz.
Hearts were excised from anesthetizedNewZealandwhite rabbits
(N = 2, female, 6–12 months, 2.5 − 3.5kg) and inserted into
cardioplegic solution for temporary cessation of cardiac activity.
This study was carried out in accordance with German animal
welfare laws and the recommendations of the Lower Saxony
State Office for Customer Protection and Food Safety (LAVES)

and the Federation of European Laboratory Animal Science
Associations (FELASA). The protocol was approved by the Lower
Saxony State Office for Customer Protection and Food Safety
(LAVES). The hearts were positioned at the center of a 8-
sided, glass-walled bath filled with oxygenated 37◦ warm Tyrode
solution (95% O2, 5% CO2) and connected to a retrograde
Langendorff-perfusion system (Hugo-Sachs Apparatus, March-
Hugstetten, Germany). The flow rate of the perfusate was
30mlmin−1 at a perfusion pressure of 50mmHg ± 5mmHg. The
Tyrode solution was kept at a constant temperature of 37◦C ±
0.5◦C (custom-made temperature control, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, Germany) and
was constantly reperfused. Hearts were attached at the aorta
to the retrograde perfusion outflow, hanging vertically from
the aortic block, the apex facing the bottom of the bath.
The camera was positioned at heart level and filmed the
epicardial ventricular surface through one of the glass walls
of the bath. Filming was performed at working distances of
approximately d = 30 cm. Hearts were filmed with their
ventricular surface facing the camera, see Figure 1A. Mechanical
pressure on the hearts was carefully avoided to prevent
compression of the coronary arteries. Electrocardiograms
were recorded using a data acquisition system (MP150,
Biopac Systems Inc., Goleta, USA), acquiring data at a
sampling rate of 2.0 kHz throughout the entire duration of the
experiment.
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2.2. Synthetic Optical Mapping Videos
Generated With Computer Simulations
To be able to assess the efficacy of motion tracking and motion
artifact compensation algorithms systematically, synthetic optical
mapping video data was generated using computer simulations.
A modified two-dimensional numerical reaction-diffusion
mechanics model (Weise et al., 2011; Christoph, 2015) was used
to create maps of electrical action potential wave patterns on a
correspondingly contracting and deforming two-dimensional
elastic surface, see section 2.2.1. The simulation data was used
to deform a video image showing the heart surface during an
optical mapping experiment with voltage-sensitive staining
(Di-4-ANEPPS), and to modulate its pixel intensities according
to the model’s transmembrane voltage or electrical wave pattern,
see section 2.2.2. Tracking and motion compensation was then
applied to the synthetically generated optical mapping video
data.

2.2.1. Numerical Model
A two-dimensional elastic excitable medium with tunable muscle
fiber anisotropy was used to produce nonlinear waves of
excitation propagating in a correspondingly deforming two-
dimensional elastic medium, see Figures 2A,B. The elastic
excitable medium consists of two numerical models, an electrical
and an elastic model, coupled using forward electromechanical
coupling. The electrical model allows the simulation of electrical
impulse propagation, such as planar or target wave patterns,
and also produces spiral wave patterns or chaotic wave activity
composed of multiple spiral waves, as similarly observed in
optical mapping experiments on the heart surface during
arrhythmias. Due to the forward electromechanical coupling
the electrical wave patterns cause local contractions and
deformations of the elastic medium.

The electrical part of the model was simulated using the
phenomenological, two-variable Aliev-Panfilov model (Aliev and
Panfilov, 1996) comprised of two coupled partial differential
equations with dynamic state variables u and v:

u̇ = ∇2u− ku(u− a)(u− 1)− uv (1)

v̇ = ε(u)(ku− v) (2)

where u and v are dimensionless normalized representations of
the transmembrane potential and the conductance of a slow
repolarizing current, or excitatory and refractory dynamics,
respectively. Note that the range of u is within the interval [0,1].
The value of u is used to modulate the video images, see section
2.2.2. The diffusion term ∇2u provides the diffusive coupling
between neighboring cells of the electrical lattice and leads to
spreading waves of electrical excitation through the excitable
medium. k, a, and ε(u) are model parameters. The generation of
active stress Ta due to excitation is modeled using a third partial
differential equation that depends on the excitatory variable u as
described previously (Nash and Panfilov, 2004):

Ṫa = ε(u)(kTu− v) (3)

The equation simulates immediate and homogeneous active
stress generation in response to electrical stimulation and

simulates excitation-contraction coupling (Bers, 2002). The
parameter kT determines themagnitude of the active stress build-
up in each cell of the model and defines the strength of the
contractions occurring in the medium, see Figure 2E.

The elasto-mechanical model consists of a mass-spring
damper system with controllable, tunable linearly transverse
muscle fiber anisotropy (Bourguignon and Cani, 2000;
Christoph, 2015). Figure 2B illustrates the lattice structure
of the mass-spring damper system. The system consists of a
regular lattice with cells defined by four vertices of the lattice
and the cells containing sets of perpendicular springs attached to
the barycenter and to the edges of the cells. The sets of springs
can be oriented arbitrarily in the two-dimensional plane and
introduce preferred orientations and anisotropy to the elastic
system. One of the springs is set to be the active spring along
which contractions occur upon electrical excitation, representing
the fiber orientation. The springs rest lengths are modulated
by the active stress variable Ta, which is in turn dependent
on the excitation u, the active stress inducing a shortening
of the active springs, which results in the contraction of the
cell. As a result, the tissue exhibits contractions and large
deformations with length changes in the order of up to 10%.
The cells at the boundaries of the elastic medium are connected
to additional springs, which are fixed with one of their ends in
space, mimicking an elastic interface with its surrounding.

Each cell of the elastic model corresponds to one cell of the
electrical model. The model was solved using finite differences
numerical integration schemes. The electrical model was solved
using forward Euler integration and the elastic model was solved
using Verlet integration. During integration, both models were
updated simultaneously.

Figure 2E shows how the contraction strength and
overall amount of deformation of the model can be
varied with the parameter kT from Equation (3). Typical
values for the parameter kT used in this study were
kT = [0.001, 0.005, 0.01, 0.1, 0.2, ..., 3.0]. The graph shows
that magnitudes of the displacements |Eu| exhibited by the nodes
of the simulation grow rapidly with increasing kT for very small
kT and less rapidly for larger kT . The graph shows the average
displacements < |Eu| >, which were computed from the maximal
separation of the positions |Exxy(t)− Exxy(t

′)| of one vertex (x, y) of
the simulation grid over the entire time course of the simulation
and averaging over all vertices.

2.2.2. Synthetic Video Generation
The electrical patterns and deformations exhibited by the
numerical model were used to create videos showing a deforming
grayscale texture image, being locally superimposed by intensity
modulations in locations where the tissue is electrically activated,
see Figure 2. The video image is a video frame from one of the
recordings obtained during the optical mapping experiments.
The size of the video image of 100 × 100 pixels (slightly
cropped) matches the grid size of the simulation. Therefore,
in terms of spatial units, one cellular unit of the simulation
domain corresponds to one pixel in the video data. Figure 2E
correspondingly shows by how many pixels (approximately) the
nodes of the mechanical grid move through the image plane

Frontiers in Physiology | www.frontiersin.org 4 November 2018 | Volume 9 | Article 1483

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christoph and Luther Marker-Free Tracking for Optical Mapping

FIGURE 2 | Generation of synthetic optical maps using computer simulations. (A) Original optical mapping image (100× 100 pixels) cropped from video still frame

showing heart surface of rabbit heart superimposed by simulated spiral wave pattern (exaggerated) generated using reaction-diffusion excitable dynamics model.

Simulated fluorescence intensity drop during depolarization of action potential (exaggerated). (B) Deformable elastic medium simulated with mass-spring damper

lattice model (here consisting of only 3 × 3 cells for illustration purposes, system used in study consists of 100 × 100 cells). Each pixel in (A) corresponds to one cell.

(C) Deformed video image Ĩχ (x, y) containing fluorescent signal (1F/F < 5%, not visible in a still frame), deformation caused by spiral dynamics. See also

Supplementary Video 3. (D) Deformed and resampled part of video image I(x, y). (E) Overall displacements of simulation in pixels depending on simulation

parameter kT to modulate contraction strength of springs.

(0.5 − 5.0 pixels). We found that for the chosen values for the
parameter kT we obtained similar magnitudes of motion as seen
during the experiments. The intensity values of the video image
were normalized I ∈ [0, 1] (dark cropped areas corresponding to
values < 0.1).

First, the simulation output of the electrical model was used
to create videos showing an optical mapping grayscale image of
the heart surface superimposed by a rotating spiral wave pattern,
the pixels’ intensities decreased by a fraction of the value of the
excitatory variable u, as shown in Figure 2A. Because each pixel
of the original undeformed video image corresponds to a discrete
cell of the simulation, there is a one-to-one correspondence
between the pixel’s original intensity value and the cell’s value
for u. More specifically, the time-varying two-dimensional maps
of the electrical variable u(x, y, t) were used to decrease the
otherwise static pixel intensity of the texture image Itexture(x, y).
The intensity value I in each pixel (x, y) was modulated linearly
as follows:

Ĩ(x, y, t) = Itexture(x, y)+ f · u(x, y, t)+ ξ (4)

where |f | ∈ [0, 1] is a scaling factor and represents the
maximal intensity change of the fluorescence-induced intensity
modulations or fractional change in fluorescence in normalized
units and ξ corresponds to noise. Typical values used in this
study for the parameters were f = [−0.01,−0.03,−0.06,−0.12]
and ξ = [0.005, 0.01, 0.03]. While in this study we only
simulated a decrease in the signal with f < 0, mimicking

the behavior of typical voltage-sensitive dyes, it would also
be possible to simulate an increase in fluorescence with f >

0 as seen during calcium-sensitive imaging. The normalized
fractional change in fluorescence f represents the fractional
change in fluorescence 1F/F exhibited by fluorescent dyes in
optical mapping experiments. The texture image Itexture(x, y) was
normalized with all its intensity values in the range I ∈ [0, 1].
The histogram of grayvalues ρ(I) of the texture image could be
scaled such that the image properties fulfilled specific criteria; for
instance, the video images contrast matching a predefined local
image contrast c with its corresponding contrast distribution, see
Figure 8C and section 3.2.

The image frames of the resulting video sequence Ĩ(x, y, t)
were then deformed within the two-dimensional image
plane according to the deformed geometry or time-varying
mechanical configuration χ(t) of the simulation grid, adding
the displacements Eu(x, y, t) to the vertices defining each pixel,
yielding a deformed, intensity modulated video Ĩχ (x, y, t),
see Figure 2C. The magnitudes of the deformations could
be tuned using the parameter kT from Equation (3). The
average displacement strengths given in pixels achieved for
various values for kT are shown in Figure 2E. To obtain
videos showing the moving, deformed texture Ĩ(x, y, t) in a
static laboratory camera view frame, the video data was then
resampled, redistributing the pixel intensity values of Ĩ(x, y, t)
into a regular undeformed pixel grid, yielding resampled
video sequences I(x, y, t), see Figure 2D. Resampling was
performed using polygon clipping algorithms. The simulations
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typically included Nt = 50, 000 time steps, from which every
10th time step was extracted, the resulting image sequences
then consisting of 5, 000 frames, showing about 10 spiral
rotations.

2.3. Motion Tracking
Motion tracking was performed with both the experimental and
the synthetic optical mapping videos to obtain two-dimensional
in-plane displacement vector fields Eu(x, y, t), the displacement
vectors indicating planar local shifts of tissue segments in the
video images. Motion tracking was performed using a Lucas-
Kanade optical flow estimation algorithm (Periaswamy et al.,
2000, see also Christoph et al., 2017, 2018). Generally, the motion
tracking algorithm is able to track rigid and non-rigid body
motion, affine deformations as well as translational and rotational
motion in images at a sub-pixel resolution. The motion tracking
algorithm does not require any visible characteristic features,
landmarks or markers attached to the heart surface to facilitate
or assist the motion tracking. Instead it estimates optical flow that
occurs in between two images. We found that simply the visible
anatomical texture of the heart surface is sufficient to associate
two local tissue segments in between two frames with each other.
Nevertheless, we enhanced the anatomic texture and the visible

features on the heart surface numerically to increase the accuracy
and robustness of the motion tracking algorithm, see Figure 4

and section 3.3.
When tracking experimental data, short video sequences with

durations of 1.0 − 10.0 s (500 − 5, 000 frames, 500Hz) of
the optical mapping recordings were extracted and stored as
normalized videos containing intensity values I ∈ [0, 1] with
floating point precision, the intensity values normalized by the
maximal and minimal values found in the entire video sequence
vs, see also Figure 1B:

I(x, y, t) = (vs(x, y, t)−min(vs))/(max(vs)−min(vs)) (5)

such that the experimental and the synthetic video data were
stored in the same format. Next, in both the experimental and the
synthetic data, the motion was tracked throughout the sequence
of video images, comparing each video frame to one predefined
reference frame Ir(x, y, t) out of the sequence (t ∈ [1, ...,N]
frames), registering the shifts of the tissue in between the two
frames in each pixel. For data showing periodic cardiac activity,
a reference frame showing the undeformed, non-contracted
heart shortly before (25ms ± 5ms) the electrical activation
(depolarization) of the tissue was selected. For data showing
arrhythmic cardiac activity, an arbitrary frame or a frame in the

FIGURE 3 | Synthetic optical mapping videos (pixel-wise normalized) with simulated spiral waves on a deforming heart surface. The spiral wave pattern is caused by

electrical activity and displayed as an intensity decrease which is typically seen during voltage-sensitive optical mapping. Clockwise rotating spiral wave with two

different signal strengths f : (A) weak signal (1F/F = 3%) and (B) strong signal (1F/F = 20%) on non-deforming (top sequence) and deforming (bottom sequence)

heart surface. The noise ξ is constant in all image sequences (ξ = 0.03) even though it appears to be stronger in (A) due to the pixel-wise normalization (pixel

intensities I ∈ [0, 1] dimensionless normalized units, n.u.). The amplitude of motion is the same in all image sequences (|Eu| ≈ 3− 5 pixels). On the deforming surface

the spiral wave pattern is superimposed by motion artifacts. (B) Due to the large signal strength f , the spiral wave is still visible on the deforming medium and motion

artifacts are comparatively low. The amount of motion artifacts depends on the signal-to-contrast ratio fc = |f |/c, the ratio of fluorescence signal strength f to the

strength of the local contrast c or short-scale intensity gradients in the image (c constant in all images).
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FIGURE 4 | Motion tracking using contrast-enhanced video images: (A) Top

left image: original, raw video image with pixel intensities normalized to minimal

and maximal values in entire video (I(x, y) ∈ [0, 1]). Top right image:

contrast-enhanced video image used for motion tracking (Ic(x, y) ∈ [0, 1]) with

pixel intensities normalized by minimal and maximal value in local

neighborhood (disk-shaped region Sxy ) around each pixel. Resulting

contrast-enhanced images show maximally intensified short-scale image

gradients and suppressed large-scale image gradients. (B) Schematic of

motion tracking procedure with tracking of contrast-enhanced images Ic. The

original video images I are deformed using the inverse tracking data −Eu to

obtain motion-stabilized or warped videos Iw (x, y, t), which are then further

post-processed, i.e., pixel-wise normalized (Inw ).

middle of the image sequence was selected as the reference frame.
The motion was tracked either in the original normalized videos
I(x, y, t), as derived in Equation (5), or in contrast-enhanced
videos Ic(x, y, t), see below, which show the maximally intensified
contrast of the tissue, see Figure 4. To obtain contrast-enhanced
videos, each pixel’s intensity value I(x, y, t) was renormalized by
the maximal and minimal intensity values found within a small
disk-shaped sub-region Sx,y around the pixel:

Ic(x, y, t) = (I(x, y, t)−min(S))/(max(S)−min(S)) (6)

the sub-region Sx,y typically retaining a diameter of 5–7 pixels
and renormalizing all pixels in each video frame individually. The
conversion produced video sequences, in which the local tissue
contrast is maximally intensified and the tissues’ features and its
unique local texture become very pronounced, see Figure 4A.
The conversion also caused larger-scale intensity gradients across

the images to vanish. Motion was then tracked in either the
resulting contrast-enhanced videos Ic(x, y, t) or the original
simply normalized videos I(x, y, t) to compare the different
outputs. The typical frequency of the detectable features in the
video images is a few pixels (5–10), see section 3.2, and given by
the granular, tile-shaped texture of the tissue. Two-dimensional
in-plane displacements Eu(x, y, t) ∈ R

2 were determined for
each pixel (x, y) in every frame I(x, y, t) or Ic(x, y, t) throughout
the normal or contrast-enhanced video image sequences. The
displacement fields Eu(x, y, t) were stored for further analysis.
Video data in which the heart deformed excessively or rotated,
such that parts of the heart turned away from the camera or
moved out of its field of view was discarded. Motion tracking
(Matlab), warping and resampling (custom C++ code) and other
processing requires approximately 1–3 min of computation time
per video image (in the order 100× 100 pixels) on a single CPU.

2.4. Motion Stabilization and Motion
Artifact Removal
Using the displacement data obtained during the motion
tracking procedure, we processed the original videos and
produced warped or motion-stabilized videos in which motion
appears to be absent or significantly reduced, see also
Supplementary Video 3. The tracked displacements were used
to deform each video image to match the image in the reference
frame. More precisely, motion-stabilized or warped video images
Iw(x, y) were obtained by deforming the original video images
I(x, y) using the inverse tracked displacements −Eu(x, y) to shift
and deform each pixel accordingly, see Figure 4B. The deformed
video image was then resampled in the image plane using
the regular cartesian pixel grid yielding a deformed, resampled
and motion-stabilized video image Iw(x, y), see Figures 2D,
4B. The resulting frames showed a similarly deformed tissue
configuration χr as shown in the reference frame Ir throughout
the sequence of video images. For synthetic video data containing
motion, the successfully tracked and warped video images
Iw(x, y, t) were very similar to the original undeformed video
images Ĩ(x, y, t) containing only fluorescent activity.

2.5. Post-processing
Post-processing for the visualization of electrical waves was
performed equally for both experimental and synthetic optical
mapping data. Experimental video data was stored as unsigned
(16 bit) integer valued-data and converted into floating-point
valued data after normalizing each pixel by the minimal and
maximal pixel value in the entire video, yielding normalized
dimensionless pixel intensity values I(x, y, t) ∈ [0, 1] as described
by Equation (5). The simulation data was stored as normalized
data with all pixel values normalized I(x, y, t) ∈ [0, 1]. To
visualize wave activity the video data was normalized pixel-
wise, meaning that each time-series Ixy(t) in each pixel was
normalized individually by its minimal Imin = min(Ixy(t)) and
maximal Imax = max(Ixy(t)) intensity value respectively, see
also (Laughner et al., 2012):

In(x, y, t) = (I(x, y, t)− Imin)/(Imax − Imin) (7)
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Alternatively, the video data was normalized pixel-wise using
a sliding-window normalization, meaning that each time-series
Ixy(t) in each pixel was normalized individually by the minimal
Imin = min(Ixy(t)) and maximal Imax = max(Ixy(t)) intensity
value found within a temporal window of size t±w, respectively,
the window size being at least one cycle length of the wave
activity (e.g., approx. 100ms during ventricular fibrillation). Both
normalizations equally amplify temporal intensity fluctuations
in each pixel (cf. Figure 7) and they are typically used to
visualize action potentials or calcium cycling. However, both
normalizations can also amplify intensity fluctuations that are not
produced by electrical activity but instead by optical flow or in
other words motion artifacts.

In the synthetic data, motion artifact strengths m̃(x, y, t)
were computed by calculating the absolute difference between
the motion-stabilized video, which was obtained in an exact
co-moving frame, and the video obtained in a static camera
view or lab frame before or after tracking. The exact co-
moving video corresponds to an idealizedmeasurement, in which
the amplified, normalized fluorescent signal can be measured
precisely in each tissue coordinate. This video is not available in
experiments because motion tracking algorithms are imperfect
and the tracked tissue configuration is only an approximation
of the real tissue configuration. In simulations, however, the real
tissue configuration is available. Motion artifact strengths m̃were
computed using the pixel-wise normalized videos:

m̃ =
∑

x,y,t

(|Ĩn(x, y, t)| − |In(x, y, t)|) (8)

summing the absolute differences of the two videos’ pixel
intensities over all pixels and video frames. The video Ĩn(x, y, t)

that was obtained in the exact co-moving frame was first pixel-
wise normalized, then deformed and finally resampled. The video
In(x, y, t) that was obtained in a static camera view frame with
pixel-based video-processing was first deformed, then resampled
and finally pixel-wise normalized. The first video will never
contain motion artifacts and the latter video may contain motion
artifacts.

3. RESULTS

3.1. Efficacy of Motion Artifact Removal in
Experimental Data
Figure 5 shows a quasi-planar action potential wave propagating
across the contracting ventricular surface of a rabbit heart, see
also Supplementary Video 2. The wave was elicited after the
application of a pacing stimulus on the endocardial wall close
to the apex of the heart using a MAP-catheter electrode. As a
result, the wave propagated upwards from the apex toward the
base of the heart. Due to the voltage-sensitive staining and long-
pass emission filtering, the fluorescent intensity decreases on
the detector during the depolarization of the action potential.
Correspondingly, activated or depolarized tissue corresponds
to dark regions, whereas undepolarized tissue during the
diastolic interval corresponds to bright regions in the image.
The video data was normalized using a pixel-wise sliding-
window normalization, see section 2.5. Other post-processing
such as smoothing was not performed. The upper image series
shows the action potential wave visualized after tracking and
motion stabilization in the co-moving frame, in which motion
artifacts appear to be absent or at least substantially reduced.
The action potential propagates across the ventricular surface

FIGURE 5 | Efficacy of motion tracking and motion artifact compensation during electromechanical optical mapping: planar action potential wave propagating

upwards across ventricular surface of a rabbit heart as the heart contracts (dark areas correspond to depolarized tissue and bright areas correspond to undepolarized

tissue, staining Di-4-ANEPPS, pixel-wise sliding-window normalization [n.u.]). See also Supplementary Video 2. (A) Motion-stabilized image sequence with

substantial reduction in dissociation-related motion artifacts after motion tracking and numerical motion-stabilization. (B) The same image sequence without motion

tracking and stabilization. Motion artifacts appear as a high-frequency, network-like spatial pattern with black-and-white deflections superimposing and distorting the

action potential wave pattern. Both image series were processed in the same way before and after motion tracking.
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as the heart contracts. Depolarized and undepolarized tissue
areas correspond to two clearly distinguishable, homogeneous
areas with low and high light intensities due to the pixel-wise
normalization of the data, see Equation (5). For comparison,
the lower image series shows the same image sequence without
motion tracking and motion stabilization. Due to the shifts of
the tissue and a deallocation or dissociation of tissue regions
and their corresponding pixel on the camera sensor measuring
the tissue region during this pixel-based measurement, the video
contains dissociation-related motion artifacts. Such dissociation
motion artifacts appear as a network-like, tile-shaped spatial
pattern with black-and-white deflections superimposing and
distorting the action potential wave pattern, which can be seen

in the upper image sequence. Note that both image series
were processed in the same way, normalizing the optical traces
obtained in each pixel using a sliding-window normalization,
see Equation (5). However, the motion that is still present in
the lower image series causes the undesired high-frequency
spatial motion artifact patterns. In contrast, because the motion
was tracked and stabilized in the upper image sequence before
the post-processing, the high-frequency spatial motion artifact
pattern vanished.

Further analysis of the motion-stabilized video data shows
that it is possible to improve the robustness and accuracy
of measurements, such as activation time or action potential
duration measurements. Figure 6A shows activation maps
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FIGURE 6 | Comparison of activation time and action potential duration measurements in optical maps with and without motion artifacts. (A) Activation maps

showing quasi-planar action potential wave propagation on left ventricular surface of contracting rabbit heart before tracking and without motion-stabilization (left) and

after tracking and with motion-stabilization and motion artifact compensation (right). (B) Upstroke detection (at 0.5) for computation of activation maps in (A).

(C,D) Action potential duration measurements of < APD50 >= 151ms± 6ms for motion-stabilized video data. Variance in action potential duration due to motion

decreases with motion compensation. (E) Comparison of uncertainty in action potential duration measurements in original artifact-free data (APD50 = 110± 3a.u.)

and tracked, motion-stabilized synthetic video data (APD50 = 114± 5 a.u.). Uncertainties without motion or motion compensation are both σAPD < 5% and are much

larger with motion.
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computed for the quasi-planar action potential wave shown in
Figure 5. The activation map on the left was computed from
the raw, non-tracked video data including motion artifacts. The
activation map on the right was computed from the tracked,
motion-stabilized video data. Both maps exhibit a global gradient
from short (blue: ta < 10ms) to long activation times (red: ta >

40ms), beginning with short activation times close to the apex
and large activation times further up on the ventricular surface.
The gradients in each of the activation maps reflect the situation
in Figure 5, in which a wave travels across the ventricular wall
starting from the apex toward the base of the heart. However, one
can observe strong artifacts in the raw activation map containing
motion. In about 15% of the pixels the activation times deviate
strongly (> 10%) from the activation times in the tracked map.
It seems that the motion artifacts seen in the normalized video
sequence (lower sequence) in Figure 5 similarly manifest in the
activation maps. Otherwise, the high similarity of both activation
maps suggests that activation times and activation maps can, at
least to a certain extent, be computed from unprocessed video
data. The maximal activation time, that is the time which was
required for the wave to traverse the entire field of view, is equal in
both untracked and tracked maps with tamax = 52ms± 2ms. We
frequently found that in the uncompensated, raw video data with
large fluorescent signals (here 1F/F ≈ 6 − 8%) and moderate
motion, simply the upstroke of the action potential can be
sufficient for the computation of activation times, provided it can
be detected appropriately. However, note that without motion
tracking, the measurement of activation times is nevertheless
inaccurate because in a non-co-moving frame of reference the
spatial correspondence is lost. Figure 6B shows exemplary traces
of the action potential upstrokes obtained from both the raw
and the motion-compensated videos for comparison. In the
uncompensated optical maps, the action potential upstrokes are
in some cases not as steep or pronounced as in the motion-
stabilized optical maps. This is the probable cause of the artifact
patterns seen in the raw activation map (left) in Figure 6A.

Figures 6C,D shows action potential duration measurements
obtained from the same data set shown in Figure 5. The action
potential duration (APD) of the 2 subsequent action potentials
shown in Figure 6B was measured in approximately 500 traces
obtained from the tracked, motion-stabilized video data by
computing the delay between the upstroke and repolarization
times at 50% of the height of the action potentials (APD50),
or at a value of 0.5 in the normalized videos. Figure 6C shows
histograms with the distributions of action potential durations
for the raw, untracked video data including motion artifacts and
the tracked, motion-stabilized video data. In case of the raw
data without motion-stabilization, the histogram exhibits a broad
distribution of APDs, which prohibits the unique identification of
a dominant action potential duration. With motion-stabilization,
the histogram exhibits a narrow distribution from which it
is possible to determine a mean action potential duration
of APD50 = 151 ± 6ms. A similar drastic decrease in
APD measurement uncertainty after tracking is also found by
Khwaounjoo et al. (2015).

Figure 6E shows the variability and uncertainty in the action
potential duration measurement in synthetic video data with

motion. Three exemplary plots obtained from three adjacent sites
show the original artifact-free course of the simulated action
potential (gray) together with the tracked, motion-stablized
curves (black) and the curves including motion-artifacts (red) for
average maximal displacements of < |Eumax| >= 3.2 pixels. The
original and the motion-stabilized curves (gray and black) can
barely be distinguished from each other given the pronounced
amount of noise, while the curves includingmotion artifacts (red)
deviate strongly from both the original and motion-stabilized
curves. The right panel in Figure 6E shows the histogram with
the three respective distributions of action potential durations
(computed with the video data smoothed with kernel sizes kx =
ky = 3 pixels and kt = 11 time steps; the smoothing provides
more robust upstroke and repolarization time detections). As
for the experimental data, the distribution of measured action
potential durations with motion artifacts is very broad with a
high variability in action potential durations. The histogram’s
maximum indicates an APD50 ≈ 120a.u., which deviates by
about 17% from the actual value. The average (APD50 = 108 ±
32a.u.) only deviates by about 2% from the true value, but the
distribution is very broad and has a large uncertainty of 30%.
Both the original and the motion-stabilized distributions are
narrow and very distinctly exhibit a peak, which we used to
compute the average action potential durations of APD50 =
110± 3a.u. and APD50 = 114± 5a.u., respectively. The tracked,
motion-stabilized data deviates by 3.6% from the original data
and exhibits a slightly higher uncertainty of σAPD = 4.5% (about
1.7 times as large as the uncertainty for the original data with
σAPD = 2.7%).

The efficacy of the tracking algorithm in inhibiting motion
artifacts during arrhythmias is demonstrated in Figure 7. The
image sequences in Figure 7A show chaotic action potential
vortex wave activity mapped on the contracting rabbit heart
surface during ventricular fibrillation. Just as in Figure 5, motion
artifact patterns have decreased drastically due to the motion
tracking. Instead of heavymotion artifacts (B,D) one immediately
observes action potential wave patterns (A,C). Again, due to
the voltage-sensitive imaging, depolarized tissue corresponds
to dark and repolarized or inactivated tissue to white areas.
For comparison, we show the same data for two different
normalizations [A,B: pixel-wise as in Equation (5); C,D: pixel-
wise within sliding-window with τ = 140 − 160ms]. The two
different normalizations show that the motion artifact pattern
and the reduction in motion artifacts is independent from
other processing steps and the particular visualization of the
wave pattern. In both uncompensated optical maps that are
obscured with motion artifacts one can observe the typical
high-frequency spatial motion artifact patterns, as observed
in Figure 5.

In summary, Figures 5–7 demonstrate that it is possible
to perform optical mapping experiments with beating isolated
hearts and to reliably retrieve optical maps with substantially
reduced motion artifacts from the moving, contracting heart
surface during regular and irregular cardiac rhythms. The
differences between the raw and motion-stabilized video data
are substantial and can immediately be identified in the optical
maps. Motion artifacts correspond to high-frequency, short-scale
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FIGURE 7 | Action potential vortex waves mapped on contracting left ventricular surface of rabbit heart during ventricular fibrillation. Electromechanical optical

mapping was performed with voltage-sensitive staining (Di-4-ANEPPS, 128 × 128 pixels, 500 fps, approx. 1× 1 cm field of view). (A,C) Maps with substantially

inhibited motion artifacts after tracking and motion-stabilization showing action potential waves. (B,D) Action potential wave maps without tracking and motion

stabilization. Maps exhibit strong motion artifacts. In (A,B) and (C,D) the same activity is shown with two different normalizations, see main text. (E) Exemplary

time-series obtained from optical maps with motion before (gray) and after tracking and numerical motion-stabilization (black).

spatial patterns, which are absent in the registered, co-moving
maps.

3.2. Characterization and Quantification of
Motion Artifacts
Here, we introduce a framework for characterizing and
quantifying motion artifacts, analyzing their spatial
characteristics and appearance in optical maps. As can be seen
in Figures 3, 5B, 7B,D, motion produces a very characteristic
network-like, tile-shaped dark-bright spatial pattern of pixel
intensities in normalized optical maps. We reproduced this
characteristic motion artifact pattern in synthetic optical
maps and systematically varied important video properties,
such as displacement or contraction strength and fluorescent
signal strength (1F or f ), to determine their contribution to the
emergence of this spatial motion artifact pattern. Next, we related
the data to motion artifact patterns found in experiments, see
Figures 8–10. Figure 8A shows how motion artifacts m̃ increase
with increasing amplitudes of motion (here for given values of
signal strength f and image contrast c, see below) in the synthetic
data. The overall amplitude of motion is given as the average of
maximal displacements < |Eumax| >, computed by averaging the
magnitudes of the maximal shifts |Eumax(x, y)| = max |Exi − Exj|
that each vertex (x, y) underwent throughout the simulation.
The maximal shifts are the maximal distances measured in

pixels between a vertex at time ti and the same vertex at time tj.
Motion artifacts occur even with slight tissue movement (finite
and quickly increasing m̃ for < 1 pixel), which underscores the
sensitivity of optical mapping to motion. The graph also shows
that the strength of motion artifacts m̃ increases less quickly
for shifts larger than ∼ 3 − 5 pixels, indicating an involvement
of other mechanisms in the emergence and development of
motion artifacts, see Figure 8A. Next, Figures 8B,C show that
the strength of motion artifacts does not only depend on the
strength of the contraction and amplitude of the motion, but also
depends on the signal strength f , as well as on the local image
contrast c and their relative magnitudes with respect to each
other. The signal strength f is the strength or amplitude of the
fluorescent signal in the raw, normalized synthetic video data. In
the experiments it would correspond to the fractional change in
fluorescence 1F/F. The local image contrast c is a measure for
the maximal intensity differences that can be found in a small
sub-region Sxy around each pixel, see Equation (10). The image
contrast c expresses the likeliness of such intensity differences
to cause dissociation-related motion artifacts. Dissociation-
related motion artifacts occur due to a loss of the sensor-tissue
correspondence and are consequently produced by optical
flow on the camera sensor caused by the tissue’s movements
through the video image. Considering these key determinants
of motion artifacts, we created synthetic optical mapping videos
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for various values of the fluorescent signal strength f , the local
image contrast c and varying amplitudes of motion < |Eumax| >.
In the following, the fluorescent signal strength f and image
contrast c are given as normalized units, where f ∈ [0, 1]
represents a normalized unit of maximal fractional change in
fluorescence intensity and c ∈ [0, 1] represents a normalized unit
of image contrast. Figure 8B shows how motion artifacts remain
small for large simulated fluorescent signals f , i.e., they are less
noticeable, and increase with decreasing signal strength and
saturate at a stationary value (∼ 0.15) with vanishing signal f .
More importantly, the graph demonstrates that increasing local
image contrast c promotes the emergence of motion artifacts.
With fixed fluorescent signal strength f and increasing image
contrast c, i.e., the intensity of structures and features visible
in the image, motion artifacts become larger. Motion artifacts
are thus a relative measure. With little or no fluorescent signal
(f = 0) or very large image contrast compared to the signal
strength (f /c << 1) one obtains in large parts only motion
artifacts during an optical mapping measurement.

Accordingly, Figure 3 illustrates how motion artifacts emerge
under various conditions in synthetically generated optical maps.
In particular, it highlights how motion artifact strength m̃ varies
greatly with differing signal strengths f . The image series show
a clockwise rotating action potential spiral wave, which induces
a dark spiral wave pattern on an otherwise brighter background
in the synthetic video data. In real optical mapping experiments,
such data would be obtained with voltage-sensitive staining (for
instance using Di-4-ANEPPS). The strength of the motion is the
same in all images. The video data was normalized pixel-wise, as
described by Equation (5) and equally as shown in Figure 5A,
to facilitate viewing of the intensity fluctuations caused by the
electrical wave activity. The image series in Figure 3A show a
spiral with low signal strength (f = −0.02) on a non-deforming
vs. a deforming heart surface, respectively. The image series in
Figure 3B show a spiral with larger signal strength (f = −0.12)
on a non-deforming vs. a deforming heart surface, respectively.
Due to the absence of motion in the upper image series in each
of the two panels, the spiral wave patterns are not obscured by
motion artifacts, they are artifact-free. In contrast, the same spiral
wave patterns shown in the lower image series in each panel are
obscured bymotion artifacts. It is important to note that the noise
level (ξ = 0.03) and the local image contrast (c = 0.055), as well
as the amplitude of the contraction and motion (< |Eumax| >≈
3 − 5 pixel), are the same in all four image sequences. Due
to the pixel-wise normalization, which normalizes all activity
including noise and eliminates differences in absolute signal
strength (baseline), all relative signal intensity changes become
amplified to the same level. Therefore, the spiral wave in the
upper image sequence in Figure 3A is superimposed by stronger
noise and is perceived weaker in comparison to the upper image
sequence in Figure 3B, which contains a stronger signal in
comparison to the noise level (ξ1 = ξ2 = 0.03). Comparing the
two image series withmotion shown in Figures 3A,B, one notices
that the deformed image sequence with low signal strength f
is heavily distorted and obscured by motion artifact patterns,
while the deformed image sequence with high signal strength
f is less affected by motion artifacts. The spiral wave pattern is

nevertheless visible. Were the image contrast in the upper image
sequence larger (c1 > c2) and the two signal strengths of both
spirals the same (f1 = f2), one would obtain a very similar
outcome. The figure illustrates that with increasing fluorescent
signal strength f or decreasing image contrast c motion artifacts
become less severe. Therefore, we suggest defining the signal-to-
contrast ratio:

fc =
f

c
(9)

which indicates the relative signal strength f in comparison
to the local image contrast c and gives an estimate for the
likeliness of motion artifacts to be visible in optical mapping
data. Both values f and c can be determined in experimental
data, see Figures 9D,E and below. The situation in the image
sequence shown in Figure 3A (fc = |f |/c = 0.02/0.055 =
0.36) would be observed during voltage-sensitive imaging with
Di-4-ANEPPS with fractional changes in fluorescence intensity
typically ranging in the order of 1F/F ≈ −3% to −8%. Strong
signal strengths f as shown in the image sequence in Figure 3B

(fc = |f |/c = 0.12/0.055 = 2.2) are typically encountered, for
instance, during calcium-sensitive imaging with Rhod2-AMwith
fractional changes in fluorescence intensity typically ranging in
the order of 1F/F ≈ 10 − 30%. Note that the synthetic videos
in Figure 3 were generated by deforming a video image that was
obtained in an optical mapping experiment with voltage-sensitive
staining (Di-4-ANEPPS). The image shows the typical granular
texture of the ventricular surface of a rabbit heart, which one
similarly encounters with other fluorescent dyes (Rhod-2 AM,
Di-4-ANBDQPQ) and other species.

The image contrast c in both the synthetic and experimental
video images was determined to be the peak of distribution of
local image contrasts, which were computed for every pixel (x, y)
showing the heart surface in the raw, normalized video image,
see Figure 9E. The histogram in Figure 9E shows the distribution
of image contrasts computed for the original raw video image
I(x, y) shown in the upper left subpanel of Figure 9B. This is the
same image used to create the synthetic optical maps shown in
Figure 3. The image in the lower left subpanel is the resulting
contrast image Ic(x, y). The image contrast c in each pixel (x, y)
of that contrast image was computed within a small disk-shaped
sub-region Sxy around the pixel:

Ic(x, y) = max(Sd(x, y))−min(Sd(x, y)) (10)

The diameter d of the sub-region Sxy was typically chosen to
range in the order of d = 5 − 7 pixels. Note that while
the raw video image I(x, y) contains values between I ∈
[0, 1], the contrast image Ic(x, y) only contains values between
approximately Ic ∈ [0, 0.2]. These are the magnitudes of image
intensity differences that can typically be found within short
length scales of a few pixels in the normalized and otherwise
unprocessed video data. This length scale is significant because
the amplitudes of the motion may occur on a similar length
scale. In this case the intensity differences would create optical
flow that may ultimately lead to motion artifacts, see below.
How such local intensity gradients in the video images can
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FIGURE 8 | Motion artifact strength m̃ generated systematically in synthetic optical mapping videos, see also Figure 3. (A) Increase in motion artifact strength m̃ with

increasing amplitudes of motion |Eu|. (B) Decrease in motion artifact strength m̃ with increasing fluorescent signal strength f or decreasing local tissue contrast c. The

strength of motion artifacts depends on the relative signal-to-contrast ratio f/c. (C) Distribution of image contrast in optical mapping video frame used to generate

synthetic optical mapping video. Top image: original texture, normalized to [0, 1]. Bottom image: contrast image. Image contrast c is the maximal absolute intensity

difference that is found around a pixel (x, y) within a disk-shaped region Sxy with diameter d (here typically 5− 7 pixels).
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FIGURE 9 | Characterization of dissociation-related motion artifacts in optical mapping videos showing the contracting, fluorescing heart surface. Measurements of

important quantifiers: fluorescent signal strength f , image contrast c, amplitude of motion |Eu| and characteristic length scales λ of short-scale image gradients.

(A) Action potentials measured during ventricular fibrillation in two close by pixels (see B) on the surface of a mildly contracting rabbit heart [graph reproduced from

Christoph et al. (2017)]. Difference in baseline reflects different pixel intensities. (B) Raw optical mapping video image (top left), contrast image (bottom left), contrast

image normalized to local minima and maxima (top right) and motion artifacts (bottom right). All images have the same characteristic texture with the same

characteristic length scale or dominant spatial frequency (λ ≈ 9 pixels). (C) Radial profiles (fat lines: average) within 2D power spectra of spatial patterns (contrast

image and motion artifacts) indicate dominant frequency of λ ≈ 9 pixels (see two overlapping peaks). (D) Fluorescent signal strength or fractional change in

fluorescence 1F (given as intensity counts I) measured from sequences of action potentials, see (A), with the peak of the distribution at 1F = 854 intensity counts in

16-bit video image. (E) Image contrast (given as intensity counts I) with peak at C = 1400 in 16-bit video image. (F) Amplitudes of motion during ventricular fibrillation

(2− 4 pixels, 128× 128 pixel sensor size).
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easily obscure action potential signals is illustrated in Figure 9A,
which shows two time-series of a sequence of action potentials
measured on the ventricular surface of a moderately contracting
rabbit heart during ventricular fibrillation (graph reproduced
from Christoph et al., 2017). The two time-series were extracted
from two nearby sites (pixel 1 and pixel 2) only a few pixels
apart in the pixel plane and only a few hundred micrometers
apart on the surface of the heart, see Figure 9B. Both time-series
in Figure 9A possess different baselines, about 2, 000 intensity
counts apart from each other, and exhibit slight motion artifacts,
which become apparent as modulations of the traces around
the baseline. The magnitude of the downstrokes (upstrokes of
each action potential) are in the order of 1, 000 counts (1F),
see Figure 9D, and are smaller than the difference in baseline.
Hence, if both sites were to move toward each other or to
switch their positions, the potential difference in baseline, i.e.,
the difference in local intensity or image contrast, could easily
override the fluorescent signal 1F, which is much smaller. The
signal-to-contrast ratio in this recording is fc < 1.

Next to the fluorescent signal and image contrast strengths,

it is also important to consider the spatial length scales of image
gradients and the magnitude of the displacements or motion seen

in the video images. Figure 10B displays the original video image
(top left) used in the simulations, its contrast image (bottom left)

computed using the formula given in Equation (10), a contrast-
enhanced locally normalized version of the original image (top

right) computed using the formula given in Equation (8), and
resulting motion artifacts appearing in this region without or
with very little fluorescent signal fc << 1 (bottom right). One
can see that all four images retain similar spatial frequency
components. In particular, the image showing the local image
contrast (lower left) and the image showing the motion artifacts
(lower right) exhibit analogous spatial patterns with similar
frequency components. The comparison illustrates how the
loss of correspondence and dissociation in an optical mapping
experiment leads to dissociation-related motion artifacts and
links the phenomenon to the image contrast. Figure 10C shows
that the dominant spatial frequency components measured from
the two-dimensional Fourier-transforms of both the contrast-
enhanced, locally normalized image (upper right) and themotion
artifact patterns (lower right) in Figure 10B are equal at λ =
9± 1 pixels (peaks in red and black curves). This means that the
distances between local maxima and minima in the video images
are on average λ/2 ≈ 4.5 pixels and that these length scales match
with the length scales appearing in the motion artifact patterns.

The graph highlights that motion artifacts can quickly emerge

even with slight movement over only a few pixels, c.f. Figure 9A.
It also highlights the necessity to be able to track movements with
sub-pixel precision. Furthermore, the graph highlights that it is

important to take spatial length scales into consideration when
studying the emergence ofmotion artifacts. Therefore, we suggest
defining a factor, which expresses the strength of the motion
in optical mapping videos in comparison to the frequency of
contrast or features in the image:

uλ =
< |Eu| >

λc
(11)

Here the frequency of visible features is given as the inverse
characteristic length scale λc, as computed via the two-
dimensional spectral analysis shown in Figure 10C. If uλ ≈ 1,
then the motion is so large that it will create strong dissociation-
related motion artifacts, given that the image contrast c is
sufficiently high.

Lastly, the quantities f and c can be extracted from
experimental data and used to estimate how likely it is that
the video data contains weak or strong motion artifacts.
Figures 9D–F show the distributions of the fluorescent signal
strengths ρ(1F), the local contrast ρ(C) and the motion strength
ρ(|Eumax|) in the experimental data set shown in Figure 9A. The
peaks of the distributions (1Fmean = 854 counts, Cmean = 1, 400
counts, < |Eumax| >= 3.5 pixels) were used to determine the
signal-to-contrast ratio fc and the relative motion factor uλ for
the data set. The likeliness for motion artifacts to occur in this
data set is large as fc < 1 or 1F < C and uλ ≈ 1 or <

|Eumax| >≈ λ/2. Note, that the overall motion in the original
recording is moderate (< |Eumax| >≈ 5 pixels) as it shows the
rapidly contracting heart surface during fibrillation. The short
distances in the network-like spatial patterns on the surface of the
heart can easily generate motion artifacts even when the motion
is moderate and in the order of a few pixels (the diameter of the
heart being in the order of 100 pixels in our data).

3.2.1. Measuring Motion Artifact Strength Based on

Frequency Components in Optical Mapping Video

Images
As the absolute strength of motion artifacts can not be
extracted from experimental data per se, we compared motion
artifacts appearing in experimental data to synthetic data, which
resembled the experimental data as closely as possible, and for
which we could compute the absolute values |Eu|, f , c and λ as
described above. Figure 10A shows four normalized synthetic
video images depicting a spiral wave pattern (c.f. Figure 3), where
the first three images show the electrical pattern being obscured
by motion artifacts for different and increasing amplitudes of
motion (< |Eu| >= 0.4, 0.8, 4.8 pixels) and the last image
shows the corresponding tracked and motion-stabilized image
with a substantial reduction in motion artifacts (3rd image: <

|Eu| >= 4.8 pixels). The synthetic data reproduced the specific
signal-to-contrast ratio fc, amplitude of motion |Eu| or relativ
motion uλ, and texture of the respective experimental data set,
see Figure 10C. The lower image sequence shows the spatial
frequency contents in the corresponding two-dimensional power
spectra. These spectra were computed as averages from all images
in each video sequence. The spectra show that with increasing
motion and accordingly with increasing motion artifacts, as
seen in the upper sequence, the spectral power increases in
magnitude for higher frequency components. Comparing both
the upper right and lower right images in Figure 10A one finds
that the tracking and motion compensation equally reduced
motion artifacts and the high-frequency components in the
power spectrum. Figure 10B shows the frequency components
sampled and averaged along the radial direction within the two-
dimensional power spectra (red lines forming a star in sub-
image). The graph shows themean radial profiles P∗(λ) (averaged
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from N = 8 lines) for different amplitudes of motion (<
|Eumax| >= 0.1 − 4.8 pixels). One can see that the height of the
profiles continuously increases with increasing motion strength
(light gray: little motion, dark gray or black: up to 5 pixels
motion), indicating that higher frequency content becomes larger
with increasing motion artifact strengths. For motion above 0.5
pixels each profile exhibits a peak at the characteristic length
scale λ, see also Figure 9C. Computing the integral values r =∫
P∗(λ)dλ for each profile and plotting the values of r over

the amplitude of motion < |Eumax| > yields the upper curve
in Figure 10D. The curve shows a continuous, monotonous
increase in r that retains a similar shape as the curve in Figure 8B,
which indicates that motion artifact strength m̃ depends similarly
on the amplitude of motion |Eu|. The graph shown in Figure 10E

further emphasizes this dependency, illustrating that the strength
of motion artifacts m̃ increases linearly with r, suggesting that

r is a valid measure for the estimation of the magnitude of
motion artifacts. This means, that the strength of motion artifacts
occurring in experimental data can be estimated by comparing
the magnitudes of the frequency content of the spatial motion
artifact patterns of synthetic and experimental data with each
other. Figure 10D includes two data points (gray dots) computed
for the experimental data sets shown in Figure 10C matching
the synthetic values (black dots) computed for the same image
texture, amount of motion, fc and uλ. Comparing the amount of
distortion and motion artifacts in the upper left image (motion<

|Eu| >= 0.4 pixels) and the upper right image (after tracking and
stabilization, initial motion < |Eu| >= 4.8 pixels) in Figure 9A,
one can conclude that the tracking and motion-stabilization
yields optical maps, which still include residual motion artifacts
comparable in strength to optical maps containing slight motion
(< |Eu| >= 0.4 pixels). The spectral profiles in Figure 10B
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FIGURE 10 | Evaluating tracking performance and residual motion artifacts by comparing synthetic to experimental data. (A) Synthetic optical maps before (panels

1–3) and after (panel 4) tracking. Increasing amplitudes of motion (panels 1–3: 0.4, 0.8, and 4.6 pixel) cause an increase in motion artifacts. Tracking and motion

stabilization (panel 4) inhibits (residual) motion artifacts to levels found at 0.4–0.8 pixels of motion before tracking. Spectral maps obtained from the optical maps

(bottom) show an increase in high-frequency spectral components with increasing motion. Tracking and motion compensation decreases the high-frequency spectral

components to a level comparable to the left image (r = 0.45) with low amounts of motion (0.4 pixels). (B) Radial profiles of normalized spectral maps indicating an

increase in width of the profiles (color-coded from gray to black, r = 0.4 to 1.6) with increasing motion and decrease in width after tracking (green curve).

(C) Comparison with experimental data. Tracking and motion-stabilization reduces motion artifacts and radial profile width r (pre-tracking r = 1.49, post-tracking

r = 0.51). (D) Profile width r over magnitude of motion < |Eu| > for raw and tracked (circles) simulated (black dots) and experimental data (gray dots). (E) Linear

increase of motion artifact strength m̃ with spectral profile width r. Motion artifact reduction 1m̃ calculated for experimental data via the linear relationship between

motion artifact strength (obtained in simulations mimicking experimental data) and spatial high-frequency components in optical maps (quantifiable by r with both

experimental and simulation data).
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confirm this conclusion. The profile obtained for the tracked and
motion-stabilized data (green, r = 0.4) closely aligns with the
profile obtained for very slight motion (light gray, < |Eu| >= 0.2
pixels). Also, in Figure 10D all values of r for the tracked and
motion-stabilized data points (circles) are below r < 0.5. This
value for r is also obtained for data sets with motion smaller
than 0.5 pixels (c.f. Figure 10A), lower left image, r = 0.45). The
data demonstrates that analyzing the spatial frequency content
of motion artifact patterns in optical maps, can provide both
an estimate for the amount of residual motion artifacts m̃∗ that
are left in motion-stabilized videos after motion tracking, and
an evaluation of the accuracy of the tracking, see following
section 3.3.

3.3. Evaluating Motion Tracking and Motion
Compensation Performance
To evaluate the performance of the motion tracking and
motion compensation algorithm, we assessed how well the
algorithm tracks simulated movements of cardiac tissue in
the synthetic optical maps, see Figure 11. The efficacy of the
motion tracking and motion-stabilization is also demonstrated
in Supplementary Video 3. As discussed earlier in this paper,
and in the discussion, it is crucial to take into consideration
the fluorescent signal when tracking motion in optical mapping
videos, as the motion tracking algorithm may confuse the signal
with motion-related optical flow and may accidentally track
electrical activity instead of motion and deformation. Here we
show that with strong fluorescent signal strengths f larger than
the local image contrast c (or large signal-to-contrast ratios fc >

1), the tracking algorithm may accidentally track the electrical
wave phenomena propagating across the heart surface instead of
the motion itself. To inhibit such phenomena, we introduced a
pre-processing step in our motion tracking scheme, see Figure 4.
Using Equation (8), we created locally normalized, contrast-
enhanced videos Ic(x, y, t), in which each pixel is normalized to
the maximal and minimal intensity values found within a small
disk-shaped sub-region Sx,y around the pixel (x, y). As a result,
the tissue texture or image contrast was maximally intensified,
see Figure 4A, and intensity fluctuations caused by the electrical
activity were suppressed (see also Figure 4 in Christoph et al.,
2017). We tracked both the original video data I(x, y, t), as well
as the contrast-enhanced video data, Ic(x, y, t) and compared
and evaluated the outcome of the tracking in terms of accuracy
and robustness. Figure 11 shows how tracking the contrast-
enhanced videos outperforms tracking the raw videos and yields
good tracking performance for both small and large fluorescent
signals. Figure 11A shows the untracked video including heavy
motion artifacts (for a signal-to-contrast ratio of fc = 0.6).
In contrast, Figure 11B shows tracked and motion-stabilized
optical maps of the same video as shown in Figure 11A, the
tracking performed on the raw video I(x, y, t) without contrast-
enhancement. Because of the tracking and motion-stabilization,
motion artifacts are substantially reduced and do no longer
obscure the electrical wave pattern as seen Figure 11A. Instead,
the electrical wave pattern is visible. However, while in the first
image sequence with low signal strength (fc = 0.6) the tracking

is accurate, the red arrows indicate the mismatches between
the simulated and the tracked tissue configuration, in the two
lower image sequences the tracking becomes inaccurate because
they contain larger fluorescent signal strengths (2nd: fc = 2.8,
3rd: fc = 3.8). In the bottom most (3rd) image sequence the
mismatches (red arrows) are not shown. Instead the warped,
motion-stabilized images are shown to highlight the distortions
that are introduced when warping the original video images using
the inaccurate tracking results, see also Supplementary Video 4.
In the first image sequence, the tracking was still able to reliably
associate tissue regions with each other throughout the image
sequence, because the fluorescent signal strength was smaller
than the local tissue contrast (f < c). Mismatches occur only
close to the boundaries of the image (cf. Figure 12A). Only mild
motion artifacts are recognizable (cf. Figure 8). In the central
image sequence (2nd) the mismatches (red vectors) between the
simulated and tracked tissue configuration are significantly larger
than in the first image sequence and occur particularly close to the
action potential, suggesting that the algorithm accidentally tracks
the electrical wave pattern. The fluorescent signal is significantly
larger than the local tissue contrast (fc = 2.8) and the algorithm
is no longer able to associate a tissue region with its own
systolic/diastolic or darker/brighter rendition altered through the
fluorescence. Even though motion artifacts do not appear to
be stronger than in the first image sequence due to the larger
relative signal strength, the tracked tissue configuration does not
correspond to the real tissue configuration, which consequently
makes a mechanical measurement inaccurate. Furthermore, the
inaccurate tracking results cause distortions in warped image
sequences, as comparably shown in the lower image sequence
(fc = 3.8), when aiming at stabilizing the motion numerically.
However, accidental tracking of the electrical wave pattern can
be overcome when the tracking is not performed with the
original videos I(x, y, t), but instead with contrast-enhanced
videos Ic(x, y, t), see Figure 11C. For the same video data and
signal-to-contrast ratio (fc = 2.8), as shown in the central
image sequence in Figure 11B, the accuracy and robustness of
the tracking becomes significantly improved. The mismatches
or tracking errors close to the action potential vanish and the
mismatches overall are comparably small, just as with small
signal-to-contrast ratios, (fc = 0.6 cf. Figure 11A). All videos
in Figure 11 contained the same motion before tracking (initial
motion < |Eu| >= 4.7 pixels).

Contrast-enhanced tracking (LKc) is accurate and robust and
yields small tracking errors for any given signal-to-contrast
ratio, see Figure 12B. While without contrast-enhancement (LK)
the tracking error η grows exponentially with increasing signal
strength or signal-to-contrast ratio, it stays small (η = 0.1 −
0.4 pixels) with contrast enhancement for all signal strengths
or signal-to-contrast ratios. Without contrast-enhancement, the
tracking does not achieve sub-pixel accuracy (η > 1 pixel) when
the fluorescent signal f becomes twice as large as the image
contrast c. The tracking error corresponds to the mismatches
between the simulated and the tracked configuration (red vectors,
see Figure 11 averaged over all images in the video. Shifts or
motion can be tracked with a precision of 0.1 − 0.4 pixels,
while the amplitudes of motion were about 10 − 50 times
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FIGURE 11 | Efficacy of motion compensation and tracking error determined with synthetic optical maps showing contracting, fluorescing cardiac tissue. See also

Supplementary Videos 3 and 4. (A) Deformed, non-tracked optical maps obscured by motion artifacts for weak to moderate signal strength (fc = 0.6). (B)

Motion-stabilized optical maps with substantial artifact reduction for various signal-to-contrast ratios fc = 0.6, fc = 2.8, fc = 3.8 (increasing signal strength) after

tracking and warping. Red vectors (row 1 & 2) indicate tracking errors, calculated as mismatches between the tracked and actual simulated tissue configuration. While

tracking is sufficiently accurate for small fluorescent signal strengths (f < c, here fc < 0.6), the tracking error increases with increasing signal strengths, with

mismatches emerging particularly close to the wave front. For very strong signals (f > c, here fc = 3.8) the warped, motion-stabilized images become visibly distorted

as a result of the erroneous tracking. (C) Substantial reduction of tracking errors by introducing contrast-enhancement, amplifying local image gradients to minimize

accidental tracking of the electrical wave and the related intensity modulations it causes in the video images. Contrast-enhancement improves the accuracy of the

tracking and maintains robust and sufficiently accurate tracking with larger signal strengths (fc > 2.8), see also Figure 12. All optical maps are pixel-wise normalized

over time.

larger in the order of about 5 pixels. We typically observed
such amplitudes of motion during arrhythmias and pacing in
the experimental data sets (with a sensor size of 128 pixels and
the diameter of the ventricle in the order of 100 pixels). As
shown in Figure 12A, the tracking error remains small (η <

0.5 pixels) within the entire video image and becomes only
larger (η > 2 pixels) close to the boundaries (within ∼ 5
pixels) of the video image. Just as in Figure 11 all tracked and
analyzed videos in Figure 12B contained the same motion before
tracking (initial motion < |Eu| >= 4.7 pixels). Nevertheless,
the accuracy of the tracking algorithm does not diminish with
increasing and stronger motion. Figure 12C shows that the
strength of residual motion artifacts m̃∗ after tracking and
motion-stabilization remains constantly small for displacements
ranging from 0−5 pixels, and the algorithm has demonstrated to
reliably detect shifts with larger magnitudes (∼ 10 pixels in video

image of size 128 × 128 pixels), see experimental data set shown
in Figures 1C,E.

Finally, comparing the experimental and synthetic video
data to each other, as shown in Figures 10C–E, it is possible
to estimate the accuracy of the tracking in the experiments.
Figure 10C shows a substantial reduction in motion artifacts
comparing the simulated pre- and post-tracking data. After
tracking, the spatial high-frequency content in the optical maps
decreased substantially and it is possible to relate this reduction to
a reduction in dissociation-related motion artifacts, as shown in
Figure 10C, and to consider it as a measure for the precision of
the tracking, see also section 3.2.1. In the synthetic data, which
matches the experimental data in terms of fluorescent signal
and contraction strengths and image contrast, both the amount
of motion artifacts m̃ that results with small sub-pixel shifts of
the tissue (|Eu| = 0.4 pixel) and the amount of residual motion
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artifacts m̃∗ that is seen after tracking corresponds to the amount
of residual motion artifacts m̃∗ found in the experimental data
after tracking. From Figure 10E it is consequently possible to
conclude that for the particular data set shown in Figure 10C

motion artifacts were reduced by about 75 − 80% (1m̃ ≈ 1 −
0.04/0.2 = 0.8). Furthermore, it can be concluded that the
motion tracking algorithm is able to detect shifts with sub-pixel
accuracy (< |Eu| >= 0.4 pixel) in the experimental data set
shown in Figure 10C. Figure 12C shows that residual motion
artifacts m̃∗ remain small for both small and large amplitudes
of motion, suggesting that similar results could be obtained with
other experimental data sets. Figure 12D demonstrates that with
varying signal-to-contrast ratios there is an optimum around
fc = 1 for which residual motion artifacts m̃∗ become minimized
after tracking. The graph suggests that for small signal strengths
f residual motion artifacts become larger simply because with
vanishing signal (fc << 1) and imperfect tracking it becomes
more likely to measure optical flow instead of signal. Likewise,
with large signals slight mismatches or tracking errors may lead
to an overly strong contribution of the signal to motion artifacts.
The regime in which we found the minimum in residual motion
artifacts m̃∗ for signal-to-contrast ratios of fc = 0.2 − 2.0 is
often faced in experimental data sets, for example Di-4-ANEPPS
(fc ≈ 0.5 − 1.0, see for instance Rohde et al., 2005 with fc ≈ 0.5)
or Rhod-2 AM (fc ≈ 1.0− 2.0), cf. Figures 9D–F.

4. DISCUSSION

In this study, we validated the robustness and accuracy of a 2D
marker-free motion tracking and motion stabilization algorithm
for performing electromechanical optical mapping studies with
beating, fluorescing hearts. Using experimental and synthetically
generated optical mapping videos, we compared the tracked data
to simulated ground-truth data and found that the algorithm
reduces motion artifacts substantially by about 75 − 80% and
achieves sub-pixel accuracy (< 0.5 pixels, ∼ 0.2 − 0.4 pixels,
see lower curve in Figure 12B) when tracking motion with
amplitudes in the range of 1 − 10 pixels (in video images that
are in the order of 100 × 100 pixels in size, the heart filling the
entire field of view). We further found that the motion tracking
algorithm is robust against fluorescence intensity fluctuations
which are caused by electrical activity. One of the most important
issues in tracking motion in optical mapping videos is the careful
disentanglement of motion from fluorescent activity, particularly
when using marker-free tracking approaches as in this study.
Unlike other tracking algorithms (Seo et al., 2010; Bourgeois
et al., 2011; Zhang et al., 2016), the motion tracking algorithm
discussed in this paper does not require markers attached to the
tissue surface to facilitate the tracking. It instead analyzes and
compares anatomical features or landmarks that are visible on
the heart surface. With such a marker-free tracking approach, it
is important to identify and eliminate factors that could possibly
mislead or irritate the tracking and lead to falsely detected shifts
or displacements. Such an assessment is particularly important
because optical mapping videos, which show fluorescing and
contracting cardiac tissue, do not only contain intensity changes

FIGURE 12 | Tracking error η and residual motion artifacts m̃∗ in synthetic,

tracked and motion-stabilized optical maps with various amplitudes of motion

and relative signal strengths. (A) Tracking error η within video image averaged

over all video frames with contrast-enhancement (LKc). Within the video image

errors are acceptable (< 0.5 pixel), toward the boundaries errors can become

large (η > 2 pixel). Video image is 100× 100 pixel in size. See also

Supplementary Video 4. (B) Tracking error η with (LKc) and without (LK)

contrast-enhancement. Tracking error grows exponentially with increasing

signal-to-contrast ratio fc without image contrast-enhancement (LK) and

remains small with image contrast-enhancement (LKc) for all signal-to-contrast

ratios fc. (C) Residual motion artifacts m̃∗ are equally small (cf. Figure 10E) for

small and large amplitudes of motion in the original videos. (D) Residual

motion artifacts m̃∗ are minimal for relative signal strengths in the range of

fc = 0.5− 2.0 or when f ≈ c.

that can be attributed to motion (optical flow) alone, but also
contain fluorescence intensity fluctuations that are caused by
electrical activity, i.e., intensity drops during action potential
depolarization or intensity increases during calcium cycling. The
motion and fluorescence appear as two superimposed spatio-
temporal dark-bright patterns, both of which can be detected
by the tracking and therefore need to be disentangled from
each other. In the worst case, if the fluorescent signal is large
enough, the tracking algorithm may be unable to associate two
corresponding image regions between two frames, for example
when one video frame shows the tissue during diastole and the
other during systole. Even with weak fluorescent signals, such
superposition phenomena can lead to tracking errors, which may
not be visually evident, see Figures 11, 12. To reconcile this
problem, we introduced and applied a contrast-enhancement
pre-processing procedure, which intensifies short-scale gradients
in video images and suppresses intensity fluctuations caused
by electrical activity (Christoph et al., 2017). In this study, we
validated that this contrast-enhancement, see Figure 4, creates a
unique and robust spatial pattern or texture that can be reliably
identified and tracked through video images in the presence of
fluorescent signals, just like artificial markers attached to the
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heart surface. In Figure 11 it is shown that strong fluorescent
signals (f > c) can lead to tracking artifacts, if the tracking is
performed without contrast-enhancement. The tracking artifacts
may arise when the original, unprocessed video image is tracked
and the algorithm uses the local grayscale pattern to uniquely
identify a particular tissue segment and follow its motion
through the image plane. However, this original spatial intensity
pattern is superimposed or modulated by fluorescence intensity
changes that typically occur when the tissue is loaded and
imaged, for instance, with voltage- or calcium-sensitive dyes.
In Figures 11, 12B, we show that if these modulations become
large, they can alter the image in a way that the algorithm
— without further precautions—is unable to match the local
spatial intensity pattern associated with one tissue region with
its corresponding deformed spatial pattern in a different video
frame. As a result, the algorithm produces tracking errors with
increasing fluorescent signal strengths (1F/F). In the worst case,
with very strong fluorescent signals, the tracking algorithm could
accidentally track the movements of action potential or calcium
waves across the surface instead of motion, as demonstrated
in Figure 11B. Using synthetic data, we verified that with
contrast-enhancement the tracking achieves sub-pixel precision
for arbitrary fluorescent signal strengths f , see Figure 12A and
lower curve in Figure 12B. Tracking the contrast-enhanced
videos, we were able to image strongly beating and contracting
hearts stained with voltage-sensitive dye (Di-4-ANEPPS) and
obtain co-moving optical maps showing action potential waves
propagating across the heart surface with substantially inhibited
motion artifacts. At the same time, we were able to ensure that
we performed an accurate measurement of the time-varying
mechanical configuration χ(t) of the tissue surface visible within
the video images as we verified that tracking errors remain low,
see Figure 12B.

The main advantage of our method is that we can image the
beating heart without having to attach markers to its surface.
At the same time, the algorithm is fully automatic and does
not require any manual supervision, i.e., manual selection of
markers or image features to initiate or enable the tracking is not
necessary. Motion tracking (Matlab), warping and resampling
and other processing (custom C++ code) requires approximately
1 min of computation time per video image on a single CPU. We
do, however, anticipate that the tracking andmotion-stabilization
could also be performed much faster (in the order of seconds or
even milliseconds per video frame) using parallel computing and
streamlining the procedures. In this study, we analyzed relatively
small video images with sizes of 100 × 100 or 128 × 128 pixels.
Videos with such sizes are produced by state-of-the-art cameras
(MiCAM ULTIMA camera, SciMedia, Japan: 100 × 100 pixels;
Evolve 128 camera, Photometrics Inc., USA: 128 × 128 pixels).
The tracking can also be performed with video data recorded
with cameras with much larger sensors, given that the video
properties (noise level, image gradients, density or length scales
of image features) are comparable and do simply scale with the
size of the video image. Note thus that the different amplitudes
of motion, which we observed during fibrillation (approximately
1 − 5 pixels ), tachycardia or pacing (approximately 5 − 15
pixels), and sinus rhythm (approximately 10 − 30 pixels) would

scale with the image sensor size if the heart filled the field
of view and could be stated in calibrated units (mm). The
tracking is also generally applicable to other data obtained with
different setups, species (we successfully applied the algorithm
to data obtained with rabbit, pig, mouse and alligator hearts)
or dyes (we used Di-4-ANEPPS, Di-4-ANBDQPQ, Rhod2-AM,
Fluo-3). Due to the single-camera imaging setup, we were
only able to image planar movements within the video images,
see Figures 1A,B. However, using the same tracking algorithm
and a multi-camera setup, we previously demonstrated that
the three-dimensional motion and deformation of the heart
surface can also be captured and that action potential waves
can be mapped on large (180◦) and strongly curved parts of
the deforming ventricular walls (Christoph et al., 2017). As
in the present study, the 2D motion tracking algorithm was
used to detect two-dimensional displacements in the video
images, and afterwards the 2D data was used to compute three-
dimensional displacements combining the data from multiple
cameras. While the aim in the multi-camera study was to provide
a proof-of-concept that three-dimensional electromechanical
optical mapping is possible, our aim in the present study is
to discuss the performance of the two-dimensional tracking
itself. We verified, with the aid of synthetic video data, that
the tracking of the tissue’s mechanical configuration is accurate
and robust. The robustness is demonstrated in the tracking’s
ability to produce displacement vector fields, which describes
a smooth and continuous movement of the tissue through
space, even though each video frame was registered individually
and independently. This has implications for both 2D and 3D
imaging alike, as the 2D tracking data is the basis for the 3D
reconstruction discussed in Christoph et al. (2017).

Motion artifacts can be reduced substantially using numerical
motion tracking and motion compensation techniques, as shown
in this and in previous studies (Christoph, 2015; Zhang et al.,
2016; Christoph et al., 2017, 2018). However, judging from the
outcome of themotion tracking andmotion compensation alone,
it is not immediately apparent how accurate the motion was
tracked. Furthermore, it is difficult to quantify the amount of
residual motion that may still be present in motion-stabilized
videos or to determine to what extent motion artifacts were
reduced. Motion artifacts are well known to manifest as
distortions or deflections in optical traces (Rohde et al., 2005;
Christoph, 2015; Christoph et al., 2017) and become immediately
apparent particularly during sinus rhythm, as during sinus
rhythm motion alters the very characteristic shape of the action
potential. A quantitative assessment of motion artifacts and
potential deviations of the optical traces from the true action
potential remains difficult, as ground-truth data is unknown.
In particular during arrhythmias, the identification of motion
artifacts is not trivial because action potentials can take on
various and less specific shapes than during sinus rhythm. To
better understand the origins of motion artifacts, we generated
synthetic motion artifact patterns and studied their properties
and dependence on motion and other features of the video
data. We found that a spectral analysis of motion artifact
patterns in optical maps can be used to estimate the residual
error of the tracking and the amount of residual motion and
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motion artifacts. We also found that the strength of dissociation-
related motion artifacts are mainly determined by the ratio of
the fluorescent signal strength f in comparison to the local
image contrast c and the ratio of the amplitude of motion
|Eu| in comparison to the length scales λ of image features. In
determining these video properties alongside a spectral analysis
of motion artifacts, one can evaluate the efficacy of motion-
stabilization and motion artifact compensation algorithms. In
the synthetic data, the amount of residual motion artifacts is a
direct measure for the accuracy of the tracking, see Figure 10E.
Using a simplistic computer model, we were able to create
optical maps, which reproduced the most essential aspects of an
optical mapping video. In future work, it may be necessary to
simulate the full three-dimensional heart together with a three-
dimensional imaging scene and the positioning of different light
sources within that scene. Taking into account a more realistic
imaging situation is necessary in order to simulate the generation
of illumination-related motion artifacts caused by movements
of the heart inside an inhomogeneously illuminated scene.
Inhomogeneous illumination or, more precisely, relative motion
between the heart and light sources can cause illumination-
related motion artifacts, which add to dissociation-related
motion artifacts. Illumination-related motion artifacts can not be
overcome by tracking, but can be compensated by ratiometric
imaging (Brandes et al., 1992; Knisley et al., 2000; Hooks et al.,
2001; Tai et al., 2004; Bachtel et al., 2011; Bourgeois et al.,
2011; Zhang et al., 2016) or numerical light-field correction
techniques (introduced in Christoph et al., 2017). Here, we
neglected illumination-related motion artifacts, because in the
experiments we typically illuminated the hearts “flat”, meaning
that we avoided larger intensity gradients across the images and
tried to illuminate the heart surface as evenly as possible with
multiple LEDs from all sides. We experienced that with flat
illumination and small amplitudes of motion (1 − 10 pixels)
illumination changes do not pose greater issues. Nevertheless, in
future work, illumination-related motion artifacts will have to be
considered more carefully.

Performing optical mapping experiments with beating hearts
requires careful handling of the tissue preparations. For instance,
it is very important, and much more so than during conventional
optical mapping without motion, to avoid dust or Tyrode stains
on the glass walls through which the imaging is performed.
The avoidance of particles or bubbles flowing inside the bath
is also necessary. Both dust or stains on the glass walls and
particles and bubbles moving through the field of view may
accidentally be tracked or may compromise tracking. Imaging
the heart from the top through the surface of the Tyrode
solution may be prohibited by ripples that form on the water
surface when the heart contracts. The tracking may also pick
up the flickering of instable light sources. Strongly contracting
tissue preparations may require mechanical fixation to inhibit
excessive motion. Especially during sinus rhythm, the heart
may rotate or move out of the field of view such that its
motion can not be captured with a single camera. At the same
time, one needs to be very careful when trying to fix it in
one location. Subjecting the heart wall to mechanical pressure
or bringing it in mechanical contact with instrumentation

could lead to blockage of its vascular system and improper
perfusion and ischemia. We experimented with molds and
flexible holders to mechanically restrict the hearts, but, due to
repeated complications with proper perfusion, have resorted to
freely moving hearts, which are simply attached to the perfusion
outflow.

5. CONCLUSIONS

We demonstrated that optical mapping can be performed
with strongly contracting isolated hearts using computer vision
techniques. Without using artificial markers attached to the
heart surface, we tracked and numerically stabilized the motion
of the beating heart to measure electrophysiological wave
phenomena propagating across the contracting heart surface in
a co-moving frame of reference. We validated the robustness
and accuracy of the marker-free motion tracking and motion
compensation algorithm using synthetically generated optical
mapping videos and found that the algorithm achieves sub-
pixel accuracy, reduces motion artifacts substantially and is
unaffected by intensity modulations in the video images caused
by electrical activity. As a result, it becomes possible to perform
electromechanical optical mapping with beating hearts without
having to attachmarkers to the heart. Furthermore, we found that
(residual) motion artifacts can be used as a direct measure for the
accuracy of the tracking.
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Supplementary Video 1 | Tracking of contracting and deforming left ventricular

heart surface of a rabbit heart during pacing and the onset of ventricular fibrillation.

Points (black) indicating in-plane displacements of single tissue segment with

respect to reference position (gray).

Supplementary Video 2 | Action potential wave propagating across contracting

and deforming left ventricular surface of a rabbit heart.

Supplementary Video 3 | Synthetic optical maps showing action potential spiral

wave (1F/F > 10%, exaggerated) on contracting tissue before and after tracking

and motion-stabilization.

Supplementary Video 4 | Tracking errors in synthetic optical maps without and

with contrast-enhancement for a signal-to-contrast ratio of fc = 2.8, c.f.

Figure 11. Without contrast-enhancement the tracking and motion-stabilized

videos contain errors and heavy distortions respectively. Contrast-enhancement

reduces mismatches between real simulated and tracked tissue configurations

(red vectors) significantly.
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