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Heart contraction vitally depends on tightly controlled intracellular Ca regulation.
Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum
(SR), this organelle plays a particularly important role in Ca regulation. The type
two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular
myocytes. Several cardiac pathologies, including myocardial infarction and heart failure,
are associated with increased RyR2 activity and diastolic SR Ca leak. It has been
suggested that the increased RyR2 activity plays an important role in arrhythmias
and contractile dysfunction. Several studies have linked increased SR Ca leak during
myocardial infarction and heart failure to the activation of RyR2 in response to oxidative
stress. This activation might include direct oxidation of RyR2 as well as indirect
activation via phosphorylation or altered interactions with regulatory proteins. Out of
ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced
state that could be potential targets for redox modifications that include S-nitrosylation,
S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular
mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein
we review the most recent insights into redox-dependent modulation of RyR2 during
oxidative stress and heart diseases.
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EXCITATION-CONTRACTION COUPLING

Regular heart contraction critically depends on precisely-controlled cytosolic Ca regulation during
each cardiac cycle. The sarcoplasmic reticulum (SR) Ca release plays a particularly important role
in activation of myocyte contraction (Zima et al., 2014). During systole, Ca release from the SR
is a result of activation of specialized Ca channels – ryanodine receptors (RyR). These channels
are activated by an inward Ca current via L-type Ca channels (LTCCs) during an action potential
(AP) (Figure 1A). The mechanism of RyR activation by cytosolic Ca is known as Ca-induced Ca
release (CICR) (Fabiato, 1983). In ventricular myocytes, CICR occurs at specialized microdomains
where a T-tubule of the sarcolemma closely approaches a junction of the SR forming the dyad.
The junctional SR membrane contains clusters of RyRs (Franzini-Armstrong et al., 1999; Hayashi
et al., 2009). The activation of a single RyR cluster generates a local increase in cytosolic Ca ([Ca]i)
called Ca spark (Cheng et al., 1993; Figure 1B). The spatio-temporal summation of thousands of
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Ca sparks produces the global Ca transient that initiates
contraction. During diastole, cytosolic Ca is pumped back into
the SR by the Ca-ATPase (SERCA) and extruded from the cell
by the Na-Ca exchanger (NCX) (Bers, 2002). The rate at which
SERCA and NCX remove Ca from the cytosol determines how
quickly cardiac muscle relaxes to allow the heart to fill with blood.

RYANODINE RECEPTOR COMPLEX

Three isoforms of RyR have been identified. The RyR1 isoform
is dominant in skeletal muscles, whereas the RyR2 represents
the cardiac RyRs isoform. The RyR3 isoform is found only
at low expression levels in certain skeletal muscle types and
brain (Lanner et al., 2010; Meissner, 2017). RyR forms a homo
tetrameric assembly comprised of four 560 kDa subunits yielding
a total molecular weight of 2,300 kDa (Van Petegem, 2015). The
RyR2 is not only an ion channel but also a giant scaffolding
protein on which several regulatory proteins and enzymes can be
assembled (Fill and Copello, 2002; Bers, 2004; Figure 1C). RyR2
forms a multimolecular complex with FK506 binding protein
12.6 (FKBP12.6) and calmodulin (CaM) at the cytosolic side.
FKBP12.6 binds to each subunit of RyR2 with high affinity and
stabilizes the channel in closed conformation (Brillantes et al.,
1994; Timerman et al., 1994; Wehrens et al., 2004). Another small
regulatory protein CaM binds RyR with nanomolar affinity, at 1:4
ratio in the absence and presence of Ca (apoCaM and Ca-CaM)
(Meissner, 2017). The effect of CaM on RyR activity is isoform
specific. At free [Ca] > 1 µM CaM inhibits all three isoforms of
RyR, whereas at submicromolar free [Ca] CaM activates RyR1
and RyR3, and inhibits RyR2 (Balshaw et al., 2001; Meissner,
2004). At the luminal side, RyR2 is associated with the complex
consisting of triadin-1, junctin and calsequestrin that act together
as a luminal Ca sensor (Györke et al., 2004). Other reports
suggest RyR2 interactions with junctophilin, homer-1, sorcin
and S100A1 (Song D.W. et al., 2011). Additionally, the RyR2
complex comprises enzymes that regulate the channel activity
through the interplay of phosphorylation and dephosphorylation
by protein kinases and protein phosphatases. Protein kinase A
(PKA) phosphorylates RyR2 at serines 2030 and 2808, whereas
Ca-CaM dependent protein kinase II (CaMKII) phosphorylates
the channel at serine 2814 (Marx et al., 2000; Wehrens, 2004;
Xiao et al., 2006). Phosphorylation can be reversed by associated
with the RyR2 complex protein phosphatases 1 and 2A (PP1 and
PP2A) (Marx et al., 2000).

RYR2-MEDIATED SR Ca LEAK

The majority of SR Ca release occurs during systole via the
mechanism of CICR. During diastole, however, spontaneous
openings of RyR2s can produce SR Ca leak (Shannon et al.,
2003; Zima et al., 2014). At normal physiological conditions, a
large fraction of SR Ca leak occurs as uncoordinated openings
of individual RyR2s or spark-independent Ca leak. This leak
component can serve as an important protective mechanism
against SR Ca overload. (Zima et al., 2010). However, in

pathological conditions associated with increased RyR2 activity,
the majority of SR Ca leak occur in a form of Ca sparks and
Ca waves. By activating the electrogenic NCX, spontaneous
Ca waves can generate delayed afterdepolarizations (DADs), an
effective trigger of cardiac arrhythmias (Pogwizd and Bers, 2004).
Increased diastolic SR Ca leak through RyR2s channel has been
also implicated in the development of several cardiac pathologies,
including heart failure (HF) (Shannon et al., 2003; Kubalova et al.,
2005; Belevych et al., 2007; Bers, 2014). It has been suggested
that SR Ca leak contributes to the depressed Ca transients
and the reduced SR Ca load in HF. The increased RyR2-
mediated Ca leak has been also implicated in the progression of
arrhythmogenesis in failing hearts (Blayney and Lai, 2009). It has
been suggested that oxidative post-translational modifications
in RyR2 may play an important role in the abnormal channel
activity and the increased SR Ca leak in many cardiac pathologies
(Mochizuki et al., 2007; Terentyev et al., 2008; Belevych et al.,
2009, 2011, 2012; Bovo et al., 2018a,b). The functional effect of
these redox modifications, including disulfide oxidation, mixed
disulfide formation (S-glutathionylation) and S-nitrosylation,
will be further discussed in this review.

ROS PRODUCTION IN CARDIAC
MUSCLE

Cardiac muscle contraction strongly depends on ATP synthesis
by the mitochondrial electron transport chain (ETC). In addition
to energy production, the ETC activity can lead to generation
of reactive oxygen species (ROS). During the reduction of
molecular oxygen to water some redox centers, in particular
complex I and III, in the ETC may leak electrons to oxygen
producing superoxide anion (O2

−
•) (Turrens, 2003). O2

−
• is

further converted into hydrogen peroxide (H2O2•) by superoxide
dismutase (SOD) enzymes. Transitional metals can react with
H2O2 with a formation of even stronger oxidant – hydroxyl
radical (OH•) (Madamanchi and Runge, 2013). ROS can be also
generated by cytochrome P450-based enzymes, xanthine (XO)
and NADPH oxidases (NOX) (Zima and Blatter, 2006; Santos
et al., 2016). Additionally, cardiomyocytes express two isoforms
of nitric oxide (NO•) synthase – endothelial and neuronal NOS
(NOS1 and NOS3, respectively) that play an important role in the
intracellular signaling (Santos et al., 2011). Besides generation of
NO•, NOSs are also responsible for the production of reactive
nitrogen species (RNS). Uncoupled NOSs can generate O2

−
•,

which can be combined with NO• to produce the powerful
oxidant peroxinitrite (ONOO−•).

Deleterious effects of increased ROS production include lipid
peroxidation, protein oxidation, DNA mutagenesis and DNA-
protein cross-linking. Therefore, amounts of ROS inside the
cell must be tightly controlled by enzymatic and non-enzymatic
antioxidant defense mechanisms (Madamanchi and Runge,
2013). These mechanisms comprise catalase, SOD, glutathione
peroxidase and vitamins A, C and E (Zima and Blatter,
2006; Santos et al., 2016). O2

−
• produced in mitochondria

is converted to H2O2 by SOD, which is further reduced
to water by glutathione peroxidase, catalase, peroxiredoxin
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FIGURE 1 | (A) The main components of intracellular Ca regulation in ventricular myocytes. A Ca release unit is formed by a cluster of ryanodine receptors (RyR2) in
the junctional sarcoplasmic reticulum (SR) and L-type Ca channels (LTCC) in the sarcolemma. During systole, inward Ca current through the LTCC activates RyR2 by
the mechanism called Ca-induced Ca release (CICR). A global Ca transient causes activation of the contractile apparatus and thus myocyte contraction. During
diastole, cytosolic Ca is pumped back into the SR by the Ca-ATPase (SERCA) and extruded from the cell by the Na-Ca exchanger (NCX). (B) A confocal image of
diastolic Ca spark. (C) The multimolecular RyR2 complex. On the cytosolic side, RyR2 interacts with calmodulin (CaM) and FK-506 binding protein 12.6 (FKBP12.6).
The activity of RyR2 is also regulated by two major protein kinases (PKA and CaMKII) and two phosphatases (PP1 and PP2A). At the luminal side, RyR2 is
associated with the Ca-sensing complex formed by triadin, junctin and calsequestrin (CASQ2). The molecular representation of the illustrated proteins was created
from Protein Data Bank entries (www.rcsb.com, PDB_IDs: 5L1D, 1CPK, 2W2C, 2BCX, 1UP5, 4MOV, 2IAE, 2VAF, 4IQ2).

and thioredoxin systems (Foster et al., 2009). Non-enzymatic
defense mechanisms rely on small antioxidant molecules,
primarily on the intracellular pool of reduced glutathione
(GSH). It has been shown that GSH can directly acts as
ROS scavenger. Upon its reaction with ROS, GSH is oxidized
into GSSG that can be reduced back to GSH by glutathione
reductase (Schafer and Buettner, 2001). Glutathione reductase
plays a key role in maintaining the intracellular GSH/GSSG
ratio in a proper physiological range (30:1–100:1). GSH also
contributes to the maintenance of the cellular redox state by
acting as a substrate for glutathione peroxidase (Foster et al.,
2009). When the amount of ROS production overwhelms the
intracellular anti-oxidant defense, oxygen free-radicals cause
damage of DNA, lipids and proteins. These uncontrolled
conditions are also known as oxidative stress (Giordano,
2005).

At physiological conditions, however, low levels of ROS and
RNS are involved in the cell signaling by inducing discrete,
reversible and site-specific protein modification (Heymes et al.,
2003; Giordano, 2005; Foster et al., 2009). The redox signaling
is based on the ability of ROS/RNS to modulate protein
cysteines, leading to S-nitrosylation, S-glutathionylation, and
disulfide bond formation. Such redox modifications would
affect activity of the proteins involved in different signaling
cascades. For example, in cardiac muscle NOX activity and ROS
production can be stimulated by growth factors and cytokines,
such as angiotensin II, PDGF and TNF-α (Giordano, 2005).
In these pathways, ROS act as important second messengers
related to inflammatory and stress response. Redox modifications
of signaling proteins can be reversed by specific enzymes.
Disulfide bridges and mixed disulfides (S-glutathionylation) can
be reduced by both thioredoxin and glutaredoxin systems.
Additionally, thioredoxin system can reduce S-nitrosothiols.
Both glutaredoxin and thioredoxin system utilize the reducing
power of NADPH for reduction of their key enzymes –

glutathione and thioredoxin reductases (Paulina Donoso and
Gina Sánchez, 2013).

In the heart, increased ROS production during oxidative
stress has been associated with different cardiac pathologies,
including myocardial infarction (MI) and HF. During MI, the
re-oxygenation of ischemic region is vital for heart survival.
However, re-oxygenation also causes significant myocardium
damage which has been linked to the toxic effects of ROS
(Zweier and Talukder, 2006). Significant increase in ROS
production during ischemia/reperfusion (I/R) arises from the
uncoupled mitochondrial ETC as well us upregulation of NOX,
NOS and XO resulting in increased generation of O•−2 and
decreased GSH/GSSH ratio (Zima and Mazurek, 2016). Oxidative
stress during cardiac pathologies is commonly associated with
increased SR Ca leak through the hyperactive RyR2. Moreover,
ROS can activate hypertrophic and pro-apoptotic signaling
pathways, leading to myocardial remodeling (Sawyer et al.,
2002; Santos et al., 2016). HF is frequently viewed as a
condition of chronic oxidative stress (Mak and Newton, 2001).
The unbalanced metabolism has been suggested to play an
important role in development of HF (Mak and Newton,
2001; Ventura-Clapier et al., 2004; Santos et al., 2011). As
the disease progresses, oxidative stress worsens due to the
increasing energy demand and workload of the failing heart,
thus perpetuating a deleterious cycle (Seddon et al., 2007).
Although HF is associated with a large number of complex
intracellular changes, the focus of this review is directed at
understanding the role of oxidative stress in SR Ca regulation
and RyR2 function. To date, RyR2 dysfunction has been
characterized by increased phosphorylation and oxidation levels.
While functionally important phosphorylation sites on RyR2
have been characterized (Marx et al., 2000; Wehrens, 2004; Xiao
et al., 2006), the specific mechanisms of oxidative modifications
of RyR2 and their contribution to defective SR Ca cycling remain
incomplete.
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REDOX REGULATION OF RYR2

Historically, oxidative stress has been linked to an increase of
SR Ca release (Trimm et al., 1986). It has been proposed that
oxidation of cysteines in RyR2 causes significant changes in the
channel gating (Abramson and Salama, 1989). Out of 90 cysteine
residues in the single subunit of RyR2, about 21 are in the
free thiol state and available for redox-modifications (Xu, 1998;
Donoso et al., 2011). Therefore, it is no surprise that RyR2 has
been characterized as the highly redox sensitive ion channel.
During oxidative stress, sulfhydryl groups of cysteine residues on
RyR2 can be oxidized by ROS producing sulfenic, sulfinic and
sulfonic acids (Giles and Jacob, 2002). While there is no evidence
for the functional significance of sulfinic and sulfonic acids,
sulfenic acid can react with sulfhydryl groups, RNS and GSH,
yielding disulfide bridges, S-nitrosylation, S-glutathionylation,
respectively (Paulina Donoso and Gina Sánchez, 2013). In
general, oxidation of cysteine residues has been suggested to
cause RyR2 activation (Suzuki and Ford, 1999; Zima and
Blatter, 2006). However, multiple studies have shown that effects
of oxidative agents on RyR2 largely depend on experimental
conditions (Mi et al., 2015). It has been demonstrated that
low concentrations of oxidizing agents activate RyR2, whereas
prolonged exposure or high concentrations of oxidants lead to
irreversible RyR2 inhibition (Dulhunty et al., 2000). Different
cysteine residues have been suggested to play a role in activation
or inhibition of RyR2 by oxidative stress.

The role of RyR2 redox modifications in cardiac pathologies
has been investigated in numerous studies. It has been shown
that the non-selective beta-blocker with antioxidant properties
carvedilol is more effective in a treatment of HF than other
beta-blockers. In the pacing-induced HF model, carvedilol
was able to preserve the cardiac function by stabilizing RyR2
structure. It has been suggested that some of the beneficial
effects of carvedilol can be attributed to its ability to prevent
oxidation of RyR2. In experiments with administration of the
NO−•/ONOO−• donor SIN-1, carvedilol was able to prevent
thiol oxidation in RyR2, presumably by acting as a scavenger
of ONOO−• (Mochizuki et al., 2007). In the canine model of
chronic HF, the increased SR Ca leak has been attributed to redox
modification of RyR2 by ROS. Interestingly, reducing agents that
target S-nitrosylation and S-glutathionylation failed to reverse
SR Ca leak in HF. At the same time, the application of DTT
(an agent that can reverse disulfide formation, S-nitrosylation
and S-glutathionylation) decreased RyR2-mediated Ca leak,
suggesting a central role of disulfide bond formation in this
process (Terentyev et al., 2008). Studies of the canine post-
MI model with ventricular fibrillation (VF) has also shown
increased diastolic SR Ca leak and decreased SR Ca content.
Similarly to HF studies, cardiomyocytes isolated from the
canine post-MI model were characterized by increased levels
of ROS production and RyR2 oxidation (Belevych et al., 2009).
Another study of the rabbit I/R model has shown a critical
role of RyR2 oxidation in the transition from the positive
inotropic to arrhythmogenic effect during β-adrenergic receptor
stimulation (Bovo et al., 2018a). Taken together, these data
suggest that SR Ca leak due to RyR2 oxidation can be a common

mechanism of SR Ca mishandling during different cardiac
pathologies. Therefore, reactive cysteines on RyR2 may represent
an important target in the development of new therapeutic
strategies.

IDENTIFICATION OF RYR2
REDOX-MODIFICATION SITES

Given the functional significance of redox modifications of RyR,
several structural studies were performed in order to allocate and
characterize sites of these modifications. In the skeletal isoform
RyR1, cysteine 3635 located in the CaM-binding site has been
shown to undergo functionally significant S-nitrosylation (Sun
et al., 2001). Mass spectroscopy study has identified nine cysteine
residues (including cysteine 3635) in RyR1 that were S-alkylated
by low doses of the maleamide derivative CPM, suggesting
their high-sensitivity to redox modifications (Voss et al., 2004).
Other studies have proposed that cysteine 3635 can undergo
S-glutathionylation and could be also involved in RyR disulfide
cross-linking (Aracena-Parks et al., 2006). Twelve RyR1 cysteine
residues, including cysteine 3635, have been proposed to be either
S-nitrosylated, S-glutathionylated or to form disulfide bridges.
Of those twelve cysteines, nine were shown to be endogenously
redox-modified. It has been suggested that cysteine 3635 can form
a disulfide bond with cysteine residues in the region 1–2401 of
RyR1 (possibly with either cysteine 36, 2326, or 2363). However,
the functional significance of these redox-modifications remains
unclear yet.

While skeletal RyR1 hyper-reactive cysteines have been
characterized, little is known about corresponding redox
modifications in the cardiac RyR2. A functional role of RyR2
cysteine 3602 (which corresponds to the hyper-reactive cysteine
3635 in RyR1) in Ca overload-induced Ca release has been
studied in HEK293 cells expressing recombinant RyR2. It has
been shown that the mutation of RyR2 cysteine 3602 to alanine
(C3602A) significantly increased SR Ca fractional release by
decreasing termination and increasing activation threshold for
CICR. Interestingly, the ability of N-ethylmaleamide (NEM) to
increase the activation threshold for CICR for the RyR2 was
lost for the C3602A mutant, suggesting functional significance of
cysteine 3602 alkylation. However, no difference was observed in
the effect of cysteine oxidants on WT and C3602A RyR2 (Mi et al.,
2015). Despite ∼70% homology between RyR1 and RyR2, these
channels appear to exhibit important structural and functional
differences, particularly with respect to redox regulation.

S-GLUTATHIONYLATION OF RYR2

High pKa (>8.0) of a sulfhydryl group means that the majority
of free thiols is protonated under physiological pH (7.0–7.4)
and cannot be oxidized. As a result, protein redox modifications
require an initial conversion of a sulfhydryl group to a thiolate
anion. Proton dissociation from a thiol group is highly dependent
on the local microenvironment and can be facilitated by closely
located basic amino-acids (Grek et al., 2013). During oxidative
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stress, spontaneous protein S-glutathionylation may occur via
multiple pathways that include thiol-disulfide exchange between
a protein thiol and GSSG, a reaction between sulfenic acid or thiyl
radical (-S•) and GSH, as well as S-glutathionylation induced
by RNS. In addition to spontaneous reactions, the rate and
efficiency of S-glutathionylation can be enhanced by enzymatic
activity of glutathione-S-transferases (GSTs) (Zhang et al., 2018).
Because of the ability of glutaredoxin and thioredoxin systems to
reverse S-glutathionylation, this redox modification can prevent
irreversible oxidation of protein thiol groups into sulfonic
acids (Townsend, 2007). However, the addition of large and
negatively charged glutathione group may also significantly alter
structural and functional properties of a protein. Moreover, two
adjacent S-glutathionilated thiols can displace GSH groups with a
formation of disulfide bond within the protein (Beer et al., 2004).

Several studies have provided evidence for the functional role
of RyR2 S-glutathionylation during oxidative stress (Figure 2).
It has been reported that preconditioning tachycardia increased
NOX activity in the SR microsomes isolated from the canine
ventricle. The increased NOX activity led to increased RyR
S-glutathionylation and elevated systolic SR Ca release (Sánchez
et al., 2005). The same effect was described for the SR microsomes
isolated from animals preconditioned with exercises. It has been
suggested that NOX activation and RyR2 S-glutathionylation
during preconditioning may have a protective effect by increasing
systolic SR Ca release while limiting diastolic SR Ca leak
(Sánchez et al., 2008). In our recent study, we described the
effects of oxidized glutathione (GSSG) on SR Ca leak in rabbit
ventricular myocytes. We found that an application of GSSG
to permeabilized myocytes increased diastolic SR Ca leak and
induced RyR2 disulfide cross-linking (Mazurek et al., 2014). HF
myocytes were also characterized by elevated GSSG level, RyR2
cross-linking and increased SR Ca leak. Blocking RyR2 cross-
linking with the alkylating agent NEM decreased SR Ca leak
and prevented depletion of SR Ca load. Based on these results,
we suggested that oxidative stress in the failing heart promotes
abnormal inter-subunit interactions within the RyR2 complex
that increase channel opening leading to the increased SR Ca leak
(Bovo et al., 2018a).

Interestingly, some studies suggest an interaction between
RyR and GSTs, enzymes that catalyze S-glutathionylation. The
members of GST family CLIC-2, GSTO1-1, and GSTM2-2 were
identified as endogenous RyR modulators that exert a strong
inhibitory effect on RyR2 and weak excitatory effect on RyR1.
The isoform-specific effect of GSTM2-2 has been explained by its
binding to the RyR2 divergent region 3, not present in RyR1 (Liu
et al., 2012) The C-terminal non-catalytic region of the muscle
specific GSTM2-2 has been shown to bind to RyR2 independently
from N-terminal glutathione transferase activity (Dulhunty et al.,
2011). However, it remains unclear whether GSTM2-2 may be
involved in RyR2 S-glutathionylation in vivo.

S-NITROSYLATION OF RYR2

NO• plays an important role in cardiovascular signaling through
its involvement in the cGMP-dependent vasodilation pathway.

NO• binds to guanylate cyclase (GC) increasing the production
of cGMP that activates several cGMP-dependent enzymes,
including cAMP phosphodiesterase (PDE). The PDE activation
would decrease cAMP level and PKA activity. This, in turn, would
cause a decrease in PKA phosphorylation of several proteins,
including RyR2, LTCC and phospholamban (PLB). cGMP can
also activate cGMP-dependent kinase (PKG). It has been reported
that PKG can phosphorylate RyR2 at the CaMKII site (Takasago
et al., 1991). However, the functional significance of PKG-
mediated RyR2 phosphorylation remains elusive. NO•-based
signaling reactions can also occur through the NO•-dependent
redox-modification, known as S-nitrosylation (Lima et al., 2010;
Figure 2). The reaction of S-nitrosylation involves a transfer of
NO• group to a nucleophilic thiol group yielding S-nitrosothiol
(Sun and Murphy, 2010). To initiate S-nitrosylation, thiol groups
have to be oxidized (Donoso et al., 2011). It has been shown
that intracellular proteins can be effectively nitrosylated by
endogenously produced NO• as well by exogenous NO• donors
(Hess et al., 2005).

The majority of functional studies of RyR S-nitrosylation
have been conducted in lipid bilayer experiments with skeletal
and cardiac SR vesicles. It has been shown that NO•
donors S-nitrosoglutathione and S-nitrosocysteine can induce
S-nitrosylation on each RyR2 subunit at three different sites.
S-nitrosylation of RyR2 was associated with an increase of
the channel open probability. Interestingly, a comparable RyR2
oxidation of 5-6 thiols per subunit showed no significant effect
on the RyR2 function, suggesting a different role of thiol
S-nitrosylation and oxidation in the channel activity (Xu, 1998).
In another study, S-nitrosothiol reagents increased Ca release
from skeletal and cardiac muscle SR vesicles, confirming that
RyR S-nitrosylation activates RyR (Stoyanovsky et al., 1997).
In both reports, the NO•/ONOO−• donor SIN-1 produced
a significant RyR activation that could not be reversed by
reducing agents, suggesting irreversible thiol oxidation. The
effect of NO• donor SNAP on RyR1 activity in lipid bilayers
was complex and dependent on several factors including,
concentration, membrane potential and presence of agonists.
Low concentrations of NO• donor SNAP increased RyR1 activity,
whereas high concentrations (∼1 mM) caused channel inhibition
(Hart and Dulhunty, 2000). In another study, a pretreatment of
RyR1 with low concentrations of NO• donors prevented disulfide
cross-linking induced by diamide. At the same time, NO• donors
had no significant effect on the channel open probability. Higher
doses of NO• donors, however, were able to increase RyR1
activity and induced disulfide cross-liking (Aghdasi et al., 1997).
This type of complex regulation suggests the presence of several
groups of functional thiol residues that differently modulate the
RyR activity by RNS. Moreover, it has been shown that direct
activation of RyR1 by submicromolar concentrations of NO•
donors can only occur at physiological pO2 ∼10 mmHg (in
contrast to ambient pO2 150 mmHg). This suggests that RyR1
thiol residues have to be in the reduced state to be nitrosylated
by NO• (Eu et al., 2000). However, these results could not be
reproduced by another group. It was reported that NO• donors
NOC-12 and GSNO activate RyR1 independently from pO2
(Cheong et al., 2005). Furthermore, the effect of NO• donors
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FIGURE 2 | Oxidative stress is associated with the increased accumulation of reactive oxygen and nitrogen species (ROS/RNS), such as O2−•, H2O2, OH•, and
ONOO−•. ROS and RNS have been implicated in redox-dependent post-translational modifications of cardiac RyR2, including S-glutathionylation, S-nitrosylation
and disulfide bond formation (marked with solid arrows). Disulfide bond formation also leads to RyR2 cross-linking, which presumably may take place between
subunits within one channel or between subunits of different channels. Oxidative stress may also indirectly modulate the activity of RyR2 (marked dashed arrows).
Accumulation of ROS/RNS leads to calmodulin (CaM) dissociation from RyR2, potentially caused by the oxidation of RyR2 and/or CaM. Oxidative stress can also
activate PKA and CaMKII leading to an increase of RyR2 phosphorylation on Serine 2808 and Serine 2814 sites. It has been also suggested that the
PKA-dependent phosphorylation may lead to increased FKBP12.6 dissociation from RyR2. The effects of oxidative stress on RyR2 mostly lead to the increased
diastolic SR Ca leak resulting in arrhythmias and contractile dysfunction in variety of cardiac pathologies.

on RyR1 involved the CaM dissociation and S-nitrosylation at
cysteine 3635 (Sun et al., 2003). In contrast to RyR1, RyR2 can
be activated only by GSNO, but not NOC-12. S-nitrosylation
of cysteine 3602 (corresponding to cysteine 3635 in RyR1)
was not required for RyR2 activation by GSNO (Sun et al.,
2008).

In cardiomyocytes, NOS1 and NOS3 can induce
S-nitrosylation of different substrates, depending on their
subcellular localization (Lima et al., 2010). NOS3 is localized
within the caveolae together with β-adrenergic receptors and
LTCCs. NOS1 resides to the SR, where it modulates the activity
of RyR2 (Barouch et al., 2002). Study of RyR2 S-nitrosylation
in NOS1−/− mice has shown decreased S-nitrosylation, but
increased oxidation of RyR2. Myocytes isolated from NOS1−/−

mice were characterized by increased SR Ca leak, decreased SR Ca
load and higher propensity of spontaneous Ca waves (Gonzalez
et al., 2007). It has been also shown that NOS1 inhibition leads
to the development of ventricular arrhythmias under condition
of elevated cytosolic [Ca]. The molecular mechanism of
arrhythmias has been attributed to the combination of decreased
RyR2 S-nitrosylation and increased RyR2 oxidation. Under
condition of NOS1 inhibition, the XO inhibitor allopurinol or
the NO• donor GSNO could prevent ventricular arrhythmias.
Interestingly, NOS1 inhibition was associated with decreased
RyR2 phosphorylation at the CaMKII site. Moreover, the
combination of NOS1 inhibition and oxidative stress had an
additive effect, producing severe arrhythmical phenotype (Cutler
et al., 2012). In another study of NOS1−/− myocytes, however,
the decreased level of RyR2 S-nitrosylation was associated with
decreased SR Ca release. NOS1 knockout or NOS inhibition

reduced Ca spark frequency and SR Ca leak. Also, single channel
recording revealed decreased open probability of RyR2 in the
NOS1−/− mice. The NO• donor SNAP was capable to reverse
the observed effects of NOS1 inhibition (Wang et al., 2010). The
discrepancy between these two studies may be explained by the
complex interplay between S-nitrosylation and oxidation in the
regulation of RyR2 activity. It seems that physiological levels
of RyR2 S-nitrosylation can be necessary for maintaining the
proper channel activity in the healthy heart. Under conditions
of oxidative stress, however, S-nitrosylation may function as a
protective mechanism against irreversible thiol oxidation and
RyR2 dysfunction. Thus, de-nitrosylation of RyR2 would inhibit
the channel activity in control conditions and activate it during
oxidative stress.

RYR INTERSUBUNIT DISULFIDE
CROSS-LINKING

The idea of intersubunit cross-linking has been first introduced
for RyR1 (Abramson and Salama, 1989) and then further
confirmed for RyR2 (Mazurek et al., 2014). It has been suggested
that intersubunit disulfide bond formation leads to structural
rearrangements of the channel that cause SR Ca leak (Figure 2).
Structural aspects of disulfide cross-linking in RyR1 have
been extensively characterized in several studies (Moore et al.,
1999; Zhang et al., 2003; Aracena-Parks et al., 2006). A cryo-
EM analysis of RyR1 oxidation by H2O2 revealed a disulfide
cross-linking together with significant changes in the channel
morphology (Han et al., 2006). These data also revealed that
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disulfide bonds can be formed between subunits within the
RyR1 complex rather than between different RyR1 tetramers.
Multiple studies of RyR1 have suggested that cysteine 3635
can be involved in the disulfide cross-linking and the CaM
binding. However, recent Cryo-EM analysis of RyR1 and RyR2
did not provide a structural basis for the possible disulfide
formation in this region (Yan et al., 2015; des Georges et al.,
2016; Wei et al., 2016; Dhindwal et al., 2017). It has been
suggested that disulfide bond formation may take place between
N-terminal regions of RyR2 subunits (Zissimopoulos et al.,
2013). Alternatively, RyR cross-linking may occur not only
between subunits within one channel, but also between subunits
of different RyR channels. It is well-known that skeletal and
cardiac muscle RyRs are arranged as large clusters (Franzini-
Armstrong et al., 1999; Cabra et al., 2016). Given the tight
packing of RyRs in the cluster, there is a possibility of disulfide
cross-linking between subunits of two neighboring channels
(Figure 2). However, there are no direct data demonstrating this
mechanism.

Because the intersubunit interactions within the RyR2
complex dictate the channel gating (Orlova et al., 1996;
Serysheva et al., 2008; Tung et al., 2010), any post-translational
modifications that affect an interaction between RyR2 subunits
should have a significant impact on the RyR2 function. We found
a positive correlation between RyR2 cross-linking and SR Ca leak,
suggesting that the post-translational modification is a strong
regulator of RyR2. We have also reported that RyR2 oxidation
and the intersubunit cross-linking play an important role in
activation of SR Ca leak during oxidative stress (Mazurek et al.,
2014) and generation of pro-arrhythmogenic Ca waves during
excessive adrenergic activation (Bovo et al., 2015). Furthermore, a
significant level of RyR2 cross-linking was observed in ventricular
myocytes isolated from the rabbit HF model (Bovo et al., 2018a).
This RyR2 modification contributed to an increase of SR Ca
leak and the blunted force-frequency response of the failing
heart.

CALMODULIN DISSOCIATION DURING
OXIDATIVE STRESS

CaM acts as an important regulatory protein of RyR2 that
inhibits channel activity under both low and high [Ca] (Balshaw
et al., 2001). During oxidative stress, increased levels of
GSSG can decrease the binding affinity of apo-CaM and Ca-
CaM to RyR2 (Figure 2). This would relieve the inhibitory
effect of CaM on the RyR2 activity (Balshaw et al., 2001).
Experiments in permeabilized ventricular myocytes have shown
that RyR2 oxidation by H2O2 caused an alteration of the channel
structure toward its arrhythmogenic unzipped conformation.
This abnormal RyR2 conformation decreased the binding affinity
to CaM, which can be restored by the RyR antagonist dantrolene
(Oda et al., 2015). At the same time, oxidation caused no effect on
the FKBP12.6 binding to RyR2. Dissociation of CaM from RyR2
due to the defective inter-domain interaction (or unzipping) has
been linked to the increased SR Ca leak in HF (Ono et al., 2010).
It has been shown that CaM isoforms with increased binding

affinity to RyR2 have a potential to rescue the aberrant SR Ca
release in HF (Hino et al., 2012). Furthermore, a recombinant
CaM with decreased rate of dissociation from its binding domain
on RyR2 unveiled anti-arrhythmogenic properties. In vivo gene
delivery of this recombinant CaM into the heart partially restored
RyR2 refractoriness and decrease a chance of arrhythmias
in the catecholaminergic polymorphic ventricular tachycardia
(CPVT) model caused by calsequestrin mutation (Liu et al.,
2018).

RYR2 PHOSPHORYLATION AND
OXIDATIVE STRESS

At least three functionally important phosphorylation sites
have been identified in RyR2, including two PKA specific
sites (serine 2030 and 2808) and one CaMKII site (serine
2814) (Marx et al., 2000; Xiao et al., 2006; Marx and Marks,
2013). RyR2 phosphorylation by PKA occurs in response to β-
adrenergic receptor activation. Epinephrine and norepinephrine
binding to β-adrenergic receptors increases adenylyl cyclase
activity and cAMP production, following by PKA activation (El-
Armouche and Eschenhagen, 2009). It has been shown that
RyR2 phosphorylation at serine 2808 increased RyR2 open
probability and caused FKBP12.6 dissociation from the channel
(Marx et al., 2000; Figure 2). However, studies from different
laboratories have yielded conflicting results regarding the role
of RyR2 phosphorylation by PKA in HF (Benkusky et al., 2007;
Shan et al., 2010a,b; Zhang et al., 2012). Interestingly, increased
levels of RyR2 oxidation and S-nitrosylation have been reported
in transgenic mice with the RyR2 mutation mimicking the
constitutively phosphorylated serine 2808 (S2808D). While RyR2
activity in the S2808D mutant was normal at young age, in
older animals the RyR2 displayed increased SR Ca leak caused
by its oxidation and S-nitrosylation together with depletion of
FKBP12.6 and other regulatory proteins (Shan et al., 2010a).
These results were in line with another study in which mutation
of one of two RyR2 phosphorylation sites (serine 2808 or
2814) reduced both oxidative stress and SR Ca leak in the
mouse model of Duchenne muscular dystrophy (DMD) (Wang
et al., 2015). Earlier studies have shown that DMD patients can
develop ventricular arrhythmias associated with leaky RyR2 due
to S-nitrosylated and FKBP12.6 depletion (Fauconnier et al.,
2010).

While the functional significance of RyR2 phosphorylation
has been debated, it is important to highlight that both
CaMKII and PKA are sensitive to the intracellular redox
state (Johnston et al., 2015; Figure 2). In contrast to the
cAMP-dependent PKA activation, PKA activation by oxidative
stress is associated with the disulfide bond formation between
two regulatory PKA RIα subunits. In the proposed model,
the disulfide cross-linking of two RIα subunits leads to
the increased affinity of PKA to AKAP, that promotes
subcellular targeting of the kinase catalytic subunit to the
corresponding substrate (Brennan et al., 2006). Similarly to PKA,
CaMKII can be also activated by oxidative stress (Erickson
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et al., 2008). The mechanism of ROS-dependent CaMKII
activation required an initial activation by Ca-CaM followed
by oxidation of methionine 281 and 282 yielding a persistent
activation even after Ca-CaM dissociation. The mechanism
of CaMKII activation by ROS was independent from the
previously described activation by autophosphorylation. In
in vivo experiments, NOX activation by angiotensin II (AngII)
led to CaMKII oxidation. This activation was not observed in
the p47−/− transgenic mice lacking NOX activity (Erickson et al.,
2008).

Since HF is commonly associated with oxidative stress
(Mak and Newton, 2001), CaMKII activity is expected to be
upregulated during this pathology. Once activated by ROS,
CaMKII can contribute to arrhythmogenesis in HF by activating
late sodium current (Wagner et al., 2011). In another study,
a short-termed exposure of myocytes to H2O2 has resulted in
the prolonged activation of CaMKII and long-termed facilitation
of LTCC through mechanisms of CaMKII autophosphorylation
and oxidation (Song Y.H. et al., 2011). Consistent with these
findings, it has been shown that the pharmacological inhibition
of CaMKII prevents arrhythmias induced by oxidative stress (Xie
et al., 2009). The upregulation of CaMKII has been associated
with the development of atrial fibrillation (AF). It has been
shown that RyR2 phosphorylation at the CaMKII site was
increased in AF patients, whereas RyR2 expression level was
decreased. Cardiomyocytes from AF patients were characterized
by increased SR Ca leak, which can be normalized by the
CaMKII inhibitor KN93 (Neef et al., 2010). Moreover, it has
been shown that NOX activation with AngII caused increased
ROS production and CaMKII oxidation followed by an increase
in Ca spark frequency. At the same time, the transgenic mice
lacking the CaMKII phosphorylation site on RyR2 (S2814A) were
protected from AF induced by AngII (Purohit et al., 2013). It has
been shown that I/R-mediated arrhythmias were associated with
CaMKII-dependent phosphorylation of RyR2 (Said et al., 2011).
I/R also increased levels of RyR2 reversible redox modifications:
S-glutathionylation and S-nitrosylation (Becerra et al., 2016).
Arrhythmogenic effect of cardiac glucosides has been also
attributed to the increased ROS production and RyR2 oxidation
(Ho et al., 2011). It has been shown later that cardiac glucosides
activate NOX2-mediated ROS production that causes CaMKII
activation, RyR2 phosphorylation and Ca waves (Ho et al.,
2014).

FKBP DISSOCIATION DURING
OXIDATIVE STRESS

While there is no evidence that RyR2 oxidation directly
causes FKBP12.6 dissociation from the channel, oxidative stress
still may affect the RyR2-FKBP12.6 interaction through the
mechanism of RyR2 phosphorylation (Figure 2). RyR2 hyper-
phosphorylation at the PKA site has been shown to promote
FKBP12.6 dissociation from RyR2 resulting in the increased
channel activity during HF. It was suggested that the RyR2
hyper-phosphorylation was a result of PP1 dissociation from
the RyR2 macromolecular complex (Marx et al., 2000). The

interplay between RyR2 oxidation and FKBP12.6 dissociation
has been studied in WT and the transgenic mice lacking the
PKA phosphorylation site in RyR2 (the S2808A mice). In the
WT mice excessive β-adrenergic stimulation caused increased
FKBP12.6 dissociation from RyR2 in WT mice, but not in the
S2808A mice. At the same time, the levels of RyR2 oxidation
were increased in both WT and S2808A mice. To study the
effects of oxidative stress and phosphorylation on the RyR2-
FKBP12.6 interaction, SR vesicles were treated either with H2O2
or with H2O2 combined with CaMKII or PKA. Both H2O2
alone or in combination with CaMKII showed no significant
effect on the FKBP12.6 dissociation from RyR2. However,
RyR2 oxidation together with PKA caused almost complete
FKBP12.6 dissociation. Chronic treatment of WT mice with
isoproterenol increased levels of PKA-RyR2 phosphorylation,
FKBP12.6 depletion and RyR2 oxidation, whereas in the S2808A
mice these effects of adrenergic stimulation were partially
abolished (Shan et al., 2010b).

CONCLUSION

The vast body of evidence demonstrates a direct link between
oxidative stress, RyR2 oxidation and increased SR Ca leak in
several cardiac pathologies, including HF and MI. Molecular
mechanisms of the impaired SR Ca handling can include
structural and functional changes in the RyR2 complex due to
thiol redox-modifications. However, effects of oxidative stress
on RyR2 may go beyond the direct redox-modification of the
channel and can involve dissociation of regulatory proteins and
increased phosphorylation by PKA and CaMKII. It appears that
phosphorylation and redox modifications may have an additive
effect on RyR2 function. The experiments in the non-ischemic
canine HF model have shown that RyR2 phosphorylation and
thiol oxidation contribute to the different stages of HF: RyR2
phosphorylation by CaMKII manifests on the early stages of
HF with following RyR2 oxidation during later stages (Belevych
et al., 2011). In another HF study, the increased SR Ca leak
was associated with RyR2 hyper-phosphorylation on both PKA
and CaMKII sites together with thiol oxidation (Walweel et al.,
2017), suggesting a combined effect of multiple factors on RyR2
dysfunction in HF. Despite abundant amount of experimental
data pointing on the importance of oxidative stress, many of
clinical trials that used antioxidant for treatment of HF did not
yield promising results (Mak and Newton, 2001; Giordano, 2005;
Thomson et al., 2007). However, trials with the beta-blocker with
antioxidant properties carvedilol have shown some superiority
over conventional beta-blockers, which can be attributed to
its antioxidant effect (Packer et al., 2001). At the same time,
it has been shown that carvedilol may also modulate the
function of RyR2 independently from its beta-blocking function
or antioxidant activity, but through the direct action on RyR2
activity (Zhou et al., 2011). Nevertheless, strategies focused on
restoring the RyR2 structural integrity during oxidative stress
may have a high therapeutic potential. Thus, further insights into
molecular basis of RyR2 redox regulation are essential for the
development of specific and effective therapeutic strategies.
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