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Nesfatin-1 (Nesf-1) is an anorexigenic peptide involved in the regulation of homeostatic
feeding. Nesf-1 is expressed in the central nervous system and other organs, including
pancreas, where it promotes the release of insulin from β-cells. This raises the possibility
that Nesf-1 dysfunction could be involved in metabolic disorders, particularly in type 2
diabetes mellitus (T2D). Recently, it has been discovered that dolphins can be a natural
animal model that fully replicates human T2D, due to its prolonged glucose tolerance
curve and maintenance of a state of hyperglycemia similar to human T2D during fasting.
This correspondence suggests that dolphins may be a suitable model for investigating
physiological and pathological metabolic disorders. Here, we have characterized Nesf-
1 distribution in the pancreas of the common bottlenose dolphin (Tursiops truncatus)
and measured plasmatic levels of Nesf-1 and glucose during fasting and post-prandial
states. The Mediterranean Marine Mammal Tissue Bank (MMMTB) of the University of
Padova provided us with pancreas samples, derived from four animals, and plasma
samples, collected before and after the main meal. Interestingly, our results showed that
Nesf-1-immunoreactive cells were distributed in Langerhans islets, co-localized with
glucagon in α-cells. Similar to humans, dolphin plasma Nesf-1 concentration doesn’t
show a statistically significant difference when comparing fasting and post-prandial
states. On the other hand, blood glucose levels were significantly higher before than
after the main meal. Our data provide a comparative analysis for further studies on the
involvement of Nesf-1 in mammalian metabolic disorders.
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INTRODUCTION

Nesfatin–1 (Nesf-1) is an 82 amino acid (aa) length polypeptide derived from calcium and DNA
binding protein NUCB2 (NEFA/nucleobindin-2). Within the central nervous system (CNS), Nucb2
mRNA is present in different nuclei of the brain involved in feeding behavior. Until now, the
mechanism of food intake inhibition via Nesf-1 has not been clarified. Intracerebroventricular

Abbreviations: a.m., ante meridiem; CNS, central nervous system; g, relative centrifuge force; GLP-1, glucagon-like peptide-
1; h, hour; ic, immunoreactive cells; kDa, kilodalton; min, minute; Nesf-1, Nesfatin-1; NUCB2, NEFA/nucleobindin-2; ON,
over-night; p.m., post meridiem; rpm, revolution per minute; RT, room temperature; T2D, type 2 diabetes mellitus; V, Volt;
W, Watt; α, alpha; β, beta.

Frontiers in Physiology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 1845

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01845
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01845
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01845&domain=pdf&date_stamp=2018-12-19
https://www.frontiersin.org/articles/10.3389/fphys.2018.01845/full
http://loop.frontiersin.org/people/617756/overview
http://loop.frontiersin.org/people/199180/overview
http://loop.frontiersin.org/people/617815/overview
http://loop.frontiersin.org/people/131964/overview
http://loop.frontiersin.org/people/541965/overview
http://loop.frontiersin.org/people/206429/overview
http://loop.frontiersin.org/people/164136/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01845 December 18, 2018 Time: 17:46 # 2

Gatta et al. Nesf-1 in Common Bottlenose Dolphin Pancreas

administration of Nesf-1 and NUCB2 reduces food intake and
body weight: Nesf-1 can act via melatonin system activation,
independently of leptin pathway (Oh-I et al., 2006) or through
the stimulation of neuropeptide Y (Stengel and Tache, 2013).

Outside the CNS, Nucb2 mRNA is mainly expressed in
pancreas, gastric mucosa, duodenum, white adipose tissue and
testis (Gonzalez et al., 2009; Shimizu et al., 2009; Stengel
et al., 2009; Ramanjaneya et al., 2010; Garcia-Galiano et al.,
2012; Kim et al., 2014). It has been shown that NUCB2/Nesf-
1 is localized in β-cells of human and rodent pancreas,
promoting the release of insulin (Gonzalez et al., 2011). This
raises the possibility that impairment of Nesf-1 production
and/or secretion could be involved in metabolic disorders,
particularly in type 2 diabetes mellitus (T2D) (Gonzalez et al.,
2009).

Although different animals have been used, a unique model
species that fully complements human T2D has not been
yet identified (Cefalu, 2006). Recently, it has been discovered
that dolphins have a prolonged glucose tolerance curve and
during fasting maintain a state of hyperglycemia similarly to
human diabetes mellitus (Venn-Watson et al., 2010, 2012). The
main difference with diabetic patients is that dolphins seem
to alternate a physiological diabetes that goes off with fasting
during the night. Therefore, common bottlenose dolphins might
constitute a valid spontaneous model of T2D (Venn-Watson
et al., 2010).

We decided to characterize Nesf-1 distribution in pancreas
of the common bottlenose dolphin (Tursiops truncatus)
and evaluate its pre- and post-prandial plasmatic levels.
These data continue previous studies of our group on the
neuropeptides of the gastro-entero-pancreatic system of marine
mammals (Russo et al., 2012; Gatta et al., 2014). Our aim
is to establish a morphological basis for understanding the
mechanisms involved in the pathogenesis of mammalian
endocrine diseases.

MATERIALS AND METHODS

Animals and Sample Preparations
Pancreas and frozen plasma samples of two adult male and two
adult female specimens of common bottlenose dolphin were
retrieved from the Mediterranean Marine Mammal Tissue Bank
(MMMTB) of the Department of Comparative Biomedicine and
Food Science of the University of Padova. For morphological
studies, pancreas paraffin embedded samples were used. Blood
was originally drawn from veins of the tail flukes of four trained
dolphins for routine veterinary medical controls. Plasma samples
were collected at 10:00 a.m. (fasting state) and 17:30 p.m. (post-
prandial state) in four different days, in February and August (two
blood draws for each month).

Archival samples of male Wistar rat testis (Garcia-Galiano
et al., 2012), stored in the Department of Veterinary Medicine
and Animal Production (MVPA) of University of Naples Federico
II, were used as positive controls. Ethic approval was not required
neither for dolphins nor for rat samples because they were
obtained, respectively, from the MMMTB and from the MVPA.

Single Immunohistochemistry
Paraffin embedded sections were processed as reported also
in Gatta et al. (2014). The primary antiserum employed is
a polyclonal antibody raised in rabbit against Nesf-1 (1:500,
Phoenix Pharmaceuticals, cat. No. H-003-24). Background was
prevented by previous incubating sections in normal goat
serum (NGS) [1:5, 30 min, room temperature (RT)]. Qualitative
identification of antigens was detected with DAKO EnVisionTM

+

System, Peroxidase. Staining was completed by incubation with
3,3′-diaminobenzidine (DAB)+ substrate-chromogen (Sigma, St.
Louis, MO, United States).

Double Immunostaining
For the double Nesf-1/insulin immunostaining, the
employed primary antisera were: anti-Nesf-1 (1:50, Phoenix
Pharmaceuticals, cat. No. H-003-24) and anti-Insulin (1:50,
Abcam, cat. No. ab7842). Sections were incubated overnight
(ON) at 4◦C with each primary antibody. After the incubation
with the primary antibodies, the sections were rinsed several
times and incubated, respectively, with Lissamine Rhodamine
(1:1000, Jackson Immuno Research Labs, cat. No. 111-085-003
conjugated goat anti-rabbit) and fluorescein AffiniPure Donkey
Anti-Guinea Pig IgG (H+L) (1:1000, Jackson Immuno Research
Labs, cat. No. 706-095-148), for 2 h, RT.

For the double Nesf-1/glucagon-like peptide-1 (GLP-1)
immunostaining, the employed primary antisera were: anti-
Nesf-1 (1:50, Phoenix Pharmaceuticals, cat. No. H-003-24) and
anti-GLP-1 (1:50, Santa Cruz Biotechnology Inc., cat. No. sc-
7782). Sections were incubated at 4◦C, ON with anti-Nesf-
1, and 48 h with anti-GLP-1. After the incubation with the
primary antibodies, the sections were rinsed several times and
incubated, respectively, with Lissamine Rhodamine (1:1000,
Jackson Immuno Research Labs, cat. No. 111-085-003 conjugated
goat anti-rabbit) and 488-Affinipure donkey anti-goat (1:1000,
Jackson Immuno Research Labs, cat. No. 705-545-147), for 2 h,
RT.

For double staining, background was prevented by previous
incubating sections in normal serum (1:5, 30 min, RT). Finally,
sections were washed and mounted.

Controls of Specificity
The specificity of immunohistochemical reactions was checked
in repeated trials via pre-absorption of primary antibody Nesf-1
(H-003-24; Phoenix Pharmaceuticals) with homologous antigen
Nesf-1 (1-45)/Nesf-1, N-terminal (Human) (003-24; Phoenix
Pharmaceuticals) (up to 50 mg/ml antiserum in the final
dilution). Positive controls were made by sections of rat pancreas
(data not shown). Internal reaction controls were carried out
by substituting primary antisera or secondary antisera with
phosphate buffered saline or normal serum in the specific step
(de Girolamo and Lucini, 2011).

Image Acquisition
Fluorescent and light images were analyzed by Nikon Eclipse
90i. The digital raw images were optimized for image resolution,
contrast, evenness of illumination, and background by
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FIGURE 1 | Nesf-1 in Tursiops truncatus. (A) Amino acid sequence alignment T. truncatus and Homo sapiens. Degree of conservation, indicated by asterisks,
accounts for 95% (alignment was done with Clustal Omega http://www.ebi.ac.uk/Tools/msa/clustalo/). (B) Western blot in pancreas of bottlenose dolphin and rat
testis showing an immunoreactive band of about 50 kDa. (C–G3) Transverse section of pancreas. (C) Negative control of anti-Nesf-1 in the pancreas of T. truncatus.
(D) Nesf-1-ic in pancreatic islet detected by single immunohistochemistry. Arrows indicate large islets; star indicate small islet; asterisks indicate exocrine
components. (E) High magnification of (D). (F–F3) Double immunostaining against anti-Nesf-1 and anti-GLP-1. (F) Negative control of anti-Nesf-1 and anti-GLP-1.
(F1) Immunofluorescence of anti-Nesf-1 of double anti-Nesf-1/anti-GLP-1. (F2) Immunofluorescence of anti-GLP-1 of double anti-Nesf-1/anti-GLP-1. (F3) Double
immunofluorescence of anti-Nesf-1/anti-GLP-1, showing co-localization in α-cells of islet. (G–G3) Double immunostaining against anti-Nesf-1 and anti-Insulin.
(G) Negative control of anti-Nesf-1 and anti-Insulin. (G1) Immunofluorescenceof anti-Nesf-1 of double anti-Nesf-1/anti-Insulin. (G2) Immunofluorescence of
anti-Insulin of double anti-Nesf-1/anti-Insulin. (G3) Double immunofluorescence of anti-Nesf-1/anti-Insulin showing different distribution pattern. Scale bars
C,D,F–F3 = 50 µm, E = 12 µm, G–G3 = 25 µm.
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using Adobe Photoshop CS5 (Adobe Systems, San Jose,
CA, United States).

Western Blot Analysis
Bottlenose dolphin pancreas and rat testis samples were
processed as previously described (Gatta et al., 2014). The same
blot membrane was stripped and re-probed against β-actin
(A5060, Sigma, Sant Louis, MO, United States), used as internal
marker. In the specific step, primary polyclonal antibody raised
in rabbit against Nesf-1 (1:2000, Phoenix Pharmaceuticals, cat.
No. H-003-24) was incubated ON at 4 ◦C. This was followed
by incubation with the secondary goat anti-rabbit IgG (1:10000,
Santa Cruz Biotechnology Inc., cat. No. sc-2004) for 1 h, RT.

Nesf-1 Plasma Levels
Nesfatin-1 plasma concentration was measured with an enzyme
immunoassay kit for Nesf-1 (1-82) (Human) (EK-003-26;
Phoenix Pharmaceuticals Inc.) according to the manufacturer’s
protocols.

Glucose Plasma Levels
The glucose plasma levels were measured photometrically on the
Abaxis VetScan VS2 chemistry analyzer.

Statistical Analysis
Data were analyzed as comparison of media and any significant
difference was determined at a significance level of 0.05 via the
application of Student’s t-test, and Pearson correlation coefficient
to indicate the extent to which Nesf-1 and glucose were linearly
related.

RESULTS

Morphological Analyses
Amino acid sequence of Nesf-1 of T. truncatus accounts
for 95% of conservation to human Nesf-1 (Figure 1A). The
employed polyclonal antibody is raised against human Nesf-1
(1–45). Furthermore, western blot analysis showed a Nesf-1
immunoreactive band at 50 kDa, as also observed in rat testis
employed as positive control (Figure 1B). The internal marker
β-actin was detected as a band of about 42 kDa (data not shown).

Nesfatin-1-immunoreactive cells (ic) were distributed mainly
in the peripheral region of small islets. Additional cords of Nesf-
1-ic were detected also in large islets or scattered in the exocrine
component (Figures 1D,E,F1,G1).

To characterize the Nesf-1 distribution in pancreatic islets,
we performed double immunofluorescence experiments against
insulin and GLP-1. In the small islets, insulin-ic were located
predominately in the central core while GLP-1 -ic were localized
to the periphery; in larger islet cords of insulin-ic are interspersed
with cords of glucagon ic-cells (Figures 1F2–G2). The merge
results revealed a complete co-localization of Nesf-1 with GLP-1
in alpha cells of islets (Figure 1F3) whereas no co-localization of
Nesf-1 and insulin positive beta cells was observed (Figure 1G3).

Negative controls of primary antibodies are in Figures 1C,F,G.

Biochemical Analyses
Nesf-1 and Glucose Plasma Levels
Measurement of Nesf-1 plasma concentration revealed no
statistically significant difference (p-value = 0.9328) between
pre- and post-prandial states (Figure 2A). Glucose levels were

FIGURE 2 | Nesf-1 and glucose plasma levels. (A) Plasma Nesf-1
concentrations didn’t show differences during fasting and post-prandial
states. (B) Plasma glucose levels measured during fasting are significantly
higher than those post-prandial states (T-test p < 0.01). (C) Pearson
correlation coefficient was used to display a slight inverse linear correlation
between Nesf-1 and glucose plasma concentration (rpre−prandial = –0.012;
rpost−prandial = –0.026).
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significantly higher (p-value = 0.0039) in the fasting phase
than after the meal (Figure 2B). Furthermore, Nesf-1 and
glucose plasma levels displayed a slight inverse linear correlation
(rpre−prandial = 0.82; rpost−prandial = 0.007) (Figure 2C).

DISCUSSION

Here we describe for the first time the presence of Nesf-1 in
the pancreas of common bottlenose dolphins. The pancreas of
this species, as in most mammals including human, is organized
into lobules, with many exocrine acini that produce enzymes
necessary for digestion and variable numbers of randomly
distributed Langerhans islets, containing glucagon (α-cells) and
insulin (β-cells) producing cells (Colegrove and Venn-Watson,
2015; Cozzi et al., 2017).

Our data show that Nesf-1-ic are primarily distributed in
the peripheral region of small islets of Langerhans and appear
colocalized in glucagon α-cells of pancreas. Previous studies
suggested that NUCB2/Nesf-1 is expressed in the endocrine
islets of pancreas in rodents (Gonzalez et al., 2009; Stengel
et al., 2009) and humans (Foo et al., 2010). Furthermore,
it was established that NUCB2/Nesf-1 and insulin are co-
localized in β-cells in rodents (Gonzalez et al., 2009) and
humans (Foo et al., 2010) suggesting a role in the regulation
of glucose homeostasis, particularly promoting the release of
insulin (Figlewicz and Benoit, 2009), in concentration-dependent
manner (Nakata et al., 2011).

The co-localization of Nesf-1 with GLP-1 we reported in
bottlenose dolphin pancreas can be correlated with the peculiar
glycemic state of this animal. In addition, our results confirm
high serum glucose levels during the fasting state, as already
demonstrated (Venn-Watson and Ridgway, 2007), possibly due
to the low carbohydrate diet and high demands for cerebral
glucose needs. Thus, we hypothesize that Nesf-1 could sustain
GLP-1 secretion to maintain high blood sugar levels. In fact,
Venn-Watson et al. (2013) showed that dolphins in fasting state
had higher levels of glucagon compared to those in post-prandial
state (170 and 152 pg/ml, respectively). A recent study (Riva
et al., 2011) described a positive correlation between NUCB2
and glucagon gene expression in human, suggesting that Nesf-
1 is secreted by β-cell as a response to glucose, and could act
via paracrine mode to stimulate glucagon secretion. Riva’s data
asserted that Nesf-1 is a stimulator of both insulin and glucagon
secretion, hypothesizing different regulatory mechanisms for the
two hormones. An analogous regulation can be hypothesized
in dolphins. However, future studies are necessary to unravel
the mechanism behind biological effects of Nesf-1, including the
challenge of identification of the receptor.

Remarkably, when evaluating plasma Nesf-1 levels in common
bottlenose dolphins, we do not observe significant differences
between fasting or post-prandial states, similarly to data reported
in humans (Li et al., 2010). Nesf-1 plasma levels displays a very
slight inverse correlation to glucose plasmatic levels, therefore the
regulatory mechanisms regulating the blood circulating glucose
and Nesf-1 levels requires further investigations.

Overall, the physiological similarities between primates
and cetaceans support a shared drive for common glucose

metabolism. Only primates and cetaceans have red blood
cells ‘extraordinarily’ permeable to glucose (Craik et al., 1998)
and share high encephalization quotient (EQ) (Jerison, 1973).
These latter relevant aspects can be the key to explain high
metabolic demand of the primates and cetaceans’ large brains
(Goodwin, 1956).

CONCLUSION

Our results add new data on the presence and distribution of
Nesf-1 in the pancreas of common bottlenose dolphins. These
reports highlight the potentiality of this animal species as natural
model to unveil the mechanisms involved in human T2D. Further
research is needed to fully understand the regulatory mechanisms
underlying the glycemic state in dolphins.
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