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Endocannabinoids are a group of endogenous lipid mediators that act as ligands of
cannabinoid and vanilloid receptors, activating multiple signal transduction pathways.
Together with enzymes responsible for their synthesis and degradation, these
compounds constitute the endocannabinoid system (ECS), which is involved in different
physiological processes in reproduction. The placenta, which is essential for the success
of gestation and optimal fetal growth, undergoes constant tissue remodeling. ECS
members are expressed in trophoblast cells, and current evidence suggests that this
system is involved in placental development, apoptosis, and syncytialization. Impairment
of endocannabinoid signaling has been associated with several pathological conditions
such as intrauterine growth restriction and preeclampsia. Both clinical entities are
characterized by dysregulation on vascular perfusion where nitrergic system performs a
pivotal role. Nitric oxide (NO) is a potent local vasodepressor that exerts a critical role
in the regulation of hemodynamic flow, contributing to the maintenance of low vascular
resistance in the feto-placental circulation. NO production could be affected by different
factors and growing evidence suggests that the endocannabinoid mediators may
regulate nitrergic signaling. Herein, we review emerging knowledge supporting ECS-
mediated regulation of NO production in normal placentation. Finally, we discuss how
alterations in these systems could affect homoeostasis and contribute to the occurrence
of placental-mediated pregnancy complications. Given the impact on women and
perinatal heath, we will focus on current knowledge regarding the effects of ECS on
nitrergic system in normal and pathological placentation.

Keywords: placenta, endocannabinoids, nitric oxide, preeclampsia, endothelial disfunction, anandamide

INTRODUCTION

The placenta is a specialized transient organ essential for embryo growth and survival. In order to
supply the metabolic demands of the developing fetus, this tissue performs numerous physiological
functions such as gas exchange and efficient nutrient transfer. These events are crucial for the
correct development of the feto-placental unit.
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The placenta is an organ devoid of nerves; hence
communication between mother and fetus takes place through
blood-borne as well as locally produced substances. The
syncytiotrophoblast (STB) is the main structural and functional
epithelial layer that produces a variety of hormones such as
human chorionic gonadotropin (hCG), placental lactogen,
estrogen, progesterone, aldosterone, cortisol, placental growth
hormone, among others. It can also release a large number
of growth factors, cytokines, chemokines, and vasoactive
compounds that synchronize placental blood flow, which is
of outmost importance during gestation for fetal development
(Gude et al., 2004).

Successful pregnancy is coordinated by a complex interplay
of maternal, placental, and fetal endocrine signals. Inadequate
migration of trophoblast cells and deficient remodeling of uterine
spiral arterial walls lead to a reduction of placental blood flow
and cause placental ischemia/hypoxia. In this context, vasoactive
factors such as inflammatory cytokines, reactive oxygen species,
hypoxia-inducible factors (HIFs), and anti-angiogenic factors are
the major modulators of the systemic vascular endotheliosis.
Both abnormalities in placental formation and function are
often associated with human pregnancy complications such as
intrauterine growth restriction (IUGR) and preeclampsia (PE).

PE is one of the leading causes of maternal and perinatal
morbidity and mortality. In fact, it is the first direct cause of
maternal death in Latin America (Giachini et al., 2017). This
condition is characterized by hypertension (≥140/90 mmHg)
associated to proteinuria (≥0.3 g/24 h) or thrombocytopenia
(platelet count < 100.00/µL), liver dysfunction, new onset renal
failure (Serum creatinine > 1.1 mg/dL), neurologic symptoms, or
pulmonary edema (Brennan et al., 2014).

Endothelial dysfunction is one of the earliest manifestations
of PE. To date, the pathogenesis of PE is complex and
not well-understood, but it is accepted that an inappropriate
remodeling of spiral uterine arteries leads to restricted supply of
oxygen and nutrients to the placenta (Li et al., 2015). Vascular
endotheliosis associated to PE can lead to a deregulation in
the levels of vasodilator factors such as nitric oxide (NO). This
altered environment causes placental ischemia and subsequent
secretion of placental pro-inflammatory and anti-angiogenic
factors into the maternal circulation such as soluble fms-
like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng),
among others (Karumanchi, 2016). Furthermore, evidence of
negative correlation between of circulating sFlt-1 and sEng
on NO production has been reported in human samples
(Sandrim et al., 2008) as well as in animal models of PE
(Zhu et al., 2016). However, there are controversies among
different studies that measure both circulating levels and urinary
excretion of NO in normal and pathological conditions like
PE (Ranta et al., 1999; Choi et al., 2002; López-Jaramillo
et al., 2008). The discrepancy in the results could be due to
different dietary intake of nitrites and nitrates or pharmacological
treatments that are given to patients. In this regard, it should
be noted that nifedipine, an antagonist of calcium channel
widely used for hypertension treatment in preeclamptic patients,
may alter NO levels (Berkels et al., 1994; Boccardo et al.,
1996).

Furthermore, a number of reports also showed differences in
the expression and activity of endothelial NO Synthase (eNOS)
between normal and unhealthy pregnancies. (Myatt et al., 1997;
Kim et al., 2006; Smith-Jackson et al., 2015; Motta-Mejia et al.,
2017).

Distribution and activity of eNOS are regulated by
different mechanisms. Trafficking between caveolar and
non-caveolar compartments, protein–protein interaction, and
phosphorylation are involved in the modulation and/or release of
NO (Liaudet et al., 2000; Powe et al., 2011). Therefore, there is an
extending interest in determining the specific cellular pathways
that modulate the nitrergic signaling. Growing evidence indicates
that the endocannabinoid system (ECS) is able to regulate the
formation and/or release of NO (Lipina and Hundal, 2017).

The ECS is expressed in human placenta (Park et al.,
2003; Aban et al., 2013; Costa et al., 2013) and previous
results demonstrate that endogenous cannabinoids (ECs) could
modulate NO production acting on different molecular targets
(Poblete et al., 2005; Carney et al., 2009; Oddi et al., 2012;
Krishnan and Chatterjee, 2015).

Herein, we discuss evidence that supports the role of these
endogenous bioactive lipids in the regulation of NO signaling in
healthy and pathological pregnancies.

ROLE OF NITRIC OXIDE IN THE
PLACENTA

Throughout gestation significant circulatory adaptations occur
that includes an increase in maternal blood volume and
vasodilatation to maintain the fetal demands of oxygen and
nutrients. Maternal uterine vascular remodeling is essential for
normal fetal growth and NO plays a crucial role in this process
(Myatt, 1992; Possomato-Vieira and Khalil, 2016).

Over the course of gestation the action of NO seems to support
a low vascular resistance in the feto-placental circulation (Amit
et al., 1998), maintain a vasodilator state of placental vessels,
and attenuate the effects of vasoconstrictors (Myatt et al., 1992)
being the main contributor to the regulation of physiological
hemodynamic flow.

Nitric oxide is a potent gaseous mediator produced in different
organs, including placenta (Farina et al., 2001; Shaamash et al.,
2001; Cella et al., 2008; Aban et al., 2013).

During the third trimester, the growing fetus significantly
enhances the metabolic demands on the placenta. Changes
in vascular resistance allow the placenta to support fetal
development and wellbeing. In this remodeling of placental
blood-flow, both maternal and conceptus eNOS increase uterine
arterial blood flow in normal pregnancy (Kulandavelu et al.,
2012), and attenuation in its action may reduce placental
perfusion and lead to an altered feto-placental signaling.

Nitric Oxide acts in multiple pathways. It diffuses into
vascular smooth muscle cells, attaches to the receptor soluble
guanylyl cyclase (sGC), and catalyzes the formation of cyclic
guanosinemonophosphate (cGMP), resulting in vasodilation.
Simultaneously, NO prevents the production and action of both
endothelium-derived contracting factors and endothelin-1, thus
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reducing the vasoconstrictor effect. Additionally, NO inhibits
platelet aggregation and adherence to endothelial surfaces
(Ignarro, 1990).

Nitric oxide and L-citrulline are produced from L-arginine
through a reaction catalyzed by a family of calcium-calmodulin-
dependent enzymes called NO synthases (NOS): Three major
NOS isoforms have been identified: neuronal (nNOS or NOS1),
inducible, (iNOS or NOS2), and endothelial (eNOS or NOS3).
The nNOS and eNOS isoforms are frequently expressed
constitutively and their activities are regulated by calcium
availability. On the other hand, iNOS is independent of the
intracellular calcium concentration and generates a high flow
of NO. The tree isoforms of NOS employ flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), and (6R)-
5,6,7,8-tetrahydro-L-biopterin (BH4) as cofactors of the isozymes
(Förstermann and Sessa, 2011) (Figure 1).

These enzymes are present in many cell types and tissues such
as endothelium, nerves, immune cells, and placenta. In a normal
pregnancy, eNOS is the most relevant member of this family
and is the key enzyme when considering the production of NO
(Moncada and Higgs, 2006).

In the human placenta, the eNOS isoform is expressed
in the STBs and vascular endothelium (Kakui et al., 2003;
Schiessl et al., 2005). Interestingly, extravillous trophoblast also
produces NO while invading the maternal uterine spiral arteries
but significantly higher NOS activity was found in the villous
trophoblast. Ca2+-dependent NOS activity was also identified in
human term placentas, but it is substantially lower respect to
samples from early placentas (Al-Hijji et al., 2003). On the other
hand, iNOS is expressed in Hofbauer cells of the villous stroma
(Myatt et al., 1997).

The placenta lacks of innervation, thus its vascular tone
is modulated principally by local factors. In this context, the
production of NO is essential for the development of normal
placental endothelium, and promotes endovascular invasion by
the cytotrophoblast (Zhou et al., 1997). These cells produce NO
which acts on arterial walls to create a low-resistance, high-caliber
uteroplacental unit (Noris et al., 2005).

The NO production is regulated by many molecules such
as vascular endothelial growth factor (VEGF) and placental
growth factor (PlGF). Both induce arterial vasodilation by
increasing the endothelial calcium signaling, resulting in the
release of endothelial NO. Additionally, endothelial shear stress
produced by flowing blood stimulates endothelial NO release

FIGURE 1 | Schematic diagram illustration the synthesis of NO.

through a number of pathways, which involve opening of cation
channels like TRPV1, TRPV4, among others (Vanhoutte et al.,
2016). Protein–protein interactions represent another important
mechanism for eNOS regulation. In this context, eNOS can
interact with a variety of proteins such as calmodulin or caveolin
resulting in an increase or a decrease in eNOS activity (Su,
2014).

THE ENDOCANNABINOID SYSTEM

Endocannabinoids are an emerging group of lipid-signaling
molecules that include amides, esters and ethers of long-chain
polyunsaturated fatty acids.

Endocannabinoids are produced on demand by cleavage
of membrane phospholipids mainly through two-step reaction
catalyzed by N-acyltransferase (NAT) and N-acylphospha-
tidylethanolamine-phospholipase D (NAPE-PLD) in the pathway
of Anandamide (N-arachidonoylethanolamine; AEA) synthesis;
and phospholipase C (PLC) and diacylglycerol lipases (DAGL) in
the case of 2-arachidonoylglycerol (2-AG).

Both lipid mediators (AEA and 2-AG) are the main
endogenous ligands of the cannabinoid receptors (CB1 and
CB2) (Howlett et al., 2002). These receptors belong to the
family of G-proteins coupled receptors (GPCRs) and activate
multiple signaling pathways (Pertwee, 2006). In addition,
these bioactive lipids can stimulate other membrane proteins
such as the orphan G protein-coupled receptor 55 (GPR55)
(Sharir et al., 2012; Gasperi et al., 2013), or the intracellular
receptor peroxisome proliferator-activated receptors (PPAR).
Additionally, other ECs such as oleoylethanolamide and
palmitoylethanolamide can also bind to the peroxisome
proliferator-activated receptor gamma (PPAR-γ) regulating
food intake, lipid metabolism, and inflammatory processes
(O’sullivan, 2007; Pistis and Melis, 2010). Moreover, the
endocannabinoid AEA can bind to a non-selective cation
channel, the transient receptor potential vanilloid 1 (TRPV-
1), acting as an endovanilloid (Cella et al., 2008; Marzo and
Petrocellis, 2010).

The action of AEA and 2-AG cease by enzymatic hydrolysis
mediated by fatty acid amide hydrolase (FAAH) (McKinney and
Cravatt, 2005; Fezza et al., 2008) and monoacylglycerol lipase
(MAGL), respectively (Dinh et al., 2002).

In addition, there are other enzymes that constitute alternative
biosynthetic and degradative pathways for this lipid mediators
(Kozak et al., 2002; Pacher and Kunos, 2013).

Altogether, these enzymes and proteins involved in the
production and signaling of endocannabinoids, along with these
lipid ligands, constitute a complex system called ECS.

Endocannabinoid System in the Placenta
In the last years, enzymes that participate in AEA and 2-AG
synthesis and release have been identified in human placenta
(Aban et al., 2013; Costa et al., 2013), but until now only AEA
levels were measured in this tissue (Marczylo et al., 2010).

The identification of the different components of the ECS in
the placenta promoted the study of ECs in relevant physiological
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TABLE 1 | Processes modulated by AEA and 2-AG in the human trophoblast.

Proliferation

AEA ↓ mainly through CB2 BeWo Habayeb et al., 2008a; Costa et al., 2014a,
2015b

2-AG ↓ mainly through CB2 BeWo

Cell death

AEA ↑ through CB1 hST Aban et al., 2013

↑ through TRPV-1 hCT Costa et al., 2015b

↑ mainly through CB2 BeWo Habayeb et al., 2008a; Costa et al., 2014a

2-AG ↑ mainly through CB2 BeWo

Syncytialization

AEA ? morphological differentiation hCT Costa et al., 2014b

- biochemical differentiation hCT

2-AG ↓ morphological differentiation through CB1 and CB2 hCT Costa et al., 2015c

↓ biochemical differentiation through CB1 and CB2 hCT

Migration and invasion

CB1−/− ↓ invasion TSC Sun et al., 2010

Protein biosynthesis

AEA ↓ ecto-pALP activity, hCG secretion and aromatase expression
through CB receptors

hST Costa et al., 2015b

- PAPP-A mRNA levels hST Costa et al., 2016

2-AG ↑ 3β-HSD mRNA levels through CB receptors hST

- PAPP-A mRNA levels hST

Transport

AEA ↓ K+ channel 1 (TASK-1) hST Bai et al., 2006; Wareing et al., 2006

↓ folic acid transportation, acute treatment. Not mediated by
CB receptors

BeWo Araujo et al., 2009

↑ folic acid transportation, chronic exposure. Not mediated by
CB receptors

BeWo

Increase (↑), decrease (↓), no effect (–); AEA, anandamide; 2-AG, 2-arachidonoylglycerol; CB1, cannabinoid receptor 1; CB2, cannabinoid receptor 2; TRPV1, transient
receptor potential vanilloid 1; hCT, human cytotrophoblast; hST, human syncytiotrophoblast; TSC, trophoblast stem cells; PAPP-A, Pregnancy-associated plasma protein
A; 3β-HSD, 3β-hydroxysteroid dehydrogenase; ecto-pALP, placental alkaline phosphatase; hCG, human chorionic gonadotropin.

processes such as proliferation, differentiation, apoptosis, and
proteins biosynthesis, as well as in the transport of nutrients,
oxygen, electrolytes, and other substances to the fetus. The results
observed in these studies were extensively reviewed by Costa
(2016) and the relevance of the ECS in trophoblast biology is
summarized in Table 1.

In addition to the effects of ECs, phytocannabinoids such
as delta-9-tetrahydrocannabinol (THC), the main psychoactive
compound of marijuana, may affect the dynamics of placental
development (Ortigosa et al., 2012; Costa et al., 2015a; Metz and
Stickrath, 2015). In fact, it has been shown that THC can promote
beneficial or detrimental effects on trophoblast cell viability and
also impair morphological differentiation (Costa et al., 2015a).
Additionally, chronic exposure to THC may affect the maternal–
fetal transference of micronutrient (Araujo et al., 2009). For all
the above mentioned, cannabis consumption during pregnancy
may have serious alterations in human placentation causing
negative pregnancy outcomes such as preterm birth (Dekker
et al., 2012) and fetal growth restriction (El Marroun et al., 2009).

A similar mechanism seems to occur when high levels of
endocannabinoids are detected during pregnancy. According to
this, reports have shown that high plasma levels of AEA seriously
interfere in the progression of pregnancy (Habayeb et al., 2008b;
Taylor et al., 2011). In agreement with this observation, previous
results from our laboratory demonstrated that NAPE-PLD and
FAAH expression were impaired in PE placentas. Both proteins
were mainly located in the apical membrane of STB in normal
placentas although weak staining for FAAH was detected in
some villi from PE tissues. Furthermore, high levels of FAAH
activity were measured in normal tissues, but a lower activity of
this metabolizing enzyme was detected in preeclamptic tissues
(Aban et al., 2013). These findings suggest that pathological
conditions may expose the fetus to unhealthy levels of the
endocannabinoid, disturbing fetal development, and leading to
neurophysiological abnormalities (Grant et al., 2017). However,
the precise mechanisms by which the principal enzymes involved
in the synthesis and degradation of AEA are deregulated in
preeclamptic placentas are still unknown.
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Other works have described alterations of several components
of the ECS in normal and pathological human placentas.
Acone et al. (2009) compared samples obtained from women
undergoing elective cesarean section (non-laboring group) and
women having a normal spontaneous delivery (laboring group)
at term (Acone et al., 2009). Interestingly, CB1 expression was
detected but FAAH protein was absent in the analyzed samples.
On the other hand, Fügedi et al. (2014) observed higher levels
of CB1 protein in the STB layer, as well as in the endothelial
cells from preeclamptic placental tissue, although they did
not find significant differences in CB2 and FAAH expression
between preeclamptic and normal placental tissues (Fügedi et al.,
2014).

It is worth to note the discrepancy in the results observed by
different research groups on the altered expression of the ECS
components, even when the same type of samples was analyzed.
Such differences could be attributed to ethnicity, severity of the
disease and/or differences in methodological procedures (e.g.,
sample processing, antibodies utilized). These disagreements
must be analyzed and requires further elucidation.

CROSSTALK BETWEEN ECS AND NO IN
REPRODUCTIVE TISSUES

Our understanding on the interaction between the ECS and
nitrergic system has been enriched by several studies that
demonstrated a strong influence of ECS on NO production.
This regulation is mediated by endocannabinoids like AEA or 2-
AG which exert stimulatory or inhibitory effects depending on
tissue context, cell type, and/or activation of specific receptors
(cannabinoid receptors or alternative molecular targets). Also,
previous reports have provided evidence that a bidirectional

modulation exists between the ECS and NO, and this crosstalk
is extremely important since alterations in one or both
systems would impact on cellular homeostasis or could trigger
a pathological condition. A comprehensive review of these
interactions is well described in Lipina and Hundal (2017).

Regulation of NO production by the ECS was demonstrated
in different biological systems such as neurohypophysis (Luce
et al., 2014), retina (Krishnan and Chatterjee, 2015), platelets
(Signorello et al., 2011), heart (González et al., 2011), nephron
(Mukhopadhyay et al., 2010a,b), and in energy metabolism
(Tedesco et al., 2008). Nevertheless, little is known about the
ECS-associated interaction with NO during pregnancy. The
crosstalk between ECS and NO is relevant in reproductive tissues
like bovine epithelial oviduct and spermatozoa (Osycka-Salut
et al., 2012), as well as in murine and rat uterus and decidua
(Vercelli et al., 2009b; Sordelli et al., 2011). NO is involved in
various reproductive events including implantation, regulation
of placental blood flow, and myometrial relaxation. However,
there are limited reports that explain the mechanisms involved
in regulation of ECS on NO production. In murine uterus
incubated with lipopolysaccharide (LPS), AEA mediates LPS-
induced NO production through activation of both cannabinoid
receptors, CB1 and CB2. This lipid mediator increases iNOS
expression and pharmacological blockade of CB1 and CB2
inhibit this effect suggesting the participation of both receptors.
Moreover, LPS modulates the expression of the enzymes involved
in AEA metabolism, producing alterations in AEA levels which
results in different types of responses that affect NO production
(Vercelli et al., 2009a). A similar mechanism was described in
murine decidua, where AEA mediates LPS-induced NO synthesis
through activation of both cannabinoid receptors. In this tissue,
LPS has a deleterious effect on the implantation sites via CB1
receptor and it is believed that this could be associated to

FIGURE 2 | Croostalk between ECS and nitrergic system in normal and preeclamptic placentas. In normal placenta, synthesized AEA from membrane lipids by
NAPE-PLD leave to the trophoblast by simple diffusion or by carrier proteins and interact with CB1 receptor. The activation of CB1 by AEA results in the activation of
NOS activity. Higher FAAH expression and activity contributes to the maintenance of a low AEA “tone” degrading this lipid to arachidonic acid (AA) and ethanolamine
(Et). Inside the trophoblast cells, AEA also could regulate NOS activity through TRPV1 receptor. On the other hand, in preeclamptic placentas, an increased
NAPE-PLD expression associated with lower FAAH expression and activity encourage a raise in AEA “tone” that contributes to a higher NO production at least in
part through CB1 receptor.
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septic abortion (Vercelli et al., 2009b). Furthermore, during the
implantation process in rat uterus, AEA modulates NOS activity
and NO production on implantation and inter-implantation sites
in a specific manner, activating CB1 and/or CB2 depending
on the presence or absence of the blastocyst (Sordelli et al.,
2011).

The ECS regulates the homeostasis through a wide variety
of mechanisms. It facilitates the intracellular communication
between different cell types and contributes to maintaining the
balance in the body. The placental abnormal expression of the
ECS has been associated which serious pregnancy complication
such as spontaneous miscarriage (Trabucco et al., 2009) and
preterm birth (Sun et al., 2016).

Additionally, it was demonstrated that uterine deregulation
of the ECS increases the levels of prostaglandins contributing to
the mechanism by which infection causes preterm birth (Bariani
et al., 2015). In this animal model, resveratrol administration
prevented the changes in the uterine endocannabinoid profiling
altered by LPS and diminished iNOS expression and NOS
activity evidencing tocolytic effects (Bariani et al., 2017).
Additionally, the loss of CB1 receptor has been linked to this
pathology (Wang et al., 2008) while others demonstrated that
THC has a preventive effect on preterm delivery in a LPS-
induced murine model, suggesting the contribution of NO
coupling through the CB1 receptor (Asghari-Roodsari et al.,
2010).

Endocannabinoids have also been implicated in blood
pressure regulation (Pacher et al., 2005). These lipid mediators
can cause vasodilation through CB1, TRPV1, and NO-
mediated or NO-independent mechanisms (Pacher and
Steffens, 2009). Anandamide exerts its vasorelaxant effect on
endothelium by upregulating the expression and activity of
the inducible NO synthase (NO-mediated pathway) (Randall
et al., 2002; Cella et al., 2008). Although there is no direct
correlation between AEA serum levels and blood pressure,
given these results it is possible to speculate that the decrease
in AEA levels observed in preeclamptic pregnant woman
(Molvarec et al., 2015) could contribute to their increase
in blood pressure, which is a crucial factor characteristic
of PE.

In rat placenta, a report from our laboratory demonstrates
that AEA exerts a dual effect on NO production depending
on which receptor is activated. While activation of TRPV-1
receptor stimulates NO production, the action of AEA on CBs
decreases NOS activity, suggesting that AEA acts as a differential
fine-tuning regulator of NO during pregnancy (Cella et al.,
2008).

In fact, although AEA activates TRPV-1, the concentration
required is higher than that needed for CB1 activation (Ross,
2003). On the other hand, an opposite effect is observed in
human tissues. Interestingly, in human placenta at term both
endogenous and exogenous AEA increase NOS activity through
CB1 receptor (Aban et al., 2013). It is important to highlight that
the activation of different receptors induces opposite responses,
and this effect could be associated to changes in ECS which
cause an appropriate AEA “tone”, contributing to trigger one or
other type of response. We speculate that the differences observed

between rat and human placentas concerning to the effect of
AEA on NOS activity may be due to the different gestational
times analyzed, activation of different signaling pathways of CBs,
and also to the expression of TRPV-1 that changes at the end of
pregnancy.

In pathological conditions like PE, a higher basal NOS activity
was observed in comparison to healthy normal samples. This
observation, together with the altered expression pattern of the
ECS metabolic enzymes, could result in higher AEA levels,
which positively stimulate NOS activity and NO production
(Aban et al., 2013) (Figure 2). Additionally, preliminary results
obtained in our laboratory suggest that changes in the expression
of some components of the ECS in human laboring placentas
at term also modify NOS activity during labor (unpublished
data).

Altogether, the results discussed in this review indicate that
either the activation or the inhibition of the ECS can alter the
production of NO, leading to beneficial or prejudicial biological
responses depending on the cell type. Because the ECS and NO
signaling are involved in the modulation of relevant aspects
of placental physiology such as vasodilatation and placental
blood flow, it is crucial for the tissues to keep their levels
acutely regulated. Thus, it is expected that a crosstalk between
these systems may contribute to the maintenance of the tissue
homeostasis.

Given the relevance of the nitrergic signaling and the ECS
in the development of placenta, this review may contribute to
identify novel targets for the treatment of placental diseases such
as PE.

SUMMARY

In order to understand the functionality of the placenta, we
must take into account the complexity of the events that occur
in this organ. In this review we have focused and discussed
about the importance of ECS and NO in the physiological
behavior of normal and pathological placentas. The ECS acts
as a regulator of nitrergic system, modulating NO levels. Since
NO is the main vasodilator in human placenta implicated in
modulation of blood flow, alterations in this mediator may
modify placental functions and can be associated to pathological
conditions of pregnancy like PE. Herein we summarize recent
experimental findings that support the importance of a crosstalk
between AEA and NO and the contribution of CB1 signaling
in placental development in normal and pathological conditions
of pregnancy. Altogether this evidence proposes the ECS as a
part of a relevant mechanism of the placenta and may serve as a
possible pharmacological target given the relevance of this system
in the regulation of NO and, consequently, in placental vascular
dysfunction.
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