
REVIEW
published: 03 December 2018

doi: 10.3389/fphys.2018.01731

Frontiers in Physiology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 1731

Edited by:

Vijaya Iragavarapu-Charyulu,

Florida Atlantic University,

United States

Reviewed by:

Alexander Dietrich,

Ludwig Maximilian University of

Munich, Germany

Tim Murphy,

University of New South Wales,

Australia

*Correspondence:

Abdel-Majid Khatib

majid.khatib@inserm.fr

Juan A. Rosado

jarosado@unex.es

†These authors have contributed

equally to this work

‡These authors share senior

authorship

Specialty section:

This article was submitted to

Vascular Physiology,

a section of the journal

Frontiers in Physiology

Received: 23 June 2018

Accepted: 16 November 2018

Published: 03 December 2018

Citation:

Smani T, Gómez LJ, Regodon S,

Woodard GE, Siegfried G, Khatib A-M

and Rosado JA (2018) TRP Channels

in Angiogenesis and Other Endothelial

Functions. Front. Physiol. 9:1731.

doi: 10.3389/fphys.2018.01731

TRP Channels in Angiogenesis and
Other Endothelial Functions
Tarik Smani 1,2†, Luis J. Gómez 3†, Sergio Regodon 3, Geoffrey E. Woodard 4,

Geraldine Siegfried 5, Abdel-Majid Khatib 5*‡ and Juan A. Rosado 6*‡

1Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain,
2CIBERCV, Madrid, Spain, 3Department of Animal Medicine, University of Extremadura, Cáceres, Spain, 4Department of

Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, 5 INSERM U1029, University of

Bordeaux, Bordeaux, France, 6Cell Physiology Research Group, Department of Physiology, University of Extremadura,

Cáceres, Spain

Angiogenesis is the growth of blood vessels mediated by proliferation, migration, and

spatial organization of endothelial cells. This mechanism is regulated by a balance

between stimulatory and inhibitory factors. Proangiogenic factors include a variety of

VEGF family members, while thrombospondin and endostatin, among others, have been

reported as suppressors of angiogenesis. Transient receptor potential (TRP) channels

belong to a superfamily of cation-permeable channels that play a relevant role in a

number of cellular functions mostly derived from their influence in intracellular Ca2+

homeostasis. Endothelial cells express a variety of TRP channels, including members

of the TRPC, TRPV, TRPP, TRPA, and TRPM families, which play a relevant role in a

number of functions, including endothelium-induced vasodilation, vascular permeability

as well as sensing hemodynamic and chemical changes. Furthermore, TRP channels

have been reported to play an important role in angiogenesis. This review summarizes the

current knowledge and limitations concerning the involvement of particular TRP channels

in growth factor-induced angiogenesis.
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THE ANGIOGENIC PROCESS

The endothelium is a monolayer of endothelial cells (ECs) that line the internal surface of the
vascular wall. In addition to serve as a barrier between circulation and the vascular smooth muscle
cells, the endothelium plays a relevant role sensing hemodynamic and chemical changes in blood,
regulating hemostasis and participating in the formation of new blood vessels, a process called
angiogenesis. To create new vessels, ECs need to proliferate, to migrate, and to be organized in three
dimensions. There are distinct processes of angiogenesis. The most rapid angiogenic mechanism is
known as intussusception. Common in vascular remodeling during development, intussusception
is the splitting of a preexisting vessel into two new smaller vessels. This occurs by penetration
of smooth muscle cells through the endothelial cell layer (Burri et al., 2004). The formation of
new vessels in adult during both physiological and pathological angiogenesis was also attributed to
circulating bone marrow—derived endothelial precursor cells (EPCs). Although EPCs are mainly
found in active sites of angiogenesis following a chemotactic signal (Patenaude et al., 2010), these
cells act as collaborator cells in close proximity to the endothelium and are not incorporated into the
vessel (Grunewald et al., 2006). Other angiogenicmechanisms occur during sprouting angiogenesis.
Indeed, special ECs of a preexisting vessel acquire the capacity to invade the surrounding tissue
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by forming an angiogenic sprout. The later is composed of
leading cells known as tip cells and trailing stalk cells. These
cells are required for the orientation and growth toward
the source of an angiogenic factor (Gerhardt and Betsholtz,
2005). As soon as two sprouts anastomose, sprouting is
accomplished by lumen formation and the initiation of blood
circulation (Fantin et al., 2010). The maturation of newly formed
sprouts into differentiated blood vessels requires the recruitment
of mural cells, the development of the surrounding matrix
and specialization of ECs in organ-specific manner. Pericytes
participate in the stabilization of the newly formed blood vessels
through direct physical contact and paracrine signaling.

Angiogenesis is regulated by a balance between stimulatory
and inhibitory factors. When this balance shifts in favor of
positive stimuli the “angiogenic switch” occurs (Hickey and
Simon, 2006). To date several negative regulators of angiogenesis
have been identified, however little is known about their exact
role during physiological angiogenesis. Among these regulators,
thrombospondin, previously reported to be secreted by epithelial
cells, was found to inhibit tumor growth angiogenesis (Henkin
and Volpert, 2011). Lately other anti-angiogenesis agents were
also identified including endostatin, tumstatin, vasostatin, and
lately anti-vascular endothelial growth factor (VEGF) (Norden
et al., 2009). In the adult, under physiological conditions
blood ECs are quiescent due to the increased levels of anti-
angiogenic factors (thrombospondin and endostatin) compared
to proangiogenic forces, such as the VEGF-A, placental growth
factor (PlGF), platelet-derived growth factor (PDGF), and others.
During pathological situations, including carcinogenesis and
chronic inflammation, angiogenic factors are upregulated, and
become more prominent than anti-angiogenic agents.

VEGF FAMILY MEMBERS AND THEIR
RECEPTORS

The growth factors VEGFs, PDGF-BB, and PlGF are all grouped
in the VEGF superfamily (McDonald and Hendrickson, 1993),
and contain a cystine knot motif in their amino acid sequence.
In mammals five VEGF members have been identified, namely
VEGF-A, -B, -C, -D, and PlGF (McDonald and Hendrickson,
1993) (Figure 1). These growth factors mediate their function
on vascular and lymphatic ECs through their cognate receptors
VEGFR-1, -2, and -3 and the NP co-receptors. VEGF-A is able
to activate both VEGFR-1 and VEGFR-2, whereas VEGF-B and
PlGF are selective ligands for VEGFR-1 (Takahashi and Shibuya,
2005). VEGF-C and -D are the only known ligands for VEGFR-
3 and are also able to activate VEGFR-2 (Tammela et al., 2005).
The different expression of these receptors in various tissues
seemed to be responsible for the relatively specific function of
their ligands. Indeed, VEGFR-1 and VEGFR-2 are mainly found
in vascular ECs, VEGFR-3 is largely restricted to lymphatic
endothelium. Thus, according to their affinities for VEGFR-1
and -2, VEGF-A, -B, and PlGF exert angiogenic activities, while
VEGF-C and -D predominantly act as lymphangiogenic growth
factors by activating VEGFR-3. The interaction of VEGF with
VEGFR (Jakobsson et al., 2006) leads to receptor dimerization

leading to conformational changes and phosphorylation of their
tyrosine residues, which is important for downstream signal
mediators activation. The activation cascades outcome is the
elaboration of various VEGF biological responses such as cell
proliferation, survival, migration and ECs arrangement to form
vascular tubes. The activation of VEGFR can be repressed
by its dephosphorylation mediated by various phosphotyrosine
phosphatases (PTPs), including density enhanced phosphatase 1
(DEP1) and vascular endothelial PTP (VEPTP) (Kappert et al.,
2005).

VEGFR1
VEGFR1 (also known as Fms-like tyrosine kinase 1, Flt1,) binds
VEGF-A, VEGF-B, and PlGF (Wiesmann et al., 1997). Activation
of this receptor was found to induce various kinases including
phosphoinositide 3′ kinase (PI3K)/protein kinase B (PKB/AKT),
extracellular signal-regulated kinase (ERK)/mitogen-activated
protein kinase (MAPK), and the stress kinase p38MAPK
(Tchaikovski et al., 2008). VEGFR1 exists as a soluble form
(sFlt1) (Kendall and Thomas, 1993), that exhibits higher affinity
for VEGFA than VEGFR2. As a result, sFlt1 operates as a
negative regulator of angiogenesis by reducing VEGFA/VEGFR2
interaction (Ambati et al., 2006).

VEGFR2
VEGFR2 [KDR (kinase insert domain receptor, human) and
Flk1 (fetal liver kinase-1, mouse)]. Actively involved in vascular
permeability, this receptor is crucial for ECs function during
development. VEGFR2 is expressed most prominently in
vascular ECs, with highest expression levels during embryonic
vasculogenesis and angiogenesis (Millauer et al., 1993). VEGFR2
expression was also found increased during pathological
processes associated with neovascularization such as tumor
angiogenesis (Plate et al., 1993). VEGFR2 binds VEGF-A via
its extracellular Ig-like domains 2 and 3, but with a lower
affinity than VEGFR1 (Fuh et al., 1998). In contrast to VEGFR1,
VEGFR2 binds also VEGF-C and VEGF-D (McColl et al.,
2003) and represses binding to VEGFR3, which results in the
inhibition of the proliferation of lymphatic ECs (Albuquerque
et al., 2009). Interaction of VEGF-A and VEGFR2 promotes
receptor dimerization (Yang et al., 2010), allowing receptor
activation leading to several signaling mediators activation like
PLCγ (Cunningham et al., 1997), and the adapter proteins SHB
and SCK (Warner et al., 2000). These signals are required for
various EC functions including proliferation, cell survival and
migration, and vascular permeability.

VEGFR3
(also known as Flt4) binds VEGF-C and VEGF-D. Produced as
precursor proteins, when proteolytically cleaved show increased
affinity for both VEGFR2 and VEGFR3 (Joukov et al., 1997).
VEGF-C andVEGFR3 interaction is critical for lymphendothelial
function. Expressed in vascular ECs VEGFR3 is up-regulated
during active angiogenesis. Binding of VEGF-C or VEGF-D
to VEGFR3 leads to various kinases activation in VEGFR3
(Dixelius et al., 2003) and the activation of the PI3K/AKT
pathway (Mäkinen et al., 2001), critical in lymphendothelial cell

Frontiers in Physiology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 1731

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Smani et al. TRPs in Angiogenesis

FIGURE 1 | Schematic representation of various pathways activated by the VEGF-family members. By binding to their receptors (VEGFR1-3), indicated VEGF

members activate several intracellular pathways involved in a range of cellular functions leading to angiogenesis and lymphangiogenesis.

migration and sprouting of lymph EPCs and development of the
lymphatic system (Karkkainen et al., 2004). Furthermore, VEGF-
C-mediated AKT activation is required for embryonic and adult
lymphangiogenesis (Zhou et al., 2010).

Compelling evidence demonstrated that VEGFRs increase
intracellular Ca2+ concentration ([Ca2+]i), through the
activation of TRP and other Ca2+ channels, which modulates
signaling pathways leading to angiogenesis (Simons et al., 2016).
For instance, VEGF-A enhances inositol 1,4,5-trisphosphate
(IP3) generation, which results in Ca2+ store depletion and
the activation of store-operated Ca2+ entry in ECs and EPCs
(SOCE) (Faehling et al., 2002; Moccia et al., 2014a). Consistent

with this, SOCE inhibition or removal of extracellular Ca2+

has been reported to prevent VEGF-mediated Ca2+ oscillations
in endothelial colony forming cells (Dragoni et al., 2011).
Moreover, TRPC6 has been found to mediate VEGF-induced
Ca2+ influx in microvessel ECs (Pocock et al., 2004), and both
TRPC3 and TRPC6 mediate Ca2+ entry by VEGF in human
microvascular ECs in vivo (Cheng et al., 2006). Furthermore,
Mg2+ influx through TRP family members, such as TRPM6 and
TRPM7, has been provided to be relevant for EC proliferation
and angiogenesis (Nilius et al., 2003). TRP channels and VEGF
signaling exhibit a cross relationship, so that VEGFRs activation
has been reported to induce NFκB-mediated activation of
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transcription of certain TRP genes (Santoni et al., 2011)
(Figure 1), while Ca2+ influx via TRP channels has been found
to stimulate the transcription of genes encoding different
growth factors, including VEGF and PDGF, in ECs (Yao and
Garland, 2005).Therefore, TRP channels play a relevant role in
VEGF-mediated signaling in ECs, as summarized below.

OVERVIEW OF THE TRP SUPERFAMILY OF
CATION CHANNELS

In 1969, Cosens andManning reported their findings concerning
a blind mutant strain of Drosophila melanogaster whose
external appearance and histological sections of retinal structure
were indistinguishable from the wild-type strain but exhibited
abnormal electroretinogram (Cosens and Manning, 1969).
Further studies revealed that while short stimuli induce a similar
response in the wild-type and mutant fly, the response in the
mutant fly to longer light stimulation was characterized by
a marked decay in the receptor potential in the presence of
illumination. The trp mutant, called so due to the transient
receptor potential in response to light found in the retinular
cells of the mutant strain, as compared to the more sustained
receptor potential recorded in the wild-type fly, exhibited a defect
in the process that links excitation to the membrane conductance
(Minke et al., 1975; Minke, 1977). Later on, the light-sensitive
conductance in Drosophila photoreceptors was found to be
mediated by the Na+ and Ca2+-permeable channel trp and its
homolog trpl (Hardie and Minke, 1992; Phillips et al., 1992), and
comprises two distinct currents: one is conducted by the highly
Ca2+ selective trp channel while the second is conducted by the
trpl channel, which is supposed to be responsible for the residual
light-sensitive current in the trp mutants (Katz et al., 2017).

The first mammalian homolog ofDrosophila trp was identified
in mouse in 1995 (Petersen et al., 1995) and two independent
groups identified the first human transient receptor potential
(TRP) channel, called TRPC1, (Wes et al., 1995; Zhu et al., 1995).
Since the discovery of the first TRP channel in mammalian cells
28 TRP genes have been identified, which can be grouped into
three subfamilies closely related to Drosophila trp (TRPC, TRPV,
and TRPM), two more distantly related subfamilies (TRPP and
TRPML), and a less related TRPN group expressed in flies and
worms (Montell et al., 2002; Salido et al., 2011).

All TRP channels show a common architecture. They are
membrane proteins with six putative transmembrane domains
(TM1–TM6) and present a cation-permeable pore region created
by a loop between TM5 and TM6 (Figure 2). The N- and C-
termini are located intracellularly and show a great variability
both in length and amino acid sequence among the different
TRP members. The N- and C- terminal sequences include a
variety of functional domains (Ramsey et al., 2006), including:
(1) a variable number of ankyrin repeats (present in the members
of TRPA, TRPC, TRPV, and TRPN subfamilies) that have been
found to play a relevant role in channel sensing and gating
(Gaudet, 2008); (2) TRPC, TRPM and TRPN exhibit a “TRP
domain” sequence adjacent to the TM6, which shows highly
conserved sequences called TRP boxes 1 and 2, and has been

shown to be required for channel tetramerization and function
(Venkatachalam and Montell, 2007). Similarly, the TRPV1,
TRPA1, and TRPP channels show a TRP-like domain, which
shows a similar α-helical configuration and function to TRP
domains (García-Sanz et al., 2004; Zheng et al., 2018); (3) an
α-kinase domain present in TRPM6 and TRPM7 that regulates
channel function and sensitivity to Mg2+·ATP (Clark et al., 2008;
Zhang et al., 2014); (4) an ADPR hydrolase domain (Nudix-like
domain or NUDT9 homology domain) in TRPM2, which has
been reported to sense ADP-ribose concentration and convey this
information to the cell by activation of cation entry (Scharenberg,
2005); (5) a calmodulin- and IP3 receptor (IP3R)-binding site
(CIRB, present in TRPC, members), a domain that has been
reported to be involved in the modulation of TRPC6 channel
function by IP3R and Ca2+/calmodulin (Dionisio et al., 2011)
and to modulate plasma membrane location of TRPC3 channels
via an IP3R-independent pathway (Wedel et al., 2003); (6) an
EF-hand Ca2+-binding domain (present in members of the
TRPP, TRPML, and TRPA1) (Zurborg et al., 2007); (7) a large
extracellular loop between TM1 and TM2 in TRPP and TRPML,
which has recently been reported to play an essential role in
channel assembly and function (Salehi-Najafabadi et al., 2017);
and, (8) coiled-coil domains located in the C-terminal region
(for TRPV, TRPM, TRPA1, and TRPP) or in the N- and C-
terminal domains (for TRPC) (García-Sanz et al., 2004; Li et al.,
2011a) (Figure 2), which have been found to be involved in
subunit-subunit interaction (Launay et al., 2004), as well as in
the interaction of TRPs with channel modulators, such as the
interaction of TRPC proteins with the endoplasmic reticulum
Ca2+ sensor, STIM1 (Lee et al., 2014).

Mammalian TRP channels are permeable to monovalent
and divalent cations, with a permeability for Ca2+ over Na+

(ratio PCa/PNa) that ranges from channels that are selective for
monovalent cations, such as TRPM4 and TRPM5, to highly
Ca2+ selective channels, including TRPV5 and TRPV6, which
exhibit a ratio PCa/PNa over 100 (Freichel et al., 2012). It has also
been reported that TRP channels are permeable to metal ions,
such as manganese, magnesium, zinc, barium, strontium, nickel
or cobalt, and, certain TRP members exhibit a greater relative
permeability for these ions than for Ca2+ (for an extensive review
see Bouron et al., 2015).

TRP channels have been reported to be activated and/or
modulated by a number of chemical and physical stimuli, such
as extracellular and intracellular ions (including H+, Ca2+ and
Mg2+) (Liman, 2007; Zhang et al., 2014) and ligands, both
intracellular molecules [such as diacylglycerol (Hofmann et al.,
1999), phosphoinositide-4,5-bisphosphate (PIP2) (Nilius et al.,
2006; Jardín et al., 2008a)] and exogenous natural and synthetic
ligands (for a review see Harteneck et al., 2011; Vetter and Lewis,
2011), temperature and mechanical stretch (Venkatachalam and
Montell, 2007). Furthermore, TRPC channels have been reported
to be activated by intracellular Ca2+ store depletion via the
interaction with STIM1 and Orai1, the key elements for the
activation of store-operated Ca2+ entry (SOCE) (Zhang et al.,
2005; Feske et al., 2006). Ca2+ entry through SOCE is conducted
by two types of channels: the highly Ca2+ selective CRAC (Ca2+

release-activated Ca2+) channel, involving Orai1 subunits, and
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FIGURE 2 | Molecular structure and function of TRP channels. (A) Schematic representation of TRPC1 depicting functionally relevant domains. The cytoplasmic N-

and C-termini of each TRP family contain different structural and functional domains as indicated. (B) Cartoon representing the topology of a TRP monomer within the

plasma membrane, activation and functions associated to TRP channels in endothelial cells. The protein exhibits six transmembrane domains (TM1-TM6) with the

pore located between transmembrane domains 5 and 6, and both N-terminal and C-terminal domains located in the cytosol. Endothelial TRP channels can be

activated by receptor occupation, which, in turn, leads to the activation of phospholipase C and the generation of DAG and inositol 1,4,5-trisphosphate (IP3). DAG is

an endogenous activator of certain TRP channels and Ca2+ store depletion results in STIM1-dependent activation of TRPC1. Furthermore, TRP channels in

endothelial cells can be activated by shear stress and the different EETs or their expression can be upregulated by hypoxia. Calcium influx via TRP channels is involved

in Ca2+ store refilling, activation of Ca2+-binding proteins (CBP), cytoskeletal remodeling and the regulation of vascular permeability as well as the exocytosis of

smooth muscle cell relaxing factors.

the less selective store-operated Ca2+ (SOC) channels (Desai
et al., 2015). Despite the participation of TRPC channels in SOCE
has been a matter of intense debate in the past, there is now
a general consensus that TRPC1 is a component of the SOC
channels, forming a ternary complex with Orai1 and STIM1,
which confers store depletion sensitivity to SOC channels (Huang
et al., 2006; Jardin et al., 2008b; Desai et al., 2015; Ambudkar et al.,
2017).

TRP CHANNELS IN THE ENDOTHELIUM

ECs have been reported to express at the transcript and/or protein
level most of the mammalian TRP isoforms identified, including
TRPC1, 3, 4, 5, 6, and 7, TRPV1, 2, and 4, TRPP1 and 2, TRPA1
and TRPM1, 2, 3, 4, 6, 7, and 8, although differences in the
expression profile have been reported for different vasculatures
and species (Wong and Yao, 2011; Cao et al., 2018).

TRP channels contribute to the Ca2+ influx induced
by a plethora of vasoactive agents, including thrombin,
ATP, angiotensin II or bradykinin (Bishara and Ding, 2010;
Sundivakkam et al., 2013). Ca2+ entry through TRP channels
has been found to be involved in the activation of a number
of signaling pathways and cellular functions. Among the major
functional roles of ECs is the modulation of the vascular tone
through the release of a variety of factors that induce relaxation
of smooth muscle cells. TRP channels have been reported to
play an important role in this process, for instance, irisin,
an exercise-induced myokine, has been reported to induce
vasodilatation of rat mesenteric arteries through the activation
of endothelial TRPV4 channels, which are involved in Ca2+

influx induced by irisin in primary cultured rat mesenteric
artery ECs (Ye et al., 2018). Furthermore, TRPV4-deficient
mice exhibit attenuated acetylcholine-induced endothelium-
dependent vasodilatation associated to a reduced nitric oxide
(NO) release (Zhang et al., 2009).
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TRP channels have also been found to play a relevant role
in vascular permeability, a cellular process that is based on
transcellular and paracellular pathways, being the later regulated
by the balance between cell-cell adhesive forces and contractile
forces generated by the endothelial cytoskeleton (Wong and
Yao, 2011). Probably, one of the most widely investigated
TRP channels for its implication in endothelial permeability is
TRPC6, which has been shown to be involved in lung ischemia-
reperfusion-induced edema in mice (Weissmann et al., 2012), as
well as in endotoxin-induced lung vascular permeability (Tauseef
et al., 2012). TRPC1 and TRPC4 have also been found to be
involved in vascular permeability. Expression of TRPC1 induced
by TNFα has been reported to enhanced Ca2+ influx and vascular
permeability (Paria et al., 2003) and TRPC4-deficient mice where
thrombin-evoked Ca2+ signals and endothelial permeability were
reduced (Tiruppathi et al., 2002). Other TRP channels, such
as TRPV4 or TRPM4, have been reported to play a relevant
role in vascular permeability. In isolated rat lung, activation
of TRPV4 by 4α-phorbol 12,13-didecanoate (4α-PDD), as well
as by 5,6- or 14,15-epoxyeicosatrienoic acids, has been found
to increase lung endothelial permeability in a Ca2+ entry-
dependent manner, which indicates that TRPV4 is involved in
the disruption of the alveolar septal barrier. Consistent with
this, the effect of the TRPV4 agonists was impaired in TRPV4-
deficient mice (Alvarez et al., 2006). TRPM4 has been reported
to be up-regulated in the ECs of blood vessels following spinal
cord injury, which has been associated to secondary hemorrhage
and progressive hemorrhagic necrosis (Gerzanich et al., 2009).
Although the mechanism underlying the role of TRPM4 in
vascular permeability remains unclear, there is a body of evidence
supporting that TRPM4 expression is involved in post-trauma
secondary hemorrhage, i.e., after spinal cord injury in rats, in vivo
gene suppression using Trpm4 antisense was found to preserve
capillary integrity and impair secondary hemorrhage, and similar
results were observed in TRPM4-deficient mice (Gerzanich et al.,
2009). Furthermore, 17β-estradiol, which attenuates TRPM4 and
sulfonylurea receptor-1, has been reported to suppress disruption
of the blood-spinal cord barrier and attenuate secondary
hemorrhage after spinal cord injury (Lee et al., 2015).

Finally, TRP channels have also been reported to play a
functional role in the ability of the ECs to sense hemodynamic
and chemical changes. Flow shear force results in rises in
cytosolic Ca2+ concentration ([Ca2+]i), which, in turn, lead to
the release of vasodilating factors. A number of TRP channels are
sensitive to flow shear stress, such as TRPV4. It has been reported
that flow shear stress induces relaxation of the carotid artery, an
effect that is mimicked by the TRPV4 activator 4α-PDD and is
prevented by the non-selective TRPV4 inhibitor ruthenium red
(Köhler et al., 2006). The involvement of TRPV4 in endothelial-
dependent vascular dilation was confirmed in TRPV4-deficient
mice, which exhibit attenuated response to stimulation with
endothelium-derived hyperpolarizing factor (Loot et al., 2008)
and, more recently, with studies reporting that TRPV4-TRPC1
heteromeric channels mediate flow shear-induced endothelial
Ca2+ influx by a mechanism that might involve an upstream
mechanosensitive pathway including phospholipase A2 and
cytochrome P450 epoxygenase activity (Loot et al., 2008; Ma

et al., 2010). The TRPP1-TRPP2 complex has also been suggested
to play a role in flow-induced ECs-mediated vascular dilation,
as Ca2+ influx and NO production in response to flow is
significantly reduced by TRPP1 or TRPP2 expression silencing
(Nauli et al., 2008; AbouAlaiwi et al., 2009); although the
mechanism underlying the activation of TRPP2-mediated Ca2+

entry by flow shear forces in ECs remains unclear. A more recent
study has identified the formation of a heteromeric channel
including the flow-sensitive TRPV4 and both TRPC1 and TRPP2,
which mediates the flow-induced Ca2+ influx in native vascular
ECs (Du et al., 2014). TRP channels also play a relevant
role sensing chemical blood components. For instance, TRPC3,
TRPC4, TRPM2, TRPM7, and TRPA1 have been reported to
be activated by oxidative stress, leading to Na+ and Ca2+

entry and, thus, mediating the vascular effects associated to
reactive oxygen species (ROS) (Wong and Yao, 2011). On the
other hand, in addition to sensing ROS, TRPA1 channels have
been found to detect molecular oxygen and are essential for
hyperoxia- and hypoxia-induced vagal responses (Takahashi
et al., 2011). The mechanistic details of the activation of TRPA1
by O2 as well as the transduction pathway remain unclear;
however, in cerebral arteries, TRPA1 in the endothelium ismostly
located within myoendothelial junction sites, where TRPA1-
mediated Ca2+ influx is associated to endothelium-dependent
smooth muscle cell vasodilatation through the activation of
Ca2+-activated K+ channels (KCa3.1), which, in turns, results
in ECs hyperpolarization that is conducted via myoendothelial
gap junctions to hyperpolarize the adjacent smooth muscle cell,
resulting in myocyte relaxation (Earley, 2012).

TRP CHANNELS IN ANGIOGENESIS

TRP channels have also been found to play a relevant
role in angiogenesis. Compelling evidence demonstrated that
angiogenic growth factors activate TRP channels, causing a
subsequent rise in endothelial [Ca2+]i, which modulates the
signal transduction pathways leading to angiogenesis (Kwan
et al., 2007). It is known that both tumor and physiological
angiogenesis are initiated in hypoxic environment principally
due to secretion of several growth factors, such as VEGF.
These growth factors stimulate proliferation, migration, and tube
formation of ECs, resulting in the generation of new capillary
(Kohn et al., 1995). Most studies used particularly VEGF to
investigate neovascularization in different experimental model.
Briefly, tyrosine phosphorylation of VEGFR triggers activation of
phospholipase C (PLC), inositol 1,4,5-triphosphate (InsP3) and
diacylglycerol (DAG) generation. The consequent Ca2+ entry
following the classic Ca2+ release modulates signaling pathways
leading to angiogenesis (Simons et al., 2016). Several reports
demonstrated that VEGF-induced Ca2+ entry through different
isoforms of TRP in several cell types, such as TRPC3 and TRPC6
(Hamdollah Zadeh et al., 2008; Andrikopoulos et al., 2017);
TRPM2 through reactive oxygen generation (Mittal et al., 2015);
or TRPV1 (Garreis et al., 2016). Certainly, in ECs some TRPs
associate to others isoforms forming heteromeric channels (Loot
et al., 2008; Nauli et al., 2008; AbouAlaiwi et al., 2009; Ma et al.,
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2010), however most studies of angiogenesis focused on only one
isoform of TRPs as detailed below.

Role of TRPCs
The participation of TRPC3 in angiogenesis has been
characterized in Human Umbilical Vein ECs (HUVEC)
treated with VEGF. TRPC3 inhibition or its silencing with
siRNA attenuated VEGF activation of ERK1/2 phosphorylation,
and stimulation of [Ca2+]i transients in HUVEC. Additionally,
siRNA of TRPC3 significantly suppressed endothelial tube
formation, an indicator of angiogenesis (Andrikopoulos et al.,
2017). This study suggests that TRPC3 is activated by the
generation of DAG downstream of VEGFR in HUVECs, causing
Na+ influx by subsequent activation of the Na+/Ca2+ exchanger
in reversal mode, contributing ultimately to angiogenesis
(Andrikopoulos et al., 2017). The role of TRPC3 in angiogenesis
has also been evaluated in EPCs (Dragoni et al., 2013). As stated
above, EPCs are adult stem cells having the ability to differentiate
into ECs, and thereby they promote postnatal vasculogenesis
and endothelial repair after vascular intima injury (Djohan et al.,
2018). Molecular and pharmacological inhibition of TRPC3,
using siRNA and Pyr3 respectively, abrogated VEGF-induced
Ca2+ response and inhibited proliferation of EPCs (Dragoni
et al., 2013). The selectivity of Pyr3 on TRPC3 might be
questioned, nevertheless the effect of TRPC3 silencing suggest
that this channels might be relevant for vasculogenesis.

Independently of ECs stimulation with VEGF, silencing
the expression of TRPC3, TRPC4, or TRPC5 also prevented
spontaneous [Ca2+]i oscillations and inhibited tube formation
in human umbilical vein-derived EC line EA.hy926 and
HUVECs (Antigny et al., 2012). A recent study performed
in retina microvascular ECs showed that hypoxia, a potent
trigger of angiogenesis, enhanced the expression of TRPC4,
whose silencing inhibited VEGF-induced ECs proliferation and
migration and in vitro angiogenesis evaluated by tube formation
(Song et al., 2015). More recently, silencing of TRPC4 attenuated
oxLDL-induced human coronary ECs proliferation; migration
and in vitro angiogenesis-tube formation on matrigel, suggesting
that suppression of TRPC4 might be an alternative therapeutic
strategy for atherosclerotic neovascularization (Qin et al., 2016).

TRPC6 seems also critical for angiogenesis and Ca2+ entry
in response to VEGF and 1-oleoyl-2-acetyl-sn-glycerol (OAG,
a membrane-permeant DAG analog) in human microvascular
ECs and in HUVEC. Experiments using a dominant-negative
mutant of TRPC6, made with three mutations in the pore
region, reduced ECs proliferation, migration and sprouting in
matrigel assay (Hamdollah Zadeh et al., 2008). Similar results
were observed in HUVEC, where a dominant-negative form of
TRPC6 inhibited VEGF-induced cation current, HUVEC growth
and proliferation, as well as VEGF-evoked capillary formation in
vitro (Ge et al., 2009). The role of TRPC6 in ECs proliferation and
tube formation was also observed when 11,12-EET (11,12-cis-
epoxyeicosatrienoic acid) was used to stimulate ECs (Ding et al.,
2014).

Other studies have focused on the role of TRPC1 in
angiogenesis. Indeed, a proangiogenic role for TRPC1 has been
described in vivo in zebrafish, where authors have identified

severe angiogenic defects in intersegmental vessel sprouting after
knockdown of TRPC1 (Yu et al., 2010). Furthermore, TRPC1
likely controls cell proliferation and tubulogenesis in normal
EPCs and in those isolated from peripheral blood of tumor
patients (Moccia et al., 2014b). Recently, in vivo matrigel assay
confirmed that EPCs isolated from TRPC1 knockout mice has
substantially reduced functional activities, including migration
and tube formation, indicating that TRPC1 plays an important
role in angiogenesis (Du et al., 2018). Nevertheless, other studies
suggested that TRPC1 is not relevant for angiogenesis. The use of
siRNAs, dominant-negative mutants or neutralizing antibodies,
failed to demonstrate that TRPC1 is required for VEGF-induced
Ca2+ increase in HUVECs and tube formation (Li et al., 2011b;
Antigny et al., 2012). Interestingly, TRPC1 knockout mice
developed normal vasculature (Schmidt et al., 2010). Therefore,
more investigations are still required to clarify the real role of
TRPC1 in the angiogenic processes.

Role of TRPVs
TRPV4 has long been known to regulate angiogenesis and
neovascularization by stimulating ECs proliferation and
migration as reviewed recently (Moccia, 2018). TRPV4 plays
an important role in cytoskeletal reorganization and changes in
cell adhesion, which coordinate ECs proliferation and motility
via mechanotransduction (Köhler et al., 2006; Reddy et al.,
2015; Adapala et al., 2016; Thoppil et al., 2016). TRPV4 is
dramatically up-regulated in breast tumor-derived ECs, and is
required for arachidonic acid (AA)-evoked Ca2+ entry, which
increase the rate of ECs migration and motility as compared to
control ECs (Fiorio Pla et al., 2012). Moreover, the absence of
TRPV4 in knockout mice was associated with an increase in basal
Rho/Rho kinase activity, significant increase in ECs proliferation,
migration, and abnormal tube formation in vitro (Thoppil et al.,
2016). Interestingly, another study from the same group
confirmed that overexpression or pharmacological activation
of TRPV4, using GSK1016790, restored the aberrant ECs
mechanosensitivity, migration and normalized tube formation
in matrigel assay. TRPV4 activation and overexpression likely
normalized the abnormal angiogenesis evoked by tumor ECs
through the inhibition of the exacerbated Rho activity (Adapala
et al., 2016). Therefore, TRPV4 activation seems relevant to
normalize tumor angiogenesis via modulation of Rho/Rho
kinase pathway.

TRPV1 has been found to be pro-angiogenic. Intraperitoneal
injection of mice with a TRPV1 ligand, evodiamine, promoted
vascularization in matrigel plugs used in vivo in wild type mice.
In contrast, the induced angiogenesis was markedly reduced
in TRPV1 knockout mice (Ching et al., 2011). Similarly, using
knockout mice TRPV1 appears crucial for 14,15-EET-induced
Ca2+ influx, NO production and angiogenesis evaluated by
tube formation and in vivo matrigel assays (Su et al., 2014a).
In addition, in human microvascular ECs TRPV1 activation is
involved in simvastatin-activated Ca2+ influx, which induced the
activation of CaMKII signaling and enhanced the formation of
TRPV1–eNOS complex, leading to NO production and in vitro
angiogenesis-tube formation (Su et al., 2014b).
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Role of TRPMs
TRPM2, TRPM4, and TRPM7 have also been found to be
involved in angiogenesis (Zhou et al., 2014). Recently, a
study demonstrated that VEGF stimulated ECs migration and
induced ROS-dependent Ca2+ entry through TRPM2 activation.
In addition, they showed that matrigel plugs supplemented
with VEGF injected subcutaneously in TRPM2 knockout mice
presented significantly reduced vessel formation compared to
wild type mice. Using the mouse aortic ring assay, they also
observed defective capillary sprouting and reduced capillary
lengths isolated fromTRPM2 knockoutmouse rings as compared
with WT mice, indicating that TRPM2 was required for
angiogenesis and ischemic neovascularization (Mittal et al.,
2015). Moreover, TRPM4 is upregulated in vascular endothelium
following hypoxia/ischemia in vitro and in vivo, and in HUVECs
following oxygen–glucose deprivation. Pharmacological blocking
of TRPM4, or its silencing with siRNA, enhanced tube formation
on matrigel and improved capillary integrity in vivo (Loh
et al., 2014). Previously, a report demonstrated that silencing of
TRPM7, mimics the effect of Mg2+ deficiency in microvascular
ECs growth and migration, proposing magnesium and TRPM7
as a modulator of angiogenesis (Baldoli and Maier, 2012).

Others TRPs’ Role in Angiogenesis
Little is known regarding the participation of TRPA and TRPP
isoforms in the angiogenic process. Few years ago, TRPA1 was
suggested as the downstream effector for simvastatin—evoked
activation of TRPV1-Ca2+ signaling in ECs, since its inhibition
markedly decreased eNOS activation, NOproduction and in vitro
angiogenesis-tube formation (Su et al., 2014b). The role of TRPA1
was further confirmed using matrigel plugs in vivo in TRPA1
knockout mice, whereby simvastatin—induced angiogenesis was
partially reduced (Su et al., 2014b).

CONCLUSION

ECs activity, such as proliferation, migration, and survival is
required for angiogenesis under both physiological conditions,
(vessel growth and renewal) and pathological conditions,
(cardiovascular diseases and tumors initiation and progression).
Alteration of these functions resulted from exaggerated or
reduced bioavailability of various downstream effectors of VEGF

receptors. For example increased Akt and ERK activation
following sustained VEGFRs-VEGF interaction induces tumor
angiogenesis and growth, whereas, reduced Nitric oxide (NO)
production seemed to cause endothelial dysfunction such as
deficiency in vascular relaxation. It is now evident that TRP
channels are critically involved in physiological and pathological
angiogenic process. By controlling Ca2+ homeostasis, different
TRP isoforms are activated by pro-angiogenic stimuli that evoke
ECs proliferation and migration, as well as the formation of new
capillary derived either from ECs or from EPCs. Nevertheless,
considerable work is needed to fully understand why many TRPs
from different subfamilies are activated by similar pro-angiogenic
stimuli such as VEGFs, and whether these TRPs might associate
between them to promote their angiogenic effect. To the best
of our knowledge, and from the point of view of angiogenesis,
the organization and interactions between closely related TRP
channels have not been addressed. Several questions still remain
unsolved concerning the role or TRP channels in angiogenesis
such as are different TRPs located inmicrodomains with different
VEGF-receptors? Are different Ca2+ signals generated by these
TRP complexes inducing different cellular functions? Further
studies will definitely clarify these and other functional aspects.

In light of the reported findings, the search of selective
pharmacological blockers or activator of TRP channels stands out
among the strategies for obtaining promising molecular drugs
to normalize angiogenesis or for anti-angiogenic therapies to
prevent tumor neovascularization.
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