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Routine use of diuretics and neurohumoral activation make hypokalemia (serum K+ <

3. 5mM) a prevalent electrolyte disorder among heart failure patients, contributing to the

increased risk of ventricular arrhythmias and sudden cardiac death in heart failure. Recent

experimental studies have suggested that hypokalemia-induced arrhythmias are initiated

by the reduced activity of the Na+/K+-ATPase (NKA), subsequently leading to Ca2+

overload, Ca2+/Calmodulin-dependent kinase II (CaMKII) activation, and development

of afterdepolarizations. In this article, we review the current mechanistic evidence of

hypokalemia-induced triggered arrhythmias and discuss how molecular changes in

heart failure might lower the threshold for these arrhythmias. Finally, we discuss how

recent insights into hypokalemia-induced arrhythmias could have potential implications

for future antiarrhythmic treatment strategies.
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INTRODUCTION

Despite continuous improvements in therapies, long-term prognosis in heart failure (HF) remains
poor, with overall 5-year mortality reaching 50% (Yancy et al., 2013), and even higher in more
advanced stages (NYHA III-IV) (Arnold et al., 2013). Sudden cardiac death (SCD), mostly due
to ventricular tachyarrhythmias (VTs), contributes to ∼50% of HF deaths (Tomaselli and Zipes,
2004). Hypokalemia is a well-recognized risk factor for VT, and hypokalemia is both common and
independently associated with worse clinical outcomes in HF patients (Cleland et al., 1987; Ahmed
et al., 2007; Bowling et al., 2010; Kjeldsen, 2010; Aldahl et al., 2017; Nunez et al., 2018), as well
as increasing the risk of ventricular arrhythmias and mortality during acute myocardial infarction
(Goyal et al., 2012; Colombo et al., 2018; Hoppe et al., 2018).

Here, we review the current evidence for mechanisms of triggered hypokalemia-induced
arrhythmias, how cardiac remodeling in HF might lower the threshold for these arrhythmias, and
use this to propose future antiarrhythmic drug targets.

Hypokalemia in HF: Etiology and Prevalence
Hypokalemia is defined as serum K+ levels (serum-[K+]) <3.5 mM (Unwin et al., 2011), but
several studies report increased risk of SCD and all-cause mortality in HF patients with serum-[K+]
<4mM (Nolan et al., 1998;Macdonald and Struthers, 2004; Bowling et al., 2010; Aldahl et al., 2017).
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The prevalence of hypokalemia in HF patients varies between
19 and 54%, depending on the definition of hypokalemia
and patient characteristics (Wester and Dyckner, 1986; Guo
et al., 2005; Ahmed et al., 2007; Bowling et al., 2010;
Collins et al., 2017). The prevalence was more likely to
be higher in patient populations that were studied before
the introduction of beta-blockers, ACE-inhibitors, and AT1-
antagonists as standard HF therapy, as all of these drugs
increase serum K+ levels and thus counteract hypokalemia.
In addition, the prevalence of hypokalemia is generally higher
in hospitalized patients compared to nonhospitalized patients
(Unwin et al., 2011).

The main causes of hypokalemia in HF are use of diuretics
and activation of the renin-angiotensin-aldosterone system
that causes loss of K+ in the urine (Leier et al., 1994).
Increased levels of catecholamines also contribute by shifting
K+ into the intracellular compartment (Packer, 1990; Osadchii,
2010; Urso et al., 2015), whereas volume overload in more
progressive HF could cause a dilution effect (Leier et al.,
1994).

It has long been recognized that diuretics, both thiazides
and loop-diuretics, increase the risk of hypokalemia and cardiac
arrhythmias in patients receiving digitalis (Steiness and Olesen,
1976; Kaplan, 1984). Hypertensive men with baseline ECG
abnormalities following an intensive diuretics regime displayed
increased mortality compared to the standard regime in the
Multiple Risk Factor Intervention Trial (1982). Later trials found
no increased mortality with intensive diuretics treatment (1984)
or when comparing diuretics to other anti-hypertensive agents
(Officers et al., 2002), leading some authors to argue that the anti-
hypertensive effect of diuretics compensates for the suggested
pro-arrhythmic effect by diuretics alone (Papademetriou, 2006).
Nevertheless, one study noted that a minority of patients
using thiazides developed marked hypokalemia and cardiac
arrhythmias (Siegel et al., 1992), and a case-control study
found a dose-response relationship between thiazide dosage
and the risk of SCD (Siscovick et al., 1994). Importantly,
in patients with left ventricular dysfunction there was 30–
40% increased risk of arrhythmic death among patients who
used diuretics (Cooper et al., 1999). These results collectively
suggest that, even though diuretics are important drugs for
blood pressure reduction and prevention of volume overload
in HF, being aware of the risk of hypokalemia and cardiac
arrhythmias, in particular in the setting of heart disease, is
important.

In contrast to thiazides and loop diuretics, mineralocorticoid
receptor antagonists limit the renal excretion of K+, increase
serum-[K+], and limit the risk for cardiac arrhythmias
induced by hypokalemia (Siscovick et al., 1994; Cooper et al.,
1999). ACE inhibitors, aldosterone receptor blockers, and beta
blockers could potentially prevent hypokalemia by opposing the
neurohumoral activation associated with HF that lowers serum-
[K+] (Macdonald and Struthers, 2004).

Serum [K+] is altered during and after intensive exercise.
During exercise, marked hyperkalemia may develop due to the
release of K+ from skeletal muscles (Sejersted and Sjogaard,
2000). Increased levels of catecholamines counteract and

decrease recovery time from exercise-induced hyperkalemia
(Williams et al., 1985) by stimulating Na+/K+-ATPase (NKA)
(Despa et al., 2008). Interestingly, serum-[K+] undershoots
during the recovery phase after physical exercise, leading
to postexercise hypokalemia (Medbo and Sejersted, 1990;
Lindinger, 1995). The combination of hyperkalemia and
subsequent hypokalemia with increased catecholamines
during physical exercise could potentially contribute to the
increased risk of cardiac arrhythmias and SCD observed during
exercise in patients with structural or ischemic heart diseases
(Siscovick et al., 1984; Thompson et al., 2007). Intriguingly,
the risk of arrhythmias is particularly high in the recovery
phase after exercise (Young et al., 1984), which coincides
with postexercise hypokalemia (Medbo and Sejersted, 1990;
Lindinger, 1995). Low serum-[K+] might thus be a cause of
arrhythmias in patients even without clinically recognized
hypokalemia.

Triggered Ventricular Arrhythmias
Ventricular tachyarrhythmias are highly prevalent in HF, with
50–80% of patients having nonsustained VT on ambulatory
cardiac monitoring (Singh et al., 1997; Teerlink et al., 2000).
Re-entry and triggered arrhythmias are the two main types
of tachyarrhythmias (Antzelevitch and Burashnikov, 2011).
Fibrosis, scarring, and conduction abnormalities promote
mechanical and electrophysiological re-entry, whereas reduced
repolarization reserve, Ca2+ dysregulation, and altered
transmembrane ion currents cause triggered arrhythmias
(Tomaselli and Zipes, 2004; Ebinger et al., 2005; Jin et al.,
2008).

Triggered arrhythmias are reported to initiate most
VTs in nonischemic HF and even half of the VTs in
ischemic HF (Pogwizd et al., 1992; Pogwizd and Bers, 2004).
Triggered arrhythmias are caused by either early or delayed
afterdepolarizations (EADs or DADs), abnormal depolarizations
of the membrane potential that could give rise to a spontaneous
action potential (AP) between two regular APs (Volders et al.,
2000). DADs are caused by spontaneous Ca2+ release in a
feed forward reaction that propagates as Ca2+ waves along
the sarcoplasmic reticulum (SR) membrane as illustrated in
Figure 1. Ca2+ waves can occur due to overload of Ca2+

in the SR and/or reduced threshold for Ca2+ leak through
the ryanodine receptors (RyRs) (Venetucci et al., 2008). The
spontaneously released Ca2+ activates inward currents named
Iti (mainly consisting of INCX), leading to a depolarization
of the resting membrane potential (Clusin, 2003; Venetucci
et al., 2008). The Ca2+ wave-induced depolarization triggers
an extra AP if the resulting inward current depolarizes the
membrane sufficiently to trigger opening of voltage-gated Na+

channels.
EADs typically develop in situations with reduced

repolarization reserve, either due to increased inward currents,
reduced outward currents, or both (Weiss et al., 2010). EADs
occur when inward currents, the L-type Ca2+ current (ICa) or
Iti derived from Ca2+ waves during the AP, are larger than the
outward currents (mainly K+ currents) during late phases of the
AP (Zhao et al., 2012).
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FIGURE 1 | Model for transformation of a Ca2+ wave into an

afterdepolarization. (a) Ca2+ ions are released spontaneously from the SR,

either due to Ca2+ overload or increased RyR conductance (reduced

threshold). The Ca2+ ions released from RyRs have three possible routes: (I)

SERCA2 pumps the Ca2+ ions directly back into the SR. The Ca2+ wave is

interrupted and no afterdepolarizations occur. (II) The Ca2+ ions diffuse to the

neighboring RyRs, which leads to release of new Ca2+ ions. Repetitive events

where Ca2+ ions are released and activate the next cluster of RyRs along the

SR membrane lead to a Ca2+ wave. (III) Ca2+ can be extruded across the

sarcolemma through the Na+/Ca2+ exchanger (NCX). This causes an inward,

depolarizing current due to the inward flux of three positively charged Na+ ions

per one Ca2+ that is extruded over the cell membrane. (b) Regular APs trigger

synchronous Ca2+ release, which leads to cardiomyocyte contraction. Ca2+

waves can lead to DADs between two regular APs, and trigger a spontaneous

AP as shown in the figure. Ca2+ waves during an AP can trigger EADs.

MECHANISMS FOR
HYPOKALEMIA-INDUCED TRIGGERED
ARRHYTHMIAS

Clinically, hypokalemia is associated with triggered arrhythmias
such as Torsades De Pointes (TDP), polymorphic VT, ventricular
fibrillation (VF), and ventricular ectopy (Nordrehaug et al.,
1985). Hypokalemia has been shown to cause regional alterations
in conduction velocity (Chah et al., 1982; Smeets et al., 1986;
Wolk et al., 1998) and regional action potential duration
(APD) heterogeneity (Poelzing and Veeraraghavan, 2007) that
establish functional reentry circuits, although a recent study
in postinfarction pigs with increased afterload only found
slowed conduction velocity with no regional differences in

APD (Motloch et al., 2017). Hypokalemia promotes triggered
arrhythmias by a reduction in cardiac repolarization reserve and
increased intracellular Ca2+ in cardiomyocytes (Weiss et al.,
2017). Here, we review evidence for mechanisms coupling
hypokalemia to induction of triggered arrhythmias, and argue
that this is primarily due to inhibition of NKA (in particular the
NKAα2 isoform) leading to development of afterdepolarizations
as proposed in Figure 2.

The Relative Role of NKA VS. K+ Channels
in Induction of Hypokalemia-induced
Ventricular Arrhythmias
The pro-arrhythmic effects of hypokalemia have been linked to
reduced outward K+ currents such as IK1, IKr, IKs, and Ito (Yang
et al., 1997; Bouchard et al., 2004; Killeen et al., 2007; Osadchii,
2010) and recently to reduced NKA currents (Aronsen et al.,
2015; Pezhouman et al., 2015). Reduced outward K+ currents
decrease the repolarization reserve, prolong the APD, and
increase the risk of afterdepolarizations (Weiss et al., 2017). Low
extracellular K+ (K+

e ) leads to hyperpolarization of the resting
membrane potential, which paradoxically increases excitability of
cardiomyocytes. This effect is ascribed to an increased number of
available Na+ channels and the reduced ability of IK1 to generate
outward current that protects against membrane depolarization
(Bers, 2001).

Pezhouman, Singh, and coworkers observed in an elegant
study that reduced NKA activity was necessary and sufficient to
develop hypokalemia-induced ventricular arrhythmias. Reduced
K+ channel conductance in itself caused only a modest increase
in APD and no afterdepolarizations, but potentiated the pro-
arrhythmic effect of NKA inhibition in this study (Pezhouman
et al., 2015). Comparably, we found that NKA inhibition was
necessary and sufficient to increase Ca2+ levels in a factorial
analysis where we compared the relative effect of lowering NKA
activity vs. all other ion channels and transporters sensitive
to K+

e . Several lines of evidence suggest that Ca2+ overload
caused by NKA inhibition is the main initiating event in
hypokalemia-induced ventricular arrhythmias, as discussed in
the next sections.

NCX: The Link Between NKA Inhibition and
Ca2+ Overload in Hypokalemia
Na+ and Ca2+ homeostasis are coupled through the Na+/Ca2+-
exchanger (NCX) that uses the electrochemical gradient of Na+

and Ca2+ to exchange 3 Na+ for 1 Ca2+. This allows NKA to
indirectly regulate cardiac Ca2+ fluxes through the regulation of
[Na+]i. NKA is an ATP- and voltage-dependent ion transporter
that exchanges 3 Na+ ions from the cytosol with 2 K+ ions
from the extracellular compartment, leading to a net outward
current (Stanley et al., 2015). NKA is the only major Na+ efflux
mechanism in cardiomyocytes, and regulates intracellular [Na+]
by balancing Na+ efflux against Na+ influx (Aronsen et al., 2013;
Despa and Bers, 2013).

NKA activity is regulated by extracellular K+ levels,
intracellular Na+ levels, the membrane potential (Glitsch, 2001),
posttranslationalmodifications (Figtree et al., 2009; Poulsen et al.,
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FIGURE 2 | Proposed model for hypokalemia-induced triggered arrhythmias. (1) Low K+e reduces the activity of the NKAα2 isoform. (2) Intracellular Na+ accumulates

and leads to reduced inward NCX current, and by this less extrusion of Ca2+. (3) Intracellular and SR Ca2+ increases as a result. (4) Ca2+ overload increases the

activity of the Ca2+/calmodulin-dependent kinase (CaMKII), which leads to a vicious cycle by phosphorylation of voltage-gated Na+ channels and L-type Ca2+

channels. (5) Increased influx of Na+ and Ca2+ amplifies Ca2+ overload and triggers EADs. (6) Hypokalemia-induced EADs can trigger ventricular tachyarrhythmias.

2010), and the accessory protein phospholemman (PLM), which
binds to and inhibits NKA activity (Pavlovic et al., 2007, 2013a).
β-adrenergic stimulation leads to phosphorylation of PLM, which
relieves PLM inhibition of NKA (Despa et al., 2005; Khafaga et al.,
2012). This provides a link between circulating catecholamines
and fluxes of Na+ and K+ over the cell membrane. NKA is
composed of αβ dimers, where both isoforms exist in three
different isoforms (α1-3 and β1-3) (Lingrel and Kuntzweiler,
1994; Sweadner et al., 1994; McDonough et al., 1996; Bers and

Despa, 2009). NKAα1 and NKAα2 contribute to 70–95% and
5–30% of the total NKA activity in cardiomyocytes respectively
(Lucchesi and Sweadner, 1991; James et al., 1999; Berry et al.,
2007; Despa and Bers, 2007; Swift et al., 2007; Despa et al., 2012).
Despite being less abundant thanNKAα1, several studies strongly
suggest that NKAα2, and not NKAα1, is the main NKA isoform
that regulates NCX activity and Ca2+ fluxes in cardiomyocytes
by limiting the [Na+]i sensed by the NCX (Berry et al., 2007;
Despa and Bers, 2007; Swift et al., 2007, 2010; Despa et al., 2012).
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According to this scheme, reduced activity of NKAα2 increases
cellular Ca2+ levels by limiting forward mode NCX activity (that
extrudes Ca2+) and by increasing reverse mode NCX activity,
which mediates Ca2+ influx during a short time during the early
phases of the AP (Bers, 2002; Lines et al., 2006).

Despa et al. demonstrated that a similar degree of NKAα1
and NKAα2 inhibition yielded a comparable rise in intracellular
Na+, but only NKAα2 inhibition increased the Ca2+ levels in
cardiomyocytes (Despa et al., 2012). This study and others (James
et al., 1999; Swift et al., 2007) suggest that the ability of NKAα2
to regulate Ca2+ fluxes and cardiac contractility is most likely
due to close localization with NCX, but this remains to be
shown. NKAα1 is more abundant at the sarcolemma, whereas
NKAα2 preferentially localizes to the transverse T-tubules (Berry
et al., 2007; Swift et al., 2007; Yuen et al., 2017). The anchoring
protein Ankyrin B coordinates a NKA/NCX microdomain, but
both NKAα1 and NKAα2 coprecipitate with Ankyrin-B (Mohler
et al., 2005). More studies are needed to determine the precise
mechanism through which NKAα2 specifically can control Ca2+

homeostasis and cardiac contractility.
We studied the effect of low K+

e (2.7mM) on intracellular
Ca2+ in rat ventricular myocytes, and found that steady-
state Ca2+ transients were increased compared to normal K+

e

(5.0mM). The increase in Ca2+ was not present in cells
pretreated with a low dose of ouabain to selectively inhibit
NKAα2 (Aronsen et al., 2015). This result could be explained
by the finding that NKAα2 preferentially regulates intracellular
Ca2+, as discussed above, and the different sensitivity to
extracellular K+ [K+]e. Changes in [K+]e within the clinical
range of hypokalemia are expected tomodulate primarily NKAα2
(k0.5 = 2.7mM) and have relatively small effects on NKAα1 (k0.5
= 1.5mM) (Han et al., 2009).

These results suggest that moderate hypokalemia reduces
NKAα2 activity and leads to arrhythmogenic Ca2+ overload by
decreased forward mode and/or reduced reverse mode NCX
activity (Aronsen et al., 2015). In addition, chronic hypokalemia
has been reported to downregulate the expression of cardiac
NKAα2, but not the NKAα1 isoform (Azuma et al., 1991). It
cannot be excluded that inhibition of NKAα1 also contributes
to the arrhythmogenesis in cells exposed K+

e , but given the
established role of NKAα2 as a regulator of Ca2+ levels in
cardiomyocytes, in combination with the present evidence,
inhibition of NKAα2 is the most likely mechanism leading to
Ca2+ overload in hypokalemia.

In addition to NKA inhibition, which reduces inward
NCX current, hypokalemia also alters the NCX activity
through hyperpolarization of the resting membrane potential.
Hyperpolarization increases the inward NCX current and is
associated with reduced intracellular Ca2+ levels (Bouchard et al.,
2004), opposing reduced inward NCX current and the increased
intracellular Ca2+ following NKA inhibition (Eisner and Lederer,
1979; Aronsen et al., 2013). Both we (Aronsen et al., 2015)
and others (Eisner and Lederer, 1979; Bouchard et al., 2004)
have reported that myocardial contractility and Ca2+ transients
are first reduced, and then subsequently increase to above the
basal level after switching from normal to low K+

e . In the intact
organism, changes in K+

e are much slower than in experimental

settings, and the Ca2+ levels most likely reach steady state
without a biphasic response. Still, it is important to appreciate the
biphasic cardiomyocyte response to low K+

e , as the steady state in
myocardium exposed to low K+

e probably reflects the combined
effect of membrane hyperpolarization (that reduces Ca2+ levels)
and NKA inhibition (that increases Ca2+ levels).

Afterdepolarizations Due to Ca2+ Overload
in Hypokalemia
Two studies have reported Ca2+ overload in intact, beating
hearts perfused with low K+. One study found that the Ca2+-
induced K+ channel was active in hearts exposed to low
K+
e (corresponding to clinical hypokalemia) and not in hearts

exposed to normal K+
e (Chan et al., 2015). This was further

supported in another study that observed that hearts perfused
with normal extracellular Ca2+ levels, in addition to low K+

e ,
developed VT/VF, but not if the hearts were perfused with low
extracellular Ca2+. In the latter study, both EADs and DADs
appeared in rat hearts exposed to moderate hypokalemia, but
only the EADs were followed by episodes of sustained ventricular
arrhythmias (Pezhouman et al., 2015). Comparably, only EADs
were present in rabbit hearts exposed to moderate hypokalemia
(Pezhouman et al., 2015), indicating that that EADs and not
DADs are the main trigger of VT/VFs in otherwise normal hearts
exposed to hypokalemia.

In addition to the reduction of NKAα2 activity as discussed
in the previous sections, other mechanisms contribute to
hypokalemia-induced Ca2+ overload in the system-based
mechanism presented by Pezhouzman, Singh, and coworkers
(Pezhouman et al., 2015). First, hypokalemia reduces outward
repolarizing currents, both K+ currents and the NKA current.
This increases the APD, allowing more Ca2+ influx through the
L-type Ca2+ channels during the plateau phase (Weiss et al.,
2017). Second, the initial increase in Ca2+ caused by NKA
inhibition and reduced inward NCX currents, combined with
APDprolongation, initiates a positive feedback loop (Pezhouman
et al., 2015). According to this model, the initial increase in
Ca2+ activates CaMKII, which phosphorylates and activates
the late Na+ current (INaL) and increases ICa. Activation of
INaL and ICa further amplifies the intracellular overload of
Na+ and Ca2+, eventually activating CaMKII, in a detrimental,
downward spiral, ultimately leading to afterdepolarizations
and ventricular arrhythmias. Mathematical modeling supported
this model, and both CaMKII inhibitors and inhibitor of
INaL prevented development of VT/VF in hearts exposed to
hypokalemia. Altogether, the collective data suggest that reduced
NKAα2 activity initiates cellular Ca2+ overload in hypokalemia,
which further leads to ventricular arrhythmias through a
feed forward spiral where the activation of CaMKII amplifies
intracellular Na+ and Ca2+ overload, ultimately leading to EADs
(Figure 2).

A Possible Role for NKA Inhibition in Other
Types of Ventricular Arrhythmias
Some evidence suggests that reduced NKA activity and
subsequent development of Ca2+ overload and CaMKII

Frontiers in Physiology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 1500

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Skogestad and Aronsen Hypokalemia-Induced Arrhythmias

activity could be involved in the arrhythmogenesis in other
cardiac diseases besides hypokalemia. Transgenic mice
with unphosphorylatable PLM have increased incidence
of pacing-induced arrhythmias (Pavlovic et al., 2013b),
corresponding to the finding that PLM KO have increased
amount of triggered arrhythmias after beta-adrenergic
stimulation, as PLM phosphorylation protects against Na+

and Ca2+ overload (Despa et al., 2008). Reduced NKA
activity, increased intracellular Na+, and reduced inward
NCX current are the main mechanisms of digitalis-induced
arrhythmias (Wasserstrom and Aistrup, 2005). It has also
been reported that digitalis increases CaMKII activity with
pro-arrhythmogenic downstream effects, which is a further
indication that the pathophysiological mechanisms of
digitalis- and hypokalemia-induced arrhythmias are similar
(Gonano et al., 2011). The same model could also explain the
triggered arrhythmias observed in the Ankyrin B syndrome
(LQTS4), a rare genetic syndrome characterized by conductance
abnormalities and high risk of ventricular tachyarrhythmias
(Cunha and Mohler, 2009). NKA expression is mildly reduced
in Ankyrin B+/− mice (Mohler et al., 2003, 2005), and the
NKA current is lower than in healthy controls (Camors
et al., 2012). Further, forward mode NCX is reduced
(Camors et al., 2012), leading to increased CaMKII activity
(Popescu et al., 2016) and higher frequency of Ca2+ waves
(Camors et al., 2012) in Ankyrin B+/− mice, suggesting
that the mechanisms discussed for hypokalemia also partly could
explain induction of ventricular arrhythmias in the Ankyrin B
syndrome.

CELLULAR ALTERATIONS IN HEART
FAILURE AND HYPOKALEMIA-INDUCED
ARRHYTHMIAS

Molecular remodeling (e.g., transcriptional alterations,
posttranscriptional regulation, and posttranslation regulation
of proteins) and structural remodeling (cardiac hypertrophy
and fibrosis) are hallmarks of HF (Fedak et al., 2005; Kehat
and Molkentin, 2010). The remodeling is associated with
increased risk of arrhythmias, and might potentiate the
pro-arrhythmic effects of hypokalemia. However, there is a
paucity of mechanistic data on hypokalemia in HF. Given
the high prevalence of hypokalemia in HF patients, more
studies are needed to clarify how the remodeling-associated
HF influences the risk of hypokalemia-induced arrhythmias.
Here, we discuss key alterations in HF that we consider
relevant for the expected effect of hypokalemia in failing
hearts.

Factors That Promote Na+ and Ca2+

Overload in HF
Intracellular Na+ is increased in both human and animal
models of hypertrophy and HF (Pieske et al., 2002; Pogwizd
et al., 2003), and one study also found increased Na+ in
the subsarcolemmal space in cells from dogs with cardiac
hypertrophy (Verdonck et al., 2003). In theory, the increased

Na+ levels could be due to increased Na+ influx or less Na+

extrusion. Although NKA expression and/or activity generally
is shown to be reduced in HF, for example by reducing the
phosphorylation of PLM (Shamraj et al., 1993; Semb et al.,
1998; Bossuyt et al., 2005; Boguslavskyi et al., 2014), one study
found no alterations in NKA activity (Despa et al., 2002).
Several studies have also reported upregulated INaL in HF
cardiomyocytes (Undrovinas et al., 1999; Moreno and Clancy,
2012), indicating increased Na+ influx in HF cardiomyocytes.
In a study designed to determine the mechanism for increased
Na+ concentration in HF, Despa and coworkers found that
increased [Na+]i in failing rabbit cardiomyocytes (that more
closely resembles human cardiomyocytes than rodents) primarily
is due to higher TTX-sensitive Na+ influx and not due to
reduced NKA activity (Despa et al., 2002). Altogether, it seems
likely that increased Na+ influx and possibly reduced Na+

efflux could contribute to the increased intracellular Na+ during
HF.

Increased intracellular Na+ in HF leads to increased
intracellular Ca2+, by favoring less Ca2+ extrusion through
forward mode NCX and/or more Ca2+ influx through reverse
mode NCX. NCX is often upregulated in human (Studer et al.,
1994; Reinecke et al., 1996) and experimental (Pogwizd et al.,
1999; Sipido et al., 2000) HF, whereas Sarco(Endo)plasmic
Reticulum Calcium ATPase 2 (SERCA2) expression and activity
are reduced in HF (Lipskaia et al., 2014; Roe et al., 2015).
Since intracellular Na+ is already higher at baseline and the
NCX/SERCA2 balance is shifted in HF, a less pronounced
NKA inhibition (e.g., by hypokalemia) could cause sufficient
rise in Na+ to cause Ca2+ overload and spontaneous SR Ca2+

release. In addition, one study found pronounced reduction
in the NKAα2 isoform expression and function despite only
minor changes in the NKAα1 isoform (Swift et al., 2008).
Increased expression and activity of CaMKII are also consistently
observed in HF (Hoch et al., 1999; Kirchhefer et al., 1999;
Zhang et al., 2003), and contribute to increased intracellular
Na+ and Ca2+ by increasing INa−L (Anderson et al., 2011)
and Ca2+ leak through RyRs (Ai et al., 2005). On the basis of
these observations, we speculate that HF patients are “sensitized”
and tolerate less changes in serum-[K+] compared to patients
without cardiac diseases. This might help explain why HF
patients with serum-[K+] < 4mM have increased risk of SCD
and death (Macdonald and Struthers, 2004; Bowling et al., 2010),
compared to the conventional cut-off at 3.5mM (Unwin et al.,
2011).

Factors That Promote Afterdepolarizations
in HF
Spontaneous Ca2+ waves induce DADs by activating an inward
current mainly consisting of INCX (Clusin, 2003). Since NCX
typically is upregulated in HF, a given amount of spontaneously
released Ca2+ generates more depolarizing inward current,
reducing the threshold for DADs (Pogwizd and Bers, 2004).
IK1 acts as a “safety valve” and counterbalances depolarizing
inward currents caused by spontaneous Ca2+ release during the
resting phase of the AP. IK1 is downregulated in HF (Fauconnier
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et al., 2005; Bers, 2006), thus increasing the likelihood that a
spontaneous AP occurs through generation of EADs and/or
DADs. In line with the typical observation of prolonged APD
and reduced repolarization reserve (Wang and Hill, 2010), in
addition to the earlier described factors that possibly contribute
to Na+ and Ca2+ overload in HF, it is likely that there is a reduced
threshold for hypokalemia-induced afterdepolarizations in HF.

FUTURE TARGETED THERAPIES FOR
HYPOKALEMIA-INDUCED TRIGGERED
ARRHYTHMIAS

No treatment that directly targets the underlying mechanism
for hypokalemia-induced arrhythmias is currently available.
The current treatment of hypokalemia in itself is potassium
replacement (Cohn et al., 2000), and in patients with TDP,
magnesium sulfate injection is used to prevent EADs and DADs
through an unknown mechanism (Fazekas et al., 1993). TDP can
also be treated with cardiac pacing or isoproterenol injection to
shorten the APD (Banai and Tzivoni, 1993).

Ideally, new treatments against hypokalemia-induced
arrhythmias should aim at (1) preventing EADs/DADs, (2)
shortening the APD, and (3) directly targeting the underlying
mechanism. On the basis of the model for hypokalemia-
induced ventricular arrhythmias in Figure 2, we suggest
CaMKII inhibition, NKA activation, and in particular NKAα2
activation, to be further investigated as future antiarrhythmic
strategies. CaMKII inhibition prevents hypokalemia-induced

EADs (Pezhouman et al., 2015), Ca2+ overload, and DADs in
catecholaminergic polymorphic ventricular tachycardia (CPVT)
(Di Pasquale et al., 2013) and in HF (Ai et al., 2005; Sag et al.,
2009), in addition to hypokalemia-induced VT/VF (Pezhouman
et al., 2015). CaMKII inhibition also shortens APD (Li et al., 2006;
Bourgonje et al., 2012), although this effect might be species-
dependent (Wagner et al., 2009). We are currently unaware
of any drug that specifically activates the NKA. Theoretically,
this could prove to be an effective antiarrhythmic strategy, as
NKA inhibition causes Ca2+ overload, afterdepolarizations, and
ventricular arrhythmias (Faggioni and Knollmann, 2015).

HF is also characterized by APD prolongation (Wang andHill,
2010) and increased risk of afterdepolarizations (Pogwizd and
Bers, 2004; Weiss et al., 2010), and we speculate that CaMKII
inhibitors and NKA activators might be future antiarrhythmic
options in HF even in the absence of hypokalemia.
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