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It is widely accepted that salt intake reduction and regular exercise is a healthy lifestyle,
which can prevent cardiovascular diseases (CVD). Meanwhile, there is evidence that
the endothelial glycocalyx layer (EGL) is related to CVD. However, how such a healthy
lifestyle helps to prevent CVD via the function of the EGL has not been scientifically
established. In this research, a series of large-scale molecular dynamics simulations
have been conducted to study ion transport inside the EGL under varying flow velocities.
Results show that a fast blood flow velocity favors the Na+ transport out of the EGL,
which can explain the increase in the thickness of an exclusion layer between red blood
cells and the EGL under fast blood flow situations, as witnessed in some previous
experiments. Based on findings from this fundamental research, a theory is proposed,
which can answer the open-ended question “Why do we need to reduce salt intake
and exercise regularly”. The findings may also have implications for other therapies to
combat cardiovascular diseases.

Keywords: endothelial glycocalyx layer, lifestyle, molecular dynamics, ion transport, sodium intake

INTRODUCTION

The endothelial glycocalyx layer (EGL), the first and foremost barrier in direct contact with blood
(Curry and Adamson, 2012), is closely related to cardiovascular diseases (CVD) (Rabelink and de
Zeeuw, 2015). EGL also acts as a crucial buffer barrier for sodium (Oberleithner, 2012). In the
meantime, empirical studies suggest that reducing salt intake (He and MacGregor, 2011, 2018;
Aburto et al., 2013) and exercising regularly (Agarwal, 2012; Schuler et al., 2013) can lower the
risk of CVD or reduce the chance of CVD getting worse.

When sodium intake exceeds the excretory capacity of the kidney, sodium is retained. Previous
studies have experimentally demonstrated that salt overload stiffens vascular endothelial cells
and increases vascular sodium permeability, thereby damaging the glycocalyx sodium barrier of
vascular endothelium (Oberleithner et al., 2011). Thus, intake of sodium chloride would have
implications for the function of the endothelial glycocalyx as a foremost sodium barrier. These
findings elucidate the significance of the EGL as a barrier from the perspective of cell mechanics.
Also, the EGL features highly negatively charged sugar chains (Weinbaum et al., 2007). How the
crucial function of EGL is affected by electrostatics requires further investigation.

In the meanwhile, an interesting phenomenon occurring between the EGL and red blood cells
(RBCs) may explain the benefit of doing regular exercise (Lott et al., 2001): when RBCs flow through
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our vessels, an exclusion layer between the RBCs and EGL forms,
facilitating the motion of the RBCs; the layer thickness increases
as RBCs accelerate (Vink and Duling, 1996). The behavior of
the RBCs on the EGL can be compared to human skiing, and a
lubrication theory for the principle of skiing has been extended
to understand the formation of the exclusive layer (Feng and
Weinbaum, 2000). However, the theory is unable to explain
the layer thickness variation with the varying blood velocity.
Meanwhile, the charge properties of the EGL have not been
considered either.

To scientifically explain the different experimental results
and empirical observations, we conduct an in silico numerical
experiment focusing on Na+ ion transport in the presence of the
EGL under varying blood flow velocities. The Na+ distributions
in various scenarios are determined by molecular dynamics (MD)
simulations. Based on the results, the function of the EGL as a
sodium barrier is discussed from the perspective of electrostatics.
Also, explanations will be provided to elucidate the response of
the exclusion layer thickness to the varying blood velocities.

MATERIALS AND METHODS

System Construction
A flow/glycocalyx system was constructed, using the currently
most detailed structural information of the glycocalyx to mimic
flow on a patch of an endothelial cell lipid member (Figure 1A).
In this system, three glycocalyx elements are involved. One
glycocalyx element is composed of a core protein and six sugar
chains. Syndecan-4 (Syn-4) proteoglycan and heparin sulfate
(HS) sugar residues were selected to model the glycocalyx core
protein and sugar chains, respectively. As shown in Figure 1A,
the whole space is divided into two compartments by the lipid
bilayer. Above the lipid bilayer is the ectodomain, representing
the space outside the endothelial cells, where flow passes by.
This region contains negatively charged HS sugar chains, Syn-
4 ectodomain in connection with HS sugar chains, water
molecules and ions. Below the lipid bilayer is the cytoplasm,
representing the inner space of the cell, which is filled with the
Syn-4 cytoplasmic protein, water molecules and ions. All the
biomolecules are solvated and ionized to 0.1 M NaCl solution.
The simulation box is a hexagonal prism with an area of 820 nm2

and height of 72 nm. The glycocalyx-flow system comprises about
5,800,000 atoms in total.

Protocol Details
The TIP3P water model (Jorgensen et al., 1983) was adopted
for water molecules. The CHARMM biomolecular force field
(MacKerell et al., 1998) was applied on proteins and the lipid
bilayer. Force field parameters for sugar residues have been
validated in previous studies (Cruz-Chu et al., 2014).

The system was equilibrated under isothermal-isobaric (NPT)
and canonical (NVT) ensembles. The velocity Verlet integration
method (Allen and Tildesley, 1987) was used to advance the
positions and velocities of atoms in time steps of 2 fs. Particle
mesh Ewald (Darden et al., 1993) electrostatics with a grid
density of 1/Å3 was used. The SETTLE algorithm (Miyamoto and

Kollman, 1992) was used to enable the rigid bonds connected
to all hydrogen atoms. The van der Waals interactions were
calculated using a cut-off of 12 Å with a switching function
starting at 10 Å. In flow simulations, the Lowe-Andersen
thermostat, a specific thermostat exclusively for flow problems,
was selected to maintain the temperature at 310 K.

All MD simulations were performed using the software
suite NAMD 2.9 (Phillips et al., 2005). The visualization
of the molecular structures was performed via the VMD
(Humphrey et al., 1996) package. All parallel simulations and
non-visualized post-processing were conducted on ARCHER,
UK’s national supercomputing service. To obtain a simulation
result with physical time of 1 ns, 9,000 compute cores have been
simultaneously employed for about 2 h.

Details about the construction of the flow/glycocalyx system
and the protocol information can be found in our previous
publications (Jiang et al., 2017).

Flow Simulation and Case Set-Up
To mimic flow, external forces were imposed on oxygen atoms
of the water molecules in the ectodomain, which has been
successfully demonstrated in previous studies (Jiang et al., 2017,
2018a,b; Pikoula et al., 2018). As reported in a previous study
(Jiang et al., 2017), an external force with an order of magnitude
of 0.001 fN would generate a laminar flow with a physiological
bulk flow velocity; the complex and moving structures of the
glycocalyx structures disturb the flow profiles, resulting in
an oscillating velocity distribution in space. According to the
Newton’s Law of Motion, the resulting bulk flow velocity is
assumed to be in proportion to the external force. By imposing
various external forces (0.003, 0.002, and 0.001 fN, respectively)
on water oxygens in the ectodomain, the changing blood flow
velocity conditions were mimicked. A diffusion (no flow) case
was included for comparison, in which all the external forces
imposed on water oxygens were set to 0.

Geometric Stratification
To investigate the ion distribution in space, the height origin of
the ectodomain was first determined by the average positions of
heavy atoms (i.e., carbon, nitrogen, and phosphor atoms) of the
upper lipid heads. An ectodomain space with 50 nm in height
starting from the origin was divided into 25 equal bins where
the charges of sugar chains and the concentrations of ions were
individually calculated. Detailed description about the geometric
stratification can be found in a previous study (Jiang et al., 2017).

Statistical Information
The error bars on all bar charts show the standard errors.
Statistical significance was determined with t-tests.

RESULTS

The EGL features highly negatively charged sugar chains
(Rabelink and de Zeeuw, 2015). As a result, in the initial
configuration of the system, Na+ ions (Figure 1C) follow a
nearly symmetric distribution with the charge distribution of the
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FIGURE 1 | The configuration of the flow/glycocalyx system and charge distributions over the glycocalyx layer under varying flow velocities. (A) The configuration of
the flow/glycocalyx system. The system is solvated in a NaCl solution with a molarity of 0.1 M. Water and ions are not shown. (B) Charge distributions of the
negatively charged sugar chains along the height in the ectodomain. (C) Molarity distributions of the Na+ and Cl− ions along the height in the ectodomain.
(D) Molarity difference continues throughout the entire simulation. cwg is continuously greater than cf in the simulation. (E) The molarity difference between two
regions beneath and above the sugar chain region, cwg–cf, changes with the varying blood flow velocities. The largest average molarity difference appears in the no
flow case, followed by the 0.001, 0.002, and 0.003 fN cases in sequence.

sugar chains (Figure 1B). Meanwhile, the Na+ molarity near the
membrane (a space from 2 nm to 12 nm in height) is greater
than its counterpart in the flow region (a space from 42 to
50 nm in height). The molarity difference is also ubiquitously
found throughout a 30-ns simulation of the flow case with the
external of 0.003 fN as shown in Figure 1D. The molarity gradient
suggests Na+ ion transport through the sugar-chain-rich region.
To measure the Na+ movement through the sugar-chain-rich
region, molarity difference between two 2-nm layers beneath and
above (i.e., cwg and cf in Figure 1D) the sugar-chain-rich region
is scrutinized. The time evolutions of the molarity differences,
cwg–cf , under varying blood flow velocities are compared in
Figure 1E. The mean molarity differences over time in the four
situations are then calculated. Statistics have shown that the
largest mean molarity difference occurs in the no-flow case with
the mean difference of (0.0705 ± 0.0012) M, followed by the
0.001 fN case of (0.0670 ± 0.0010) M and the 0.002 fN case of

(0.0653 ± 0.0008) M. The smallest average molarity difference
occurs in the fastest flow case (0.003 fN) with a mean difference
of (0.0620 ± 0.0005) M [p(no flow > 0.001 fN) = 0.014, p(no
flow > 0.002 fN) = 0.0003, p(no flow > 0.003 fN) = 2 × 10−9,
p(0.001 fN > 0.002 fN) = 0.09, p(0.001 fN > 0.003 fN) = 6× 10−6,
and p(0.002 fN > 0.003 fN) = 0.0002 by one-side t-tests]. Such a
sequence suggests that the flow promotes the Na+ ion transport
across the glycocalyx layer to the main flow region.

DISCUSSION

It is important to put the reported findings in the context
of the existing literature. Previous studies have demonstrated
the significance of the EGL as a sodium barrier (Oberleithner,
2012) from the perspective of cell mechanics as mentioned
in the Introduction. By introducing the RBCs, the present
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research further demonstrates the importance of such a barrier
in regulating the motion of RBCs, from the perspective of
electrostatics. The formation of the repulsive layer between
the RBCs and the EGL can be attributed to their repulsive
interactions, as the surfaces of the RBCs are coated with negative
charges. Even in healthy conditions, if extra salt is taken in,
Na+ may gather around the EGL and neutralize some of
negative charges of the EGL, resulting in a decrease in repulsive
interactions between RBCs and EGL and a pertinent decline in
the exclusion layer thickness. In other words, sodium renders
the endothelial cells “sticky” for RBCs, as observed in a recent
experiment (Oberleithner et al., 2015). In this regard, to keep
a low level of salt intake can benefit the smooth movement
of the RBCs, which has also been validated by experiments
(Oberleithner, 2015).

According to the present results, a slightly faster blood velocity
assists the transport of Na+ ions to the outside of the EGL.
Particularly, the number of Na+ ions remaining in the EGL
decreases, and the net negative charges in the EGL increase.
Consequently, the repulsive interaction between RBCs and EGL
is strengthened, leading to the thickness growth of the exclusion
layer. The thickness increase then facilitates the smooth flowing
of the RBCs which are intimately bound with metabolism.
It is therefore expected that regular exercise is beneficial for
maintaining the normal operation of the body, as the blood
velocity will slightly increase during exercise (Lott et al., 2001).

The present research provides an alternative answer to the
open-ended question “Why do we need to reduce salt intake and
exercise regularly” based on the atomistic behavior of Na+ ions
under varying blood flow velocities. Indeed, the atomic behavior
revealed in this study may also provide scientific evidence for
seeking breakthrough in therapies to EGL-related diseases. In
future research, dynamics of the EGL in abnormal conditions
(e.g., with the shedding of sugar chains) under varying blood flow
velocities will be investigated.
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