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Respiratory/inspiratory muscle training (RMT/IMT) has been proposed to improve the
endurance performance of athletes in normoxia. In recent years, due to the increased
use of hypoxic training method among athletes, the RMT applicability has also been
tested as a method to minimize adverse effects since hyperventilation may cause
respiratory muscle fatigue during prolonged exercise in hypoxia. We performed a review
in order to determine factors potentially affecting the change in endurance performance
in hypoxia after RMT in healthy subjects. A comprehensive search was done in the
electronic databases MEDLINE and Google Scholar including keywords: “RMT/IMT,”
and/or “endurance performance,” and/or “altitude” and/or “hypoxia.” Seven appropriate
studies were found until April 2018. Analysis of the studies showed that two RMT
methods were used in the protocols: respiratory muscle endurance (RME) (isocapnic
hyperpnea: commonly 10–30

′

, 3–5 d/week) in three of the seven studies, and respiratory
muscle strength (RMS) (Powerbreathe device: commonly 2 × 30 reps at 50% MIP
(maximal inspiratory pressure), 5–7 d/week) in the remaining four studies. The duration of
the protocols ranged from 4 to 8 weeks, and it was found in synthesis that during exercise
in hypoxia, RMT promoted (1) reduced respiratory muscle fatigue, (2) delayed respiratory
muscle metaboreflex activation, (3) better maintenance of SaO2 and blood flow to
locomotor muscles. In general, no increases of maximal oxygen uptake (VO2max) were
described. Ventilatory function improvements (maximal inspiratory pressure) achieved
by using RMT fostered the capacity to adapt to hypoxia and minimized the impact of
respiratory stress during the acclimatization stage in comparison with placebo/sham.
In conclusion, RMT was found to elicit general positive effects mainly on respiratory
efficiency and breathing patterns, lower dyspneic perceptions and improved physical
performance in conditions of hypoxia. Thus, this method is recommended to be used as
a pre-exposure tool for strengthening respiratory muscles and minimizing the adverse
effects caused by hypoxia related hyperventilation. Future studies will assess these
effects in elite athletes.
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INTRODUCTION

Early studies on the influence of specific respiratory muscle
training (RMT) upon exercise in healthy adults in normoxia
provide convincing evidence supporting the ergogenic effect on
endurance performance (Markov et al., 2001; Stuessi et al., 2001;
Volianitis et al., 2001; Romer et al., 2002a,b; Johnson et al.,
2007). However, there are also some studies being more cautious
of beneficial RMT effects (Morgan et al., 1987; Fairbarn et al.,
1991; Hanel and Secher, 1991) on physical performance. Despite
controversy, the avoidance of respiratory muscle fatigue and
its systemic and perceptual repercussions may play a crucial
role in the health and physical performance. In addition, RMT
effects upon improving blood redistribution to limb locomotor
muscles during heavy exercise (McConnell and Romer, 2004) are
of utmost importance for endurance physical activities. During
recent years it has also been postulated that RMT could be able
to reduce premature fatigue of respiratory muscles subjected to
maximal demand in moderately/highly trained athletes as well
as climbers exposed to hypoxia (Verges et al., 2010). Moreover,
preliminary results indicate favorable RMT effects in normoxia
on endurance and strength of respiratory muscles, and delayed
onset of the respiratory metaboreflex (Dempsey et al., 2006),
lactate accumulation (Verges et al., 2010), hipoxemia (Downey
et al., 2007), and sympathetic activation (McConnell and Romer,
2004). Ideally, these positive responses would be beneficial as an
enhancer procedure of the respiratory muscles prior to exposure
or competition in hypoxia or at altitude (Downey et al., 2007;
Esposito et al., 2010).

Human lowlanders have a normal and programmed
physiological response to hypoxia involving different genetic,
cellular and systemic regulation (Dempsey and Morgan,
2015). Initially, the decrease of arterial oxygen partial pressure
reflexively activates the response of arterial chemoreceptors
inducing an increase in the ventilatory response via neural
systems (Schoene, 2001). The deficient oxygenation of the blood
is known as “hypoxemia” and may be induced by physical
exercise (Romer et al., 2006), exposure to hypoxia (Romer
et al., 2006) or several types of diseases (San Martin et al.,
2017). As a consequence of hyperventilation, metabolic changes
(Katayama et al., 2010) as well as altered neural responses
(Kayser, 2003) and/or peripheral fatigue mechanism alterations
may occur (Kayser et al., 1994). Each individual exhibits a
different level of sensitivity to hypoxia, some responding
more pronounced than others, with the latter suffering from
higher levels of hypoxemia (Chapman and Emery, 1999)
and dyspnea (Amann et al., 2006) during (sub)maximal
exercise. Related to pronounced hyperventilation or dyspnea
during intense exercise in hypoxia, respiratory muscles may
become fatigued and the accumulation of metabolites in
these muscles activates phrenic afferents thereby increasing
sympathetic vasoconstrictor activity in the working skeletal
muscles (Harms, 2007). This response is called respiratory
muscle metaboreflex (Di Prampero, 1985). Witt et al. (2007)
demonstrated in healthy subjects that RMT resulted in a
delayed activation of this reflex during exercise in normoxia
associated with reduced cardiovascular responsiveness and

improved exercise performance. It seems conceivable that RMT
should even more beneficially affect exercise performance in
hypoxia.

Compared to normoxia (Witt et al., 2007), RMT might be
more important in hypoxia due to the particular challenge to
the respiratory muscles. Generally, Di Prampero (1985) and Di
Prampero and Ferretti (1990) described four stages in which
VO2max limitations can occur in both hypoxia and normoxia in
the respiratory process: (1) ventilatory, between the environment
and the alveoli; (2) pulmonary, between the alveoli and the blood;
(3) circulatory, between arterial blood andmuscle capillaries; and
(4) peripherally, between muscle capillaries and mitochondria.
In conditions of hypoxia, the physiological adjustments triggered
in stages 1 and 2 cannot be compensated by equivalent changes
in stages 3 and 4, as they can in conditions of normoxia.
Therefore, although ventilatory function could be relatively well-
preserved, this is not able to fully compensate the PaO2/SaO2

decrease with an existing impairment of the alveolar-capillary
oxygen diffusion capacity (Powers et al., 1989; Di Prampero
and Ferretti, 1990). Consequently, distinct hyperventilation may
occur due to the activation of chemoreceptors (Bernardi et al.,
2006). Hyperventilation in hypoxic environment may seriously
provoke inspiratory muscle fatigue because muscles work at a
shorter than optimal length and at a faster shortening velocity
(Dempsey et al., 2008). This effect seems to be due to the lack of
adaptation because highlanders for example, have blunted (rather
than enhanced) hypoxic chemosensitivity at both rest (Lahiri
et al., 1970) and during exercise (Dempsey et al., 1972). These
people show only minimal hyperventilation during exercise, but
they preserve their PaO2 and SaO2 at about the same level as
observed in considerably hyperventilating lowlanders (Dempsey
et al., 1972). In addition, women are more likely to suffer from
a limitation in expiratory flow during exercise likely due to their
smaller lung volumes and narrower respiratory tract diameters
for a given lung volume (Martin et al., 1987). However, in three
studies which included women (see Supplementary Table 1) no
difference for the respiratory muscle function and performance
was reported. Age may also impact on this process because
aging leads to a loss in tissue elasticity, thereby resulting in
a reduction in the maximal flow volume loop and higher
ventilation proportions in the dead space at rest and during
exercise (Dempsey et al., 2008). All studies included in this study
involved subjects aged below 50 years.

At maximal exercise (above 85% of VO2max) (Harms et al.,
1997) and during exercise in hypoxia (Downey et al., 2007),
activation of the respiratory muscle metaboreflex causes reflex
vasoconstriction of the locomotor muscles (Witt et al., 2007;
Romer and Polkey, 2008). This is considered as an adaptive
mechanism to safeguard pulmonary function and respiratory
muscle perfusion in conditions of maximal physiological
demand, finally ensuring appropriate oxygenation of the brain
and heart (Seals, 2001). During maximal exercise and even
submaximal exercise in hypoxia, RMT has been shown to
effectively attenuate this reflex (Illi et al., 2012) and to
increase blood flow to the locomotor muscles (McConnell
and Romer, 2004). This adaptive response helps to lower
the perception of exertion in conditions of dyspnea (Romer
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et al., 2002b) and improves respiratory muscle efficiency
(Salazar-Martínez et al., 2017).

Why Could the Use of RMT Be Useful in
Athletes and Climbers Exposed to High
Altitude/Hypoxia?
Nowadays, the popularity of hypoxic exposure/training methods
has grown exponentially among endurance athletes and climbers
who aim to improve physical endurance performance (Álvarez-
Herms et al., 2015) and intend to induce the acclimatization
process (Ricart et al., 2000; Levine and Stray-Gundersen, 2001).
Despite some benefits of hypoxic methods on endurance
performance (Bailey et al., 1998;Millet et al., 2010), the individual
response to these conditions (Mazzeo, 2008) requires caution
when performing such interventions. The hypoxic environment
per se promotes higher psychophysiological stress in comparison
with normoxia, thereby increasing the risks of maladaptive
responses in athletes or even that of altitude sickness in climbers
(Richalet et al., 2012; Dempsey and Morgan, 2015). These
responses are somewhat different between the type of hypoxic
exposure [hypobaric (HH) or normobaric (NH)] (Millet et al.,
2010). It seems that HH induces an even higher level of stress and
adaptation at different physiologic levels: ventilation (Savourey
et al., 2003), fluid balance (Loeppky et al., 2005), metabolism
(Kayser, 2009), and performance (Bonetti and Hopkins, 2009).

When lowlanders are exposed to either hypoxic condition,
the key—the initial/decisive—mechanisms inducing
adaptive physiological changes are hyperventilation and
hemoconcentration (Bernardi et al., 2001b; Xing et al., 2008),
challenging the respiratory and cardiovascular systems. The
excess of hyperventilation means a markedly increased work of
breathing (Flenley et al., 1979), as well as increased susceptibility
to expiratory flow limitation, leading to hyperinflation and
severe dyspneic sensations (Bernardi et al., 2006). The energy
cost of breathing in hypoxia (Babcock et al., 1995) increases
exponentially in comparison to normoxia, and amounts to 15–
30% of total maximal oxygen uptake (Bassett and Howley, 2000)
and 14–16% of total cardiac output (Downey et al., 2007). Under
these circumstances, the same activity performed in hypoxia
increases the respiratory muscle stress and promotes faster
fatigue in comparison normoxia. Consequently, respiratory
muscle fatigue in hypoxia represents a limiting factor of physical
performance (Vogiatzis et al., 2007; Verges et al., 2010) in
athletes and climbers.

In order to minimize impairment of exercise performance
during hypoxia exposure, the process of acclimatization is
required to promote physiological adjustments of the respiratory,
cardiovascular, hematologic, metabolic, and neural systems
(Green et al., 1992; Lyons et al., 1995; Nummela and Rusko,
2000; Ricart et al., 2000; Levine and Stray-Gundersen, 2001;
Dempsey et al., 2014). Under these conditions, subjects are
commonly advised to follow various recommendations: (1)
to rest adequately, (2) to optimize nutrition and hydration,
(3) iron intake and, (4) to perform only moderate physical
activity. Recently, the inclusion of RMT has been proposed
as a preparatory method to enhance the respiratory muscle

efficiency 4–6 weeks before athletes and climbers are exposed
to hypoxia/altitude (Downey et al., 2007; Esposito et al., 2010;
Lomax, 2010; Helfer et al., 2016; Lomax et al., 2017; Salazar-
Martínez et al., 2017).

The aim of this review is to provide, (1) a brief description
of the respiratory function during hypoxic exposure, (2) a brief
description of the techniques of RMT, (3) an overview of the
published literature pertaining to the effect of RMT upon exercise
performance in hypoxia, (4) an insight into putative mechanisms
underlying the ergogenic effects, and (5) suggestion for future
investigations.

METHOD

A literature search was done in the electronic databases PubMed
andGoogle Scholar using the keywords: “Respiratory/Inspiratory
muscle training” AND “endurance performance” AND “hypoxia”
OR “altitude”. Articles were selected according to the following
criteria: published at any time before 18 April 2018; interventions
in healthy active or sedentary people with hypoxic exposure;
protocols including a control group (sham or placebo) or
not; studies assessing exercise performance (pre- vs. post-
intervention); and protocols based on specific respiratory
muscle strengthening exercises. The following items were
excluded: literature reviews; conference presentations; short
communications and papers; references of book chapters or
whole books; and articles not written in English. Due to the small
number of studies published in the field, some criteria such as age,
gender, residence altitude, or weight were not considered. All the
data and methodological variables of the selected articles were
initially recorded and analyzed by the first author and further
discussed with co-authors.

RESULTS

Effects of RMT on Exercise Performance in
Hypoxia
All of the cross-sectional studies discussed here (see
Supplementary Table 1) demonstrated that RMT could bean
useful tool for improving ventilatory efficiency and delaying
the onset of premature fatigue during exercise in conditions
of hypoxia (Downey et al., 2007; Esposito et al., 2010; Lomax,
2010; Helfer et al., 2016; Lomax et al., 2017; Salazar-Martínez
et al., 2017). Only Esposito et al. (2010) were somewhat cautious
with the benefits of RMT for physical performance in hypoxia.
They showed that after RMT, ventilatory parameters were
improved (>12% expired volume, >13% alveolar ventilation,
>75% MIP, increased pulmonary function, static and dynamic
volumes, and alveolar-arterial gradient) during hypoxia.
However, submaximal cycling performance was not significantly
enhanced. Study findings regarding the effects of RMT upon
endurance performance in hypoxia remain scarce in comparison
with the large number of investigations performed in normoxic
conditions (Illi et al., 2012). In normoxia, most of the studies
suggested to be useful for improvement of respiratory muscle
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efficiency (static and dynamic) and endurance performance (Illi
et al., 2012).

Characteristics like the type of sport, physical fitness of
subjects, type and duration of exercise (constant or intermittent
exercise) and gender/age may be relevant for the comparability
of published results. Supplementary Table 1 summarizes general
results of studies on RMT and hypoxia.

Types of RMT Protocols
Two RMT protocols have been described in the studies
included in this review: (1) Respiratory muscle strength (RMS)
training (resistive load on inspiration); and (2) Respiratory
muscle endurance (RME) training (resistive load on both
expiration and inspiration at the same time) (ventilatory
isocapnic hyperpnea). RMS includes high-force and low-velocity
contractions, generating maximal muscle pressure capacity on
inspiration and expiration against resistance (Leith and Bradley,
1976). In contrast, RME consists of high-velocity low-resistance
contractions, mainly stimulating the expiratory muscles (Leith
and Bradley, 1976). It has not been determined whether one
method is more valid than the other, because their applicability
in both hypoxia and normoxia depends on several aspects (Illi
et al., 2012): (1) sport type (the athlete’s biomechanical position
during action) and respiratory muscle demand in the active
position; (2) exertion time; (3) exertion modality (constant or
gradual/intermittent); and (4) exercise intensity. The findings
from studies in normoxia have shown that RMT with isocapnic
hyperpnea (RME) is more useful for preventing respiratory
muscle fatigue (Johnson et al., 1993), while the use of devices
to improve RMS (Powerbreathe) is more useful for intermittent
exercises (Romer et al., 2002a). Of the studies included in the
present work, three focused on RME and four on RMS. In both
cases, it was found that specific aspects of their training stimulus
had improved: RME, respiratory muscle endurance and RMS,
respiratory muscle strength—maximal inspiratory power. The
protocols usually described are similar in all studies included in
this review: for respiratory muscle endurance (RME; isocapnic
hyperpnea: 10–30′ during 3–5 days per week) and respiratory
muscle strength (RMS; always employing Powerbreathe devices:
2 × 30 repetitions per day for 5–7 days per week at 50% of
maximal inspiratory pressure). Commonly both protocols were
performed during 4 weeks.

Ventilatory Function During Hypoxia After
RMT
In lowlanders exposed to hypoxia, the respiratory mechanical
demand rapidly increases during the acclimatization process,
especially during exercise intensities above 70% (Fitting, 1991).
The rising hypoxic ventilatory response (HVR) helps to perform
aerobic work at altitude (West, 2000). The fact that each subject
may respond differently to hypoxia is of particular interest
because one subject will benefit more from the RMT than
another.

All included studies analyzing RMT effects demonstrated
some positive change in pulmonary function in hypoxia
(see Supplementary Table 1). However, in some cases no
direct translation of these changes was shown into exercise

improvement. The considerable capacity of the respiratory
muscles to adapt to training can be observed by the significant
increase in maximal inspiratory power (MIP) after stimuli such
as exercise training (Coast et al., 1990), RMT (Illi et al., 2012),
and also exposure to hypoxia (Babcock et al., 1995). MIP
means inspiratory muscle strength, a useful measure to diagnose
pulmonary impairment or improvement (Coast et al., 1990).
Studies analyzing the effect of RMT on MIP in hypoxia found
positive changes when RMS and RME was the aim of the training
protocol (Illi et al., 2012). Such changes may well represent broad
improvements in exercise performance and health in sedentary
and physically active subjects as well (Volianitis et al., 2001;
Johnson et al., 2007; Tong et al., 2008), albeit less so than
in highly-trained subjects (Coast et al., 1990). Lomax (2010)
and Lomax et al. (2017) showed, compared to the control
group, improved MIP (∼15%) and minute ventilation (21%) in
hypoxia within the RMS training group (using Powerbreathe).
However, maximal expiratory power (MEP) did not change
in either group. Downey et al. (2007) also demonstrated a
24.5% improvement of MIP with an equivalent increase in RMS
(25%). In the same study, six of the seven assessed subjects had
improved their respiratory muscle fatigue endurance capacity
and time to fatigue. This aspect is important because, after
exercise in hypoxia, MIP decreases proportionally to respiratory
muscle fatigue (up to 17%) (Downey et al., 2007). In the
study by Salazar-Martínez et al. (2017), the authors suggest that
improved MIP could positively alter respiratory patterns during
exercise in hypoxia without significantly increasing the minute
volume/CO2 volume gradient curve. These authors reported an
increase of ∼28% MIP in hypoxia with a RME protocol. In
concordance with Esposito et al. (2010) and Salazar-Martínez
et al. (2017) also assumed improved alveolar-ventilation and the
alveolar-arterial gradient in hypoxia after RME. In concordance,
Bernardi et al. (2006) demonstrated higher ventilatory efficiency
and “optimized” breathing patterns in Mount Everest and K2
climbers ascending without oxygen compared to those needing
oxygen. Lomax et al. (2017) showed lowered minute ventilation,
CO2 volume and SaO2, in those with improved MIP thereby
improving ventilatory efficiency during constant exercise in
hypoxia (cycling). It is to highlight that such changes in MIP
were only observed in the RMT groups but not in the control
groups. Conversely, Esposito et al. (2010) reported after a RMS
protocol (without control group) improved MIP by around 50%,
but there were no changes in exercise performance. The effects
of RMT on MIP in normoxia are similar, although values are
lower (10–18%) in rowing (Volianitis et al., 2001) and cycling
(Romer et al., 2002b). MIP measurement is highly relevant to
assess the respiratory efficiency after different RMT protocols;
however, there seems not to be a direct relation with better
exercise performance neither in normoxia nor hypoxia.

VO2max and SaO2
When ascending to high altitude, the partial pressure of
oxygen (PO2) falls and hypoxemia develops within minutes
of arrival. To limit the drop in the arterial oxygen content,
cardiac output is elevated through sympathetic activation and
alveolar ventilation is increased due to stimulation of peripheral
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chemoreceptors (San Martin et al., 2017). Nevertheless, aerobic
exercise capacity decreases (Saunders et al., 2009), related to
both a decrease in arterial oxygen content and a limitation in
maximal cardiac output (Fulco et al., 1998). Poor ventilatory
efficiency has to be compensated by hyperventilation to maintain
appropriate SaO2 levels (Rusko et al., 2004; Burtscher et al.,
2006) but sometimes leading to respiratory muscle fatigue. In
addition, the decrease in maximal cardiac output at altitude
has been explained by the combined effects of decreased blood
volume, hypocapnia, increased viscosity of the blood, autonomic
nervous system changes, and/or depressed myocardial function
(Wagner, 2000). An additional factor might be a limitation in
right ventricular flow output secondary to hypoxic pulmonary
hypertension. Actually, an improvement in maximal workload
and maximal oxygen uptake (VO2max) together with a decrease
in pulmonary artery pressure (PAP) was reported after the intake
of medication as sildenafil or dexamethasone in hypoxic healthy
volunteers (Ghofrani et al., 2004). However, improved exercise
capacity in these studies could not unequivocally be ascribed
to associated inhibition of hypoxic pulmonary vasoconstriction,
because of additional effects including a variable improvement in
arterial oxygen content (Richalet et al., 2005). Alveolar hypoxia
promotes the adaptive vasomotor response defined as hypoxic
pulmonary vasocontriction (HPV), which redistributes blood
to optimally ventilated lung segments by an active process
of vasocontriction, particularly involving the small, muscular
“resistance” pulmonary arteries (Moudgil et al., 2005). HPV
may be disadvantageous in global hypoxia due to a substantial
increase in pulmonary vascular resistance and pulmonary arterial
pressure (Bärtsch and Gibbs, 2007). Genetic adaptation may
favor highlanders to have lower pulmonary arterial pressure
in hypoxia compared with lowlanders (Stuber et al., 2008).
However, HPV is significantly improved by hyperventilation
(Bindslev et al., 1985). Taking into account that hyperventilation
in hypoxia promote respiratory muscle fatigue and premature
decrease in exercise performance, RMT could be an useful tool
to minimize the effects of HPV in hypoxia during acclimatization
phases and or during maximal physical effort. At the same time,
RMT may also favor a more efficient breathing pattern, thereby
improving the level of alveolar ventilation and maintaining SaO2

values (Bernardi et al., 2006). RMT has been demonstrated
to be effective in reducing breathing rate (and elevating tidal
volume) at sea level (Bernardi et al., 2014) and at altitude as well
(Keyl et al., 2003). Indirectly, slower breathing reduces the HVR
(Bernardi et al., 2001a) and diminishes the heart rate response
and systemic blood pressure at altitude. Lower ventilatory needs
and sympathetic activation could help to maintain exercise
capacity at extreme altitudes (Somers et al., 1991). Long term
adaptive breathing patterns are found in professional endurance
athletes which are highly efficient, since tidal volume don’t seem
to reach a plateau at high exercise intensities (Luciá et al.,
1999). In contrast, normal healthy humans increase minute
ventilation by higher breathing frequencies with tidal volume
showing a plateau or even a slight decrease (Martin and Weil,
1979; Clark et al., 1983). Witt et al. (2007) suggested that
respiratory muscles do not limit maximal oxygen uptake when
they are well trained, but would promote a more efficient

gas exchange (better ventilation-perfusion and alveolar-capillary
exchange) (Salazar-Martínez et al., 2017). Consequently, delayed
sensation of dyspnea and an attenuation of the respiratorymuscle
metaboreflex will occur. Salazar-Martínez et al. (2017) and
Esposito et al. (2010) specifically suggested improve ventilation-
perfusion and alveolar-arterial gradient in hypoxia after RMT
(RMS). RMT has not be shown to be directly effective in
improving parameters such as stroke volume, cardiac output or
VO2max in either normoxia (Edwards et al., 2008) or hypoxia
(Downey et al., 2007; Esposito et al., 2010; Salazar-Martínez
et al., 2017). However, Keramidas et al. (2011) (combining
RMT with aerobic exercise) and Lomax et al. (2017) showed
slight improvements in VO2max during exercise in hypoxia.
Interestingly, by strengthening the respiratory muscles with
RMT, the oxygen cost in those muscles seem proportionally to
decrease, thereby enabling greater oxygen availability for the
locomotor muscles and improving motor recruitment via the
central nervous system (Edwards and Walker, 2009). Salazar-
Martínez et al. (2017) noted that subjects who showed a lower
O2 cost for the same increase in minute ventilation were
those who performed better in cycling time trials. In contrast,
Esposito et al. (2010) reported, during maximal exercise in
hypoxia, decreased post-RMT VO2max (−23%) and maximal
power (Watts) (−20%) compared to normoxia. Although two
studies found improved VO2max in hypoxia after RMT, it remains
uncertain whether RMT does really provide direct benefits
on aerobic capacity and maximal performance in hypoxia/at
altitude.

Of the seven studies analyzed (see Supplementary Table 1),
only one (Esposito et al., 2010) did not report beneficial
post-RMT changes in SaO2. Moreover, these improvements
were demonstrated after RMT during exercise at moderate
(3,000m) (Kleinsasser et al., 2004) as well as high altitudes
(>5,000m) (Lomax, 2010). The mechanisms promoting a
post-RMT rise of SaO2 in hypoxia are not fully understood.
However, different hypotheses have been proposed, such as
alterations in pulmonary capillary red blood cell transit time
and/or improvement in the ventilation-perfusion relationship
(Bender et al., 1989; Lomax et al., 2017). In this regard, Lomax
et al. (2017) reported that post-RMT ventilatory efficiency
improved (SaO2/minute volume ratio) during exercise in
hypoxia, indicating less ventilatory needs to maintain a certain
SaO2 level. Downey et al. found a post-RMT increase in
pulmonary diffusion capacity (23%) as the cause for improved
SaO2 (Downey et al., 2007). These changes globally would
modify the inputs perceived by the peripheral chemoreceptors
and in turn, proportionally reduce minute ventilation (Downey
et al., 2007) thereby triggering a lower perception of dyspnea
and sympathetic activation (Amann et al., 2006). This is
an important aspect, since in conditions of hypoxic or
maximal exercise the inspiratory muscles work at around
90% of their available capacity to generate pressure (Aaron
et al., 1992). In athletes and mountaineers, the potential to
perceive respiratory discomfort and fatigue to a lesser extent
represents an important element in order to better tolerate the
environmental conditions and maintain exercise performance
(Noakes, 2000; Noakes et al., 2005).
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Metabolic Acidosis and Metaboreflex
The increased anaerobic metabolism induced by exercise
in hypoxia consequently increase the level of circulating
metabolites, e.g., lactate and hydrogen ions, in active muscles
(including the respiratory muscles). In response to this metabolic
acidosis, the fall of arterial pH is constrained by the magnitude
of the compensatory hyperventilation (Rausch et al., 1991).
Oren et al. (1981) demonstrated that enhanced ventilatory drive
resulting from metabolic acidosis also accelerated the ventilatory
kinetics during subthreshold square-wave exercise. It has been
shown that RMT upregulates monocarboxylate transporters 1
(MCT1) and 4 (MCT4) (McConnell and Sharpe, 2005) and the
removal of lactate and hydrogen ions from respiratory muscle
fibers (McConnell and Sharpe, 2005; Brown et al., 2012). In
normoxia, post-RMT lactate levels are reduced during moderate-
to-high-intensity exercise (Illi et al., 2012). Moreover, improved
tolerance to acidosis after RMTmay contribute to the attenuation
of the metaboreflex and reduce premature fatigue occurring
during exercise in hypoxia (Witt et al., 2007). Taken together,
the metabolic efficiency after RMT may improve the control of
blood gases and pH homeostasis during prolonged and intensive
exercise in any environmental condition (Lucia et al., 2001).

The connection between muscle contraction and
cardiorespiratory responses is evident from the known activation
in the discharge frequency of metabosensitive group III/IV,
muscle afferents projecting to the cardiorespiratory control
centers in the CNS (Amann and Kayser, 2009). This “exercise
pressor reflex” (the feedback component) plays, next to central
command (the feedforward component) (Waldrop et al., 2011),
a key role in the neural control mechanisms determining the
proper cardiorespiratory response to exercise. The metaboreflex
originating from respiratory muscles attenuate blood flow
to the working limb muscles in favor of respiratory muscles
(Hansen et al., 2000). Metaboreflex attenuation with the use of
RMT is currently a method achieving a broad consensus in the
scientific literature. It supports the application of this method
to improve respiratory and exercise performance (González-
Montesinos et al., 2012). RMT improves clearance capacity and
tolerance of lactate and hydrogen-ion levels, especially of the
respiratory muscles (McConnell and Sharpe, 2005; Johnson
et al., 2007; Brown et al., 2012). In conditions of normoxia,
this aspect has been described as a positive one for improving
recovery during high-intensity intermittent exercises (Brown
et al., 2010) with a constant load and of a time-trial nature
(Johnson et al., 2007), increasing the length of time to exhaustion
(Gething et al., 2004), regardless of gender (Guenette et al.,
2006). In addition, it helps to improve metabolic thresholds
and training paces in stable lactate conditions (Brown et al.,
2012). In hypoxia, greater respiratory muscle fatigue increases
the energy cost of the respiratory process, thereby increasing
competition for blood redistribution and decreasing exercise
capacity. Thus, strengthening the respiratory muscles directly
contributes to a delayed onset of respiratory muscle fatigue by
attenuating the onset of reflex vasoconstriction (Harms et al.,
1997, 1998; Romer et al., 2006). Debevec and Mekjavic (2012)
demonstrated that after four intermittent normobaric exposures
(sessions) VE and SpO2 (+5%) increased during exercise in

hypoxia without affecting high intensity endurance performance.
However, the increased exercise ventilation did not result in
a significant alteration of the regional cerebral and muscle
oxygenation pattern or regional blood volume redistribution
from the working leg to the respiratory muscles during hypoxic
exercise.

Perceptive Discomfort of Dyspnea
Loading and unloading of the respiratory muscles during intense
exercise have substantial effects on the perception of both
respiratory and limb effort (Suzuki et al., 1995; Nicola et al.,
2016). The increased central motor command to the locomotor
and to the respiratory muscles may be directly perceived via
central corollary discharge as an increased sense of muscle
effort (Gandevia, 1988). Furthermore, discomfort of limb and
respiratory muscles may also arise from the periphery via
activation of muscle type IV afferents as muscle metabolites
accumulate with the onset of fatigue (Harms et al., 2000).
Increasing respiratory muscle work is related to increasing
respiratory discomfort (O’Donnell et al., 1999) associated with
impaired physical performance (Harms et al., 2000). Due to
higher demand of blood flow to the respiratory muscles in
hypoxia, benefits argued from RMT may be of interest to reduce
perceptive dyscomfort. Although nearly all studies indicate in
some way the lower effort perception during exercise in hypoxia
after RMT, only Downey et al. (2007) presented data on the
ratings of effort perception and dyspneic sensations (p < 0.05),
which were significantly decreased in the RMT group.

Discussion
This review provides evidence for RMT to be an effective
stimulus for improving strength and endurance (with RME or
RMS protocols, see Supplementary Table 1) of the respiratory
muscles. These adaptive responses contribute to improved
ventilatory function/efficiency very likely translating into exercise
performance improvements in normoxia and particularly in
hypoxia (Illi et al., 2012; Sales et al., 2016). Thus, it seems
evident that RMT has the potential to minimize at least some of
the limiting factors related to the respiratory system occurring
during training/competition at altitude/in hypoxia. Expected
benefits may include, (1) delayed onset of premature fatigue,
(2) delayed respiratory muscle metaboreflex onset/activation,
(3) improved clearance and tolerance to anaerobic metabolite
products, (4) decreased perception of dyspnea, (5) increased
SaO2 values, and (6) more favorable blood redistribution to
the locomotor muscles. Both normal trained persons and elite
athletes may benefit from RMT. Particularly in some diseases as
obesity, the main pathophysiological mechanisms involved in the
impairment of the uptake and management of oxygen include
a heightened demand for ventilation, increased work related
to breathing, respiratory muscle inefficiency, and diminished
respiratory compliance (Parameswaran et al., 2006). Causes for
these respiratory abnormalities in obesity include a decrease in
total respiratory system compliance, (1) decreased chest wall
compliance due to the accumulation of fat in and around
the ribs, the diaphragm, and the abdomen (Naimark and
Cherniack, 1960). As BMI increases (particularly in morbidly

Frontiers in Physiology | www.frontiersin.org 6 January 2019 | Volume 9 | Article 1970

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Álvarez-Herms et al. Respiratory to Improve Performance in Hypoxia

obese individuals), there is evidence of a reduction in expiratory
flow and a decrease in forced expiratory volume in 1 second and
forced vital capacity (Jaoude et al., 2012). In these conditions,
RMT could also be an important tool to improve respiratory
muscle function and exercise performance.

Of the analyzed studies in this review only Downey et al.
(2007) assessed exercise performance on a treadmill whereas the
others used cycle ergometry. This aspect is important because
the cycling position has been described as highly stressful for
the respiratory muscles promoting premature fatigue (Romer
et al., 2002b; Johnson et al., 2007; Hellyer et al., 2015). It
is also relevant to note that the hypoxic conditions used in
these studies (FiO2 of 11–16, see Supplementary Table 1) were
slightly higher in comparison with the common altitude used
for training/exposure of athletes (between 1,800 and 2,800m).
A delay in the onset of premature fatigue in hypoxia is the
key point described in post-RMT improvement of exercise
performance (Babcock et al., 1995; Gudjonsdottir et al., 2001;
Downey et al., 2007). This may be primarily explained by a
reduced respiratory muscle metaboreflex after RMT (Romer
et al., 2006). During endurance exercise at a constant pace,
Helfer et al. (2016) and Keramidas et al. (2011) demonstrated
increased exercise time in hypoxia post RMT (44 and 36%
at 75 and 80% of VO2max) when compared to the control
group. The delayed onset of fatigue was partly attributed to
the attenuation of reflex vasoconstriction of the locomotor
muscles and a decrease in metabolite accumulation (Leddy et al.,
2007).

Breathing during exercise in hypoxia (FiO2 equal to 0.15) is
associated with increased energy costs (20–30%) when compared
to normoxia (Babcock et al., 1995), thereby more likely causing
respiratory muscle fatigue (Verges et al., 2010). Downey et al.
(2007) also confirmed 20–30% higher ventilatory demands in
hypoxia compared to normoxia (FiO2: 0.14). Hyperventilation
is one of the factors contributing to the more pronounced
perception of fatigue and dyspnea (Morgan et al., 1987; Fairbarn
et al., 1991). Lomax et al. (2017) proposed hyperventilation
during exposure to hypoxia as an useful adaptive response to
promote improved inspiratory muscle efficiency and cycling
performance. Associated with the improved respiratory efficiency
after RMT, blood flow to the locomotor muscles seems to
be better maintained (Harms et al., 1997; McConnell and
Romer, 2004), thereby reducing the sensation of peripheral
fatigue (Suzuki et al., 1995; Volianitis et al., 2001; Romer
et al., 2002b; Edwards et al., 2008). Although perceived exertion
is extremely important for exercise performance in hypoxia
(Álvarez-Herms et al., 2016), it has not been received much
attention. The perception of exertion is connected with the
afferent feedback from lung receptors to respiratory control
centers in the brain, which may influence performance capacity
depending on the positive or negative interpretation (Noakes,
2004). RMT helps to integrate this sensory feedback and to
expand the ranges of tolerance to exertion (St Clair Gibson
et al., 2006). In addition, RME has been reported to provide
benefits by improving processing speed and working memory
during exercise at altitude vs. placebo/control (Quackenbush

et al., 2016). Summarizing these findings, RMT has the potential
to improve exercise performance in hypoxia and should therefore
be considered as part of the preparation for training or competing
at altitude. Based on the relevant studies available, RMT protocols
should be based on cycles of five sessions a week for 4–
8 weeks of RMS (30–40 reps/d) or RME (20–30

′

at 50%
MIP).

LIMITATIONS OF THE STUDY

It has to be pointed out, that studies currently published
about RMT and hypoxia were a small number, subjects and/or
conditions are dissimilar and did not assess elite athletes. In
the included studies only the one by Salazar-Martínez et al.
(2017) considered amateur cyclists. The remaining investigations
included sedentary or physically active subjects with a large
capacity to improve their exercise and ventilatory function.
In this respect, and unlike to studies conducted in normoxia
[cycling (Sonetti et al., 2001; Romer et al., 2002b; Holm et al.,
2004) and rowing (Volianitis et al., 2001; Wells et al., 2005)],
we encountered limitations in extrapolating the results to elite
athletes or high-altitude climbers. Methods used to assess post-
RMT changes (respiratory muscle strength vs. endurance) in
respiratory and exercise performance were not homogeneous
and consequently, findings varied markedly. Thus, future studies
should assess individual RMT effects in well-trained athletes
and professional climbers using standardized RMT protocols
and performance tests. No study was aimed to compare the
hypoxic type of exposure (HH or NH) and consequences of
respiratory muscle function after RMT. For instance, Savourey
et al. (2003) found that HH leads to more pronounced
hypoxemia, hypocapnia, blood alkalosis and a lower SaO2

in comparison to NH. Despite these differences in adaptive
responses, the possibility that RMT would more effectively help
to maintain exercise performance in HH than NH has not been
evaluated.

CONCLUSIONS

In conclusion, RMT potentially represents an appropriate
method to improve respiratory and exercise performance
in hypoxia/altitude. RMT effects may include (1) reduced
respiratory muscle fatigue, (2) delayed respiratory muscle
metaboreflex activation, (3) better maintenance of SaO2 and
blood flow to locomotor muscles. However, RMT effects on
exercise performance at altitude/in hypoxia in elite athletes
have to be established, especially considering individual needs
depending on baseline characteristics, type of sport and hypoxic
environmental conditions (HH or NH).
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Supplementary Table 1 | Summary of the studies included in the revision:
Respiratory muscle training and performance in hypoxia. RMT, respiratory muscle
training; VO2max, maximal oxygen uptake; resp/d, respirations per day; MIP,
maximal inspiratory pressure; MVV, maximal volume ventilation; TT, time trial; N/A,
not available; FiO2, inspired fraction of oxygen; n, number of participants; SpO2,
peripheral blood oxygen saturation; VE, expired minute volume; RER, respiratory
exchange ratio; RAW, total airway resistences; VT, tidal volume; PPO, peak power
output; TT, time trial; VEmax, maximal minute ventilation; WTTmean, mean of watts
during time trial; W/kg, watts per kilogram; FVC, forced vital capacity; FEV1,
forced expired volume in the first second; PEF, peak expiratory flow; VC, vital
capacity; ERV, expiratory reserve volume; RV, residual volume; HR, heart rate;
cmH2O, centimeters of water; VCO2, carbon dioxide volume; HRmax, maximal
heart rate; HH, hypobaric hypoxia; NH, normobaric hypoxia.
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