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Postural balance control can be altered by land treadmill (LTM) running. This impairment

seems to be related to a disturbance of vestibular and visual information. However, no

studies are available on aquatic treadmill (ATM) running. The aim of the present study

was to investigate the effect of running at moderate intensity over ATM and LTM on the

postural balance control both with opened (OE) and closed (CE) eyes. Center of pressure

(CoP) trajectory of 20 healthy subjects was collected on a dynamometric platform before

and after a 20-min-long running on ATM and LTM at the same rate of perceived exertion

(Borg’s scale: 3/10). Heart rate (HR) was recorded every 30 s during running. Stabilogram

diffusion analysis (SDA) and sample entropy (SampEn) were calculated to deepen motor

control mechanisms. HR values were lower during ATM running with respect to LTM

running (p < 0.01). A significant effect of the treadmill factor was detected in the OE

condition for the sway path (p < 0.01; ηp
2 = 0.364; Power: 0.879), the sway area (p <

0.01; ηp
2 = 0.324; Power: 0.816), and the ML oscillations (p < 0.01; ηp

2 = 0.390;

Power: 0.911) while an effect of the time factor was detected for the ellipse area (p <

0.05; ηp
2 = 0.213; Power: 0.576). However, the effect size for all the parameters ranged

from 0.06 (trivial) to 0.48 (small). In the OE condition, the SDA highlighted a significant

effect of the treadmill factor on all the short-term diffusion coefficients which negatively

influenced the open loop motor control strategies. In the CE condition, SampEn analysis

underlined a significant decrease of the CoP regularity after LTM running. Although slight

modifications of the mechanisms involved in the postural balance control occurred, ATM

and LTM moderate running did not seriously threaten postural balance performance.

Therefore, the usage of ATM should be taken into account in all those situations where

the well-known advantages of the aquatic environment are priorities.
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INTRODUCTION

The efficiency of the visual, vestibular, and proprioceptive system
is fundamental in maintaining both static and dynamic postural
stability. The center of pressure (CoP) displacement, derived
from force platforms, is considered the most reliable output for
postural balance control assessment. This approach provides
good intra-session and inter-session reliability, especially
designed to sway length, CoP X [medio-lateral (ML) sway], and
CoP Y [anterior-posterior (AP) sway] parameters (Baldini et al.,
2013). Moreover, CoP trajectory can be modeled as a fractional
Brownian motion by means of the stabilogram diffusion analysis
(SDA) revealing open loop and closed loop control mechanisms
of posture (Collins and De Luca, 1993). Different studies
considered SDA as a reliable method to rigorously explore
postural balance control (Collins and De Luca, 1993; Doyle et al.,
2008), thus it has extensively been employed over the last 25
years (Collins and De Luca, 1995; Derave et al., 2002; Laughton
et al., 2003; Raymakers et al., 2005; Marcolin et al., 2016). Also,
the time-development of the subsequent CoP trajectories is
frequently considered as an indirect outcome of random and
non-stationary fluctuations in the postural balance control
throughout the employment of the sample entropy algorithm
(SampEn) (Roerdink et al., 2006). This non-linear time series
analysis quantifies the complexity of a time series in terms of
regularity (Richman and Moorman, 2000). Besides postural
balance control (Roerdink et al., 2006; Ramdani et al., 2009), the
SampEn has been widely used in other fields as for heart rate
variability (Al-Angari and Sahakian, 2007), neural respiratory
signals (Chen et al., 2005), and electromyographical signals
(Chen et al., 2009).

Postural balance performance can be altered by treadmill
running. More in detail, Derave and colleagues demonstrated
that running at moderate intensity impaired vestibular and
visual information centers in young healthy subjects (Derave
et al., 2002). Moreover, it has been proposed that exercise
intensity affected postural balance control both when running
is performed above (Nardone et al., 1997) and below (Derave
et al., 2002) the anaerobic threshold. Also, prolonged running
exercise influenced postural balance performance (Lepers et al.,
1997; Degache et al., 2014; Marcolin et al., 2016). Recently,
aquatic running has been considered as a surrogate to land
running (Bressel et al., 2017). Running in an aquatic environment
substantially reduced the impact on joints (Greene et al., 2009;
Kanitz et al., 2015), elicited a greater oxygen uptake (Becker,
2009; Torres-Ronda and Del Alcázar, 2014), and reduced heart
rate (HR) (Masumoto et al., 2005; Barbosa et al., 2007), due to
blood-shift toward the intrathoracic vessels (Bosco et al., 2018).
Studies comparing the effects on postural balance performance

Abbreviations: LTM, Land treadmill; ATM, Aquatic treadmill; SampEn, Sample

entropy; OE, Opened eyes; CE, Closed eyes; CoP, Center of pressure; AP, Anterior-

posterior; ML, Medio-lateral; SDA, Stabilogram diffusion analysis; Dfxs, Short

term diffusion coefficient along the x axis; Dfxl, Long term diffusion coefficient

along the x axis; Dfys, Short term diffusion coefficient along the y axis; Dfyl, Long

term diffusion coefficient along the y axis; Dfr2s, Short term diffusion coefficient

combining x and y axis; Dfr2l, Long term diffusion coefficient combining x and y

axis.

of the same physical exercises carried out in land and water
condition are few and contradictory. Moreover, they investigated
only the effect of walking training protocols in unhealthy subjects
as stroke patients (Park et al., 2014; Lee et al., 2017). Only one
study involved healthy subjects and demonstrated that a 30-min
underwater walking, five times per week for 4 weeks, significantly
improved the ML and the AP balance indexes (Lee and Kim,
2017).

To the best of our knowledge, no studies have evaluated
the acute effect of aquatic running on postural balance control.
Therefore, the main goal of our study was to investigate the
acute effects of land and aquatic treadmill (ATM) running at a
moderate intensity on the postural balance performance of young
healthy subjects. Secondly, we adopted a stochastic modeling
framework and a non-linear time series analysis to deepen the
mechanisms involved in the postural balance control both with
opened and closed eyes.

MATERIALS AND METHODS

Subjects
Twenty healthy subjects volunteered for the study (M = 6; F =

14; mean± SD: 25± 5 years; 61± 11 kg; 1.67± 0.7m). Subjects
with no history of (i) orthopedic injuries in the last year, (ii)
neurological pathologies, and (iii) sight, hearing or vestibular
disorders were eligible for inclusion. All of the subjects gave their
written informed consent and were free to renounce the study at
any time.

Experimental Design
The experimental protocol adhered to the principles of the
Declaration of Helsinki. Subjects involved in the study read and
signed an informed consent and every precaution was taken
to protect their privacy. All the subjects were informed about
methods and aims of the study. The protocol was structured in
2 days as drafted in Figure 1.

We outlined a crossover design, in which subjects were
randomly divided into two groups that received a sequence of
two different exposures. The week before testing, researchers
organized a familiarization session explaining in detail the
scheduled program in order to guarantee its correct execution.
Postural balance of each subject was tested on a dynamometric
platform (RGMD S.p.a., Genova, Italy) before (PRE) and
immediately after (POST) a 20-min-long moderate running on
ATM (206060-Aqua Treadmill, Essenuoto, Italy) and LTM (Run-
7410, Runner, Italy). Specifically, subjects had to perform the run
guided by a Borg CR-10 scale (Borg, 1990) perceiving an intensity
level corresponding to 3 (i.e., moderate), both in the ATM and
LTM. The HR responses were monitored continuously by an HR

chest belt (T31 coded
TM

transmitter, Polar Electro, Finland) and
were recorded every 30 s. In the ATM running, subjects were
partially-immersed up to the level of the xiphoid process. Water
temperature was 27± 1◦C.

The postural balance tests consisted on holding the same static
upright position, both with opened eyes (OE) and closed eyes
(CE). Subjects were instructed to stand with extended legs and
arms naturally positioned along their sides. In the OE condition,
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FIGURE 1 | Experimental design. For both opened and closed eyes, postural balance assessment was performed before (PRE) and after (POST) aquatic-treadmill

(ATM), and land-treadmill (LTM) trials. Sessions were administered following a cross-over design.

they were asked to gaze a thin red line vertically placed on a white
wall in front of them, at a distance of 80 cm. Test duration was
30 s according to Scoppa et al. (2013). Subjects were asked to
perform five trials in the OE condition and five trials in the CE
condition (Figure 1).

Data Analysis
CoP trajectory was collected at 100Hz. The classical stabilometric
parameters calculated from the CoP were: the area of the
confidence ellipse [mm2], the sway path [mm/sec], the sway area
[mm2/sec], the maximal oscillation in the ML and AP direction
[mm], (Marcolin et al., 2016). The analysis was performed for
each subject, extracting data from each trial concerning both OE
and CE in the ATM and LTM conditions.

Stabilogram Diffusion Analysis
The SDA was performed in accord with Collins and colleagues
(Collins and De Luca, 1993). The equation below calculates the
mean square displacement <1x2> as a function of time interval
1t (spanning m data intervals) for a CoP trajectory of N data
point. The same equation was employed for <1y2> and <1x2>.

< 1x2 >1t=

∑N−m
i= l (1xi)

2

(N −m)

The incremental values of 1t ranged from 0.01 to 10 s with
a step of 0.01 s. The plot of the mean square displacements
vs. 1t represented the stabilogram diffusion plots from whom

we calculated the diffusion coefficients as presented elsewhere
(Marcolin et al., 2016). Diffusion coefficients (Df ) were
considered because they reflect the level of stochastic activity of
the CoP, thus they represented an index of postural instability
along the x axis (Dfx), the y axis (Dfy) or the combination of
the two (Dfr2) (Collins and De Luca, 1993). The analysis tool was
developed with MATLAB R2016b (The MathWorks, Inc., MA,
USA).

Sample Entropy
The SampEn gives a quantification of the entropy of time series,
namely the regularity of the time series. The higher the SampEn
value, themore irregular the time series (Richman andMoorman,
2000). Given an N-points time series [x1, x2, . . . , xN] with zero
mean and unit variance, the first step of the SampEn algorithm
consists on dividing the time series into N − m + 1 template
vectors of lengthm:

yi (m) = [xi, xi+1, . . . , xi+m−1] with i = 1, 2, . . . ,N −m+ 1

Then, the Chebyshev distance is computed between each
template vector yi(m) and all the other yj(m) templates, j = 1, 2,
. . . ,N-m+1, j != i. Every time the distance between yi and another
template vector yj is less than a radius r, this is called a match.
Note that self-comparisons are not considered, to avoid self-
matches. Let Bi(r) be (N-m+1)−1 times the number of matches
found for the generic template vector yi. Then, the following
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quantity is defined:

Bm (r) =
1

N −m

∑N−m

i= 1
Bi(r).

It represents the probability of finding a match between
sequences of m consecutive points. The procedure is then
repeated considering template vectors of length m+1 from the
same time series, defining the quantity:

Am (r) =
1

N −m

N−m
∑

i= 1

Ai(r)

where Ai(r) is (N-m+1)−1 times the number of matches found
for the generic template vector yi (of length m+1). Am(r) is then
the probability of finding a match between sequences of m+1
consecutive points. The quantity

CP (m, r) =
Am(r)

Bm(r)

is the conditional probability that two sequences within a
tolerance r form points remain within r of each other at the next
point (Richman andMoorman, 2000). The SampEn is defined as:

SampEn (m, r) = lim
N→∞

[

− lnCP(m, r)
]

which is estimated as

SampEn (m, r,N) = − lnCP(m, r)

The SampEn is the negative logarithm of the CP(m,r) probability;
so, the more regular the signal, the higher the probability, the
lower the SampEn, and vice versa.

Since the actual value of the SampEn requires a time series to
have an infinite number of points, the value in the last equation
is only an estimation of the SampEn value. An estimation of the
variance of the CP(m,r) probability is (Lake et al., 2002):

σ 2
CP (m, r) =

CP (m, r) [1− CP (m, r)]

B(r)

+
1

B(r)2
[KA − KB · CP(m, r)2]

where B(r) is defined as

B (r) =
(N −m+ 1) (N −m)

2
Bm(r)

KA andKB are the numbers of the overlappingmatching template
vectors of length m + 1 and m, respectively. Lake et al. (2002)
suggested to fit the data with a standard AR model to choose the
value ofm and then select the value of r to minimize the quantity:

Q (m, r) = max

(

σCP(m, r)

CP(m, r)
,

σCP(m, r)

− log [CP (m, r)]CP(m, r)

)

that is the maximum relative error of SampEn and of the CP
estimate (Lake et al., 2002).

In the present study, the proper values of m and r for
the SampEn computation followed the procedure presented
elsewhere (Ramdani et al., 2009). Therefore, we randomly chose
the 60% of both OE and CE increment time series. We calculated
the median SampEn for m = 1, 2, 3, 4, and r from 0.05 to 1 with
a step of 0.05 (Figures 2A,B) (Ramdani et al., 2009). Since the
curves tend to converge for m ≥ 3, the maximum relative error
Q(m,r) has been computed for m = 3, 4 (Figures 2C,D). Hence,
we selected the m = 3 error curve, being the lowest one. Finally,
we chose r = 0.35 as starting from this value the error curve
reaches a steady state. The SampEn analysis tool was developed
with MATLAB R2016b (The MathWorks, Inc., MA, USA).

Statistical Analysis
For each parameter, the mean value of the five trials performed
by each subject was employed for statistical analysis. D’Agostino-
Pearson test was employed to check data normality distribution.
Paired t-test was employed to assess HR differences between
ATM and LTM running. For both OE and CE condition a two-
way ANOVA for repeated measures (time factor × treadmill
factor) was performed to investigate dependent variables.
Significant level for differences was set to p < 0.05. When F-
value showed interactions between the factors, a t-test was used
for pair-wise comparisons. Data analysis was performed using
the software packages IBM SPSS Statistics for Windows (Version
24.0. Armonk, NY: IBMCorp). The effect size was calculated with
G Power 3.1.5 (Faul et al., 2007). The magnitude of the effect size
followed Cohen’s guidelines (Cohen, 1988) and was interpreted
as follow 0.00–0.19: trivial; 0.20–0.59: small; 0.60–1.19: moderate;
1.20–1.99: large and >2.00: very large (Hopkins et al., 2009).

RESULTS

All of the subjects successfully completed the study. The HR
values recorded were significantly lower (p < 0.01; Effect Size:
0.75; Power: 0.89) in the ATM running (mean ± SD: 134.90 ±

13.30 b·min−1) with respect to the LTM running (mean ± SD:
145.80± 15.45 b·min−1). In detail, we observed a decrease in HR
mean values from LTM to ATM running of 11 b·min−1 (−7.5%).

For the sake of clarity, postural balance results will be
presented in separate subheadings as follows: classical postural
parameters, SDA, and SampEn.

Classical Postural Parameters
Tables 1, 2 report results collected before and after ATM and
LTM running. In the OE condition a significant main effect of the
treadmill factor was detected for the sway path (p < 0.01; ηp

2 =

0.364; Power: 0.879), the sway area (p< 0.01; ηp
2 = 0.324; Power:

0.816), and the ML oscillations (p < 0.01; ηp
2 = 0.390; Power:

0.911). Furthermore, a significant main effect of time factor was
observed for the ellipse area (p< 0.05; ηp

2 = 0.213; Power: 0.576)
and the ML oscillations (p < 0.01; ηp

2 = 0.299; Power: 0.760).
In the CE condition, the analysis of variance did not show any
statistically significant difference for all the classical parameters
analyzed.
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FIGURE 2 | On the left side: curves of the median sample entropy estimation as function of r and m = 1–4 for ML (A) and AP (C) time series. On the right side: curves

of the median of the maximum relative error for ML (B) and AP (D) time series with m = 3 and m = 4.

TABLE 1 | Classical postural parameters: comparison between the PRE and the POST values in the OE condition.

ATM–OE LTM–OE

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

Ellipse area

[mm2 ]

66.03 ± 29.07 71.61 ± 35.32 5.58 ± 6.24 [2.85, 8.31] 0.17 55.24 ± 22.69 70.02 ± 37.65 14.78 ± 14.96 [8.22, 21.30] 0.45

Sway path

[mm/s]

7.80 ± 2.04 8.01 ± 2.75 0.20 ± 0.71 [−0.11, 0.51] 0.08 6.69 ± 1.37 7.64 ± 2.95 0.95 ± 1.58 [0.26, 1.64] 0.37

Sway area

[mm2/s]

7.56 ± 3.32 8.34 ± 4.93 0.78 ± 1.61 [0.07, 1.49] 0.18 5.91 ± 1.90 7.83 ± 4.61 1.92 ± 2.71 [0.73, 3.11] 0.48

AP oscillations

[mm]

13.65 ± 3.12 13.46 ± 3.08 −0.19 ± 0.04 [−0.21, −0.17] 0.06 13.26 ± 2.38 13.89 ± 3.27 0.63 ± 0.89 [0.24, 1.02] 0.21

ML oscillations

[mm]

10.18 ± 3.05 11.23 ± 4.03 1.05 ± 0.98 [0.62, 1.48] 0.29 8.93 ± 2.18 10.11 ± 3.38 1.18 ± 1.20 [0.65, 1.71] 0.40

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: effect size.

Stabilogram Diffusion Analysis
Tables 3, 4 report the SDA results before and after ATM and LTM
running. In the OE condition, the two-way ANOVA for repeated
measures showed a significant main effect of the treadmill factor
for the Dfxs (p < 0.0001; ηp

2: 0.573; Power: 0.998), Dfys (p <

0.01; ηp
2: 0.326; Power: 0.819), and Dfr2s (p < 0.0001; ηp

2:
0.506; Power: 0.987). Moreover, a significant main effect of the
time factor was observed in the Dfxl (p < 0.05; ηp

2: 0.279;
Power: 0.730). In the CE condition a significant main effect of
the treadmill factor was detected only for the Dfxs (p < 0.05;

ηp
2: 0.258; Power: 0.685). Finally a main effect of time factor was

registered in the Dfr2l (p < 0.05; ηp
2: 0.195; Power: 0.530).

Sample Entropy
Tables 5, 6 show the AP and ML SampEn results. Specifically,
in the OE condition there were no significant main effects or
interactions both for the AP and ML SampEn. Conversely in
the CE condition the two-way ANOVA for repeated measures
showed a significant main effect of the time factor (p < 0.05; ηp

2:
0.292; Power: 0.757) considering the AP SampEn. Moreover, two
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TABLE 2 | Classical postural parameters: comparison between the PRE and the POST values in the CE condition.

ATM–CE LTM–CE

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

Ellipse area

[mm2 ]

99.93 ± 61.27 104.4 ± 64.96 4.47 ± 3.68 [2.86, 6.08] 0.07 92.19 ± 41.48 112.73 ± 80.15 20.55 ± 38.67 [3.65, 37.50] 0.29

Sway path

[mm/s]

10.50 ± 3.34 9.83 ± 3.56 −0.67 ± 0.22 [−0.77, −0.57] 0.19 9.55 ± 2.91 9.81 ± 3.90 0.25 ± 0.99 [−0.18, 0.68] 0.07

Sway area

[mm2/s]

12.38 ± 7.06 12.96 ± 8.27 0.57 ± 1.21 [0.04, 1.10] 0.07 10.85 ± 5.38 12.44 ± 7.93 1.59 ± 2.55 [0.47, 2.71] 0.23

AP Oscillations

[mm]

17.31 ± 5.20 16.77 ± 5.46 −0.54 ± 0.23 [−0.64, −0.44] 0.10 16.89 ± 3.63 17.43 ± 4.21 0.54 ± 0.58 [0.29, 0.79] 0.14

ML oscillations

[mm]

12.90 ± 4.60 13.38 ± 5.00 0.48 ± 0.40 [0.31, 0.66] 0.10 12.32 ± 3.70 13.59 ± 5.16 1.27 ± 1.45 [0.63, 1.91] 0.27

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: effect size.

TABLE 3 | Stabilogram diffusion analysis results in the OE condition.

ATM–OE LTM–OE

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

Dfsr2 7.69 ± 3.50 8.04 ± 5.01 0.35 ± 3.20 [−1.05, 1.75] 0.08 5.64 ± 2.47 6.57 ± 3.73 0.93 ± 2.39 [−0.12, 1.98] 0.38

Dflr2 1.37 ± 0.70 1.46 ± 0.76 0.08 ± 0.58 [−0.17, 0.33] 0.12 1.38 ± 0.81 1.58 ± 0.76 0.19 ± 1.05 [−0.27, 0.65] 0.25

Dfxs 3.39 ± 2.12 3.31 ± 2.21 −0.07 ± 1.50 [−0.73, 0.59] 0.04 2.33 ± 1.32 2.41 ± 1.70 0.07 ± 1.11 [−0.42, 0.56] 0.05

Dfxl 0.40 ± 0.24 0.53 ± 0.47 0.13 ± 0.34 [−0.02, 0.28] 0.32 0.34 ± 0.18 0.54 ± 0.37 0.20 ± 0.37 [0.04, 0.36] 0.62

Dfys 4.30 ± 1.85 4.73 ± 2.99 0.43 ± 2.10 [−0.49, 1.35] 0.16 3.30 ± 1.33 4.15 ± 2.31 0.85 ± 1.64 [0.13, 1.57] 0.42

Dfyl 0.97 ± 0.59 0.92 ± 0.51 −0.04 ± 0.60 [−0.30, 0.22] 0.09 1.03 ± 0.68 1.03 ± 0.60 −0.002 ± 0.84 [−0.37, 0.37] 0.00

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: Effect size.

significant interactions (time × treadmill) were detected in ML
(p < 0.05; ηp

2: 0.283; Power: 0.738) and AP SampEn (p < 0.01;
ηp

2: 0.315; Power: 0.801). The subsequent t-test comparing the
PRE and POST condition revealed a significant decrease of the
COP regularity considering the ML axis (p < 0.05; Effect Size:
0.33; Power: 0.16) andAP axis (p< 0.001; Effect Size: 0.46; Power:
0.06) only in the LTM running.

DISCUSSION

A worsening of postural balance control seems to be related
to treadmill running, due to a disturbance of vestibular and
visual information (Lepers et al., 1997; Derave et al., 2002).
Moreover, postural balance performance has been demonstrated
to be influenced by prolonged running (Marcolin et al., 2016).
Nonetheless, treadmill is a widely employed apparatus that is
used in training as well as in rehabilitation programs. Similarly,
the ATM became recognized for its numerous advantages,
notably for reducing the force of impact on the joints (Greene
et al., 2009; Kanitz et al., 2015). Moreover, water exercise has
beneficial effects for the cardiovascular response (Barbosa et al.,
2009). Specifically, it has been shown that HR was significantly
lower when exercising with immersion to the breast, as compared
to on land and with immersion to the hip (Barbosa et al., 2007).

Additionally, Masumoto and colleagues reported a significant
decrease of HR mean values from land-based to water exercises
of 7.3 b·min−1 (Masumoto et al., 2005). Our HR results were in
agreement with the above studies highlighting lower HR values
in the ATM running. Surprisingly, although there is a high rate
of employment of both ATM and LTM for recreational and
rehabilitation purposes, there are no studies in the literature that
compare their acute effects on postural balance.

Postural Balance Performance
In the OE condition, classical postural parameters showed an
effect of the time factor on the ellipse area. Since the smaller
the surface of the ellipse the better the postural performance
(Paillard and Noé, 2015), results of our study showed that this
performance is more influenced by the running time than by
the type of treadmill. Conversely, the COP sway path and sway
area are representative of the number of continuous corrections
adopted by the subject within the ellipse giving information
on the efficiency of the postural balance control. Our results
showed that in the OE condition only the type of treadmill
influenced these two parameters. In the CE condition, no main
effects or interactions were reached for the classical postural
parameters analyzed. These results are not unexpected since it
has already been demonstrated that treadmill exercise negatively
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TABLE 4 | Stabilogram diffusion analysis results in the CE condition.

ATM–CE LTM–CE

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

Dfsr2 14.82 ± 9.33 13.33 ± 8.86 −1.48 ± 5.79 [−1.06, 4.02] 0.16 12.66 ± 6.89 12.70 ± 8.36 0.04 ± 5.17 [−2.23, 2.31] 0.05

Dflr2 1.56 ± 1.18 1.91 ± 1.43 0.35 ± 0.95 [−0.07, 0.77] 0.26 1.42 ± 0.65 2.12 ± 1.72 0.70 ± 1.72 [−0.05, 1.45] 0.46

Dfxs 5.18 ± 3.54 4.45 ± 2.84 −0.72 ± 2.22 [−1.69, 0.25] 0.22 4.12 ± 2.28 4.07 ± 3.05 −0.05 ± 1.95 [−0.91, 0.81] 0.02

Dfxl 0.58 ± 0.59 0.72 ± 0.76 0.14 ± 0.73 [−0.18, 0.46] 0.20 0.43 ± 0.30 0.91 ± 1.14 0.48 ± 1.06 [0.02, 0.95] 0.47

Dfys 9.63 ± 6.39 8.87 ± 6.30 −0.75 ± 4.38 [−1.17, 2.67] 0.12 8.53 ± 4.93 8.63 ± 5.69 0.10 ± 3.55 [−1.46, 1.66] 0.02

Dfyl 0.98 ± 0.71 1.19 ± 0.88 0.20 ± 0.61 [−0.07, 0.47] 0.26 0.98 ± 0.56 1.20 ± 0.71 0.21 ± 0.79 [−0.14, 0.56] 0.34

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: effect size.

TABLE 5 | Sample entropy results in the OE condition.

ATM–OE LTM–OA

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

ML 0.29 ± 0.06 0.30 ± 0.06 0.001 ± 0.03 [−0.012, 0.014] 0.17 0.30 ± 0.06 0.31 ± 0.06 0.01 ± 0.04 [−0.008, 0.028] 0.17

AP 0.35 ± 0.07 0.35 ± 0.07 0.007 ± 0.03 [−0.006, 0.020] 0.00 0.34 ± 0.06 0.35 ± 0.07 0.01 ± 0.02 [0.001, 0.019] 0.15

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: effect size.

TABLE 6 | Sample entropy results in the CE condition.

ATM–CE LTM–CE

PRE POST 1 195%CI ES PRE POST 1 195%CI ES

ML 0.28 ± 0.06 0.28 ± 0.07 −0.0002 ± 0.03 [−0.013, 0.013] 0.00 0.27 ± 0.04 0.29 ± 0.07 0.02 ± 0.04 [0.003, 0.038] 0.33

AP 0.32 ± 0.07 0.32 ± 0.06 0.003 ± 0.03 [−0.010, 0.016] 0.00 0.30 ± 0.06 0.33 ± 0.07 0.02 ± 0.03 [0.007, 0.033] 0.46

Data are presented as mean ± standard deviation. ∆ = difference between PRE and POST values; ∆95% CI = 95% Confidence interval of the differences between PRE and POST

values; ES: effect size.

affects visual contribution to static postural stability (Derave
et al., 2002). Moreover, a prolonged running worsened classical
stabilometric parameters when the postural test was performed
with OE respect to CE (Marcolin et al., 2016). The interpretation
of the statistical significances has to take into account the size
of the differences in the PRE-POST comparison. Indeed, ATM
condition with OE revealed trivial effect sizes for 4 parameters
out of 5 and a small effect size for the ML oscillations. Similarly,
LTM condition with OE showed small effect sizes for all the
5 parameters. In the CE condition, the effect sizes were trivial
for all the parameters excluding ellipse area, sway area, and
ML oscillations in LTM condition. The explanation of these
low effect sizes could be attributable to the running performed
below the estimated anaerobic threshold. Indeed, Nardone and
colleagues reported how this intensity little affected body sway
with respect to more strenuous efforts (Nardone et al., 1997).
Moreover, the slight increase of effect sizes in the LTM with
respect to the ATM could be explained by the higher linear head
accelerations occurring while running in LTM. In fact, higher
head accelerations could have decreased the sensibility threshold
of the otholitic system not only during running but also at the

beginning of the recovery time (Lepers et al., 1997). Therefore,
we can conclude that in the prescription of physical exercise
at moderate intensity, the choice of ATM or LTM treadmill is
not determinant concerning the short-term effects on postural
balance performance.

Postural Control Mechanisms
SDA analysis allowed studying the human postural control
mechanisms assuming that the maintaining of the erect posture
could be viewed as a stochastic process (Collins and De
Luca, 1993). From a motor control perspective over short-term
intervals open loop control strategies are adopted while over
long-term intervals closed loop control strategies are involved
(Collins andDe Luca, 1993). Diffusion coefficients represented an
objective measurement of the postural instability considering the
ML (Dfx) and the antero-posterior (Dfy) axis as well as the plane
of support (Dfr2): a higher value of these coefficients reflected a
less tightly regulated control system (Collins and De Luca, 1993).
The main finding of the statistical analysis concerns the effect of
the treadmill factor on all the short-term diffusion coefficients
(Dfxs, Dfys, Dfsr2) in the OE condition. Thus, treadmill seems
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to negatively influence the open loop motor control strategies
where corrective feedback mechanisms are still not called into
play (Collins and De Luca, 1993). As for the classical postural
parameters, in the CE condition, only a treadmill effect (Dfxs)
and a time effect (Dflr2) were detected. Again these findings
could be explained by the fact that treadmill running negatively
affects visual contribution to static postural stability (Derave
et al., 2002). We can speculate that the visual deprivation can
be mitigated by the interventions of the other postural control
systems. Once again to quantify the relevance of our results it has
to be taken into account the size of the differences. About that,
all effect sizes ranged from trivial to small. Therefore, as for the
postural balance performance, the functional organization of the
postural control mechanisms is slightly influenced both by the
moderate intensity of the running and by the type of treadmill
employed. Moreover, this influence occurred in the OE condition
and referred to the short-term intervals where open loop control
mechanisms are employed and corrective feedback mechanisms
are not called into play.

To deepen the understandings of postural control
mechanisms we further considered the time-development
of the subsequent COP trajectories as an outcome of random
and non-stationary fluctuations in the postural control system
(Roerdink et al., 2006). The SampEn algorithm allowed to
calculate the regularity of a signal and has been already applied
to postural sway data (Roerdink et al., 2006; Ramdani et al.,
2009). Moreover, the regularity of a physiological time-series is
representative of the efficiency of its control system (Goldberger
et al., 2002). An overall higher regularity (i.e., lower SampEn
values) of the postural balance control was detected in the
CE condition. It has been demonstrated that the more regular
the COP displacements, the greater the amount of attention
invested in postural balance control (Donker et al., 2007).
We can speculate that for our subjects standing with eyes
opened did not require the same level of attention as was
employed in the CE trials. Certainly, removal of visual cues
amplified the consciousness of postural balance (i.e., attention
to an internal focus), leading to a voluntary control (Hunter
and Hoffman, 2001; Andersson et al., 2002). Moreover, the
loss of complexity of physiological and behavioral systems
occurs when the number of the structural components is
reduced and/or their interaction is altered (Ramdani et al.,
2009). Although the highlighted effect sizes were small, our
findings underlined an increase of the AP and ML SampEn
after LTM running in the CE condition. This could be related
to a functional decline of the postural balance control which
resulted in maladaptive responses consequent to LTM running
(Hansen et al., 2017). Moreover, we can speculate that a higher
LTM running perturbation could result in an inappropriate

attentional involvement of the postural control system (Schniepp
et al., 2013).

CONCLUSIONS

Results of the present study underlined how running at moderate
intensity on ATM and LTM slightly altered postural balance
performance as well as the relative postural control mechanisms.
However, trivial and small effect sizes weakened the relevance of
the described alterations. Therefore, the usage of ATM should be
taken into account in all those situations where the well-known
advantages of the aquatic environment are priorities. Namely,
reducing joint loads (Greene et al., 2009; Kanitz et al., 2015),
improving the recovery from exercise (Wilcock et al., 2006),
and decreasing the HR (Barbosa et al., 2007). Nonetheless, some
considerations have to be acknowledged. Firstly, we studied a
group of young healthy participants, and thus these results might
not necessarily reflect unhealthy or elderly subjects. Secondly,
our experimental protocol consisted of an acute exposure to
aquatic and land treadmill (LTM). Hence, our findings could
motivate further studies on ATM employment among frail
elderly populations. Indeed, if the unaltered postural balance
control will be confirmed, ATM would be a good safety choice
against fall-risk and an aquatic environment would be beneficial
for the musculoskeletal and cardiovascular system.
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