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Fitness level, fatigue and adaptation are important factors for determining the optimal

training schedule and predicting future performance. We think that adding analysis of

the mutual relationships between cardiac and respiratory activity enables better athlete

profiling and feedback for improving training. Therefore, the main objectives were (1)

to apply several methods for temporal causality analysis to cardiorespiratory data; (2)

to establish causal links between the signals; and (3) to determine how parameterized

connections differed across various subgroups. One hundred elite athletes (31 female)

and a control group of 20 healthy students (6 female) took part in the study. All were

asked to follow a protocol comprising two 5-min sessions of free breathing - once

supine, once standing. The data were collected using Pneumonitor 2. Respiratory-related

curves were obtained through impedance pneumography, along with a single-lead ECG.

Several signals (e.g., tidal volume, instantaneous respiratory rate, and instantaneous

heart rate) were derived and stored as: (1) raw data down-sampled to 25 Hz; (2)

further down-sampled to 2.5 Hz; and (3) beat-by-beat sequences. Granger causality

frameworks (pairwise-conditional, spectral or extended), along with Time Series Models

with Independent Noise (TiMINo), were studied. The connections enabling the best

distinctions were found using recursive feature elimination with a random forest kernel.

Temporal causal links are the most evident between tidal volume and instantaneous

heart rate signals. Predictions of the “effect” variable were improved by adding preceding

“cause” samples, bymedians of 20.3% for supine and 14.2% for standing body positions.

Parameterized causal link structures and directions distinguish athletes from non-athletes

with 83.3% accuracy on average. They may also be used to supplement standard

analysis and enable classification into groups exhibiting different static and dynamic

components during performance. Physiological markers of training may be extended

to include cardiorespiratory data, and causality analysis may improve the resolution of

training profiling and the precision of outcome prediction.

Keywords: granger causality framework, athlete training adaptation biomarker, cardiac function, tidal volume,

elite athletes
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1. INTRODUCTION

Comprehensivemonitoring and testing of homeostatic processes,
fitness level, fatigue, adaptation and recovery appears crucial
for sports medicine practitioners to identify optimal training
schedules, establish sufficient training loads and promote
desirable progress and competitive performance (Meeusen et al.,
2013; Halson, 2014; Coutts et al., 2017; Kellmann et al., 2018;
Schneider et al., 2018).

The advance of medical devices and even wearable sensors
makes it easy to quantify outputs. Training load indicators may
come from the training set-up itself, from training equipment,
accelerometers, etc. (Cardinale and Varley, 2017). The training
schedule may be established objectively, and competitions
produce a wealth of performance metrics.

The problem is in quantifying and analyzing the input
information. Homeostasis is a capacious term. Fitness level and
fatigue are largely subjective. Adaptation and recovery can be
estimated, but usually only regarding a specific parameter. It
appears there is no holistic framework (Heidari et al., 2018).

One of the commonly usedmethods in daily practice is cardiac
monitoring (Buchheit, 2014; Schmitt et al., 2015; Bellenger et al.,
2016; Duking et al., 2016; Giles et al., 2016; Plews et al., 2017).
Average heart rate and many heart rate variability parameters
have been proposed to describe the resting, exercise and recovery
states of the heart, to assess the training load (Saboul et al., 2016),
to evaluate high vagal activity (Nakamura et al., 2016), to predict
performance (Triposkiadis et al., 2009), to test the heart activity
changes induced by endurance and athletic activities (Berkoff
et al., 2007; Vanderlei et al., 2008), and to analyze over-training
syndrome (Dong, 2016) or training adaptation (Plews et al.,
2013).

Still, there are many doubts about implementing heart activity
parameters, due to various studies yielding discordant results,
using different courses of analysis or even over-interpreting
(Schneider et al., 2018). Therefore, separate heart activity data can
be used only for a few aspects of sports medicine.

The concept of network physiology is widely accepted
(Bartsch et al., 2015), as cardiac parameters may be influenced
by many factors, e.g., environmental, anatomical, physiological,
psychological, demographic, etc. (Sandercock et al., 2005;
Fatisson et al., 2016). There is also no clear consensus as to which
coefficients are best in training response evaluation (Sala et al.,
2017).

One testable combination is that of breathing and heart
activity. The relationship between heart rate and ventilation is
well described, but still very complex. The effect of breathing
phasing is usually apparent in resting ECG as sinus respiratory
arrhythmia (Larsen et al., 2010; Shaffer et al., 2014; McCraty and
Shaffer, 2015). The alternate cardiorespiratory coupling, in which
heartbeats seem to coincide with specific respiratory phases due
to increased sympathetic nervous activity and changes in arterial
blood pressure, has also been tested (Penzel et al., 2016; Sobiech
et al., 2017). On the other hand, the baroreflex seems to adjust
neural responses and affect both heart and respiratory activity
(Reyes del Paso et al., 2013).

Separate use of both signals would not reveal significant
information nor improve study resolution. Several parameters,

like RMSSD, might be uninfluenced by tidal volume pattern,
for both spontaneous and controlled breathing (Saboul et al.,
2013), still being under the effect of respiratory rate (Schipke
et al., 1999). Therefore, many methods of mutual signals analysis
have been considered. Assessed frameworks have included time-
, frequency- or information-domain parameterization; temporal,
phase or causal relations; etc. (Jamšek et al., 2004; Lopes et al.,
2011; Riedl et al., 2014; Gasior et al., 2016; Javorka et al., 2016;
Müller et al., 2016; Kuhnhold et al., 2017; Sobiech et al., 2017;
Wejer et al., 2017).

In our previous work, we tried to add another domain of
interest, time-independent causality (Młyńczak and Krysztofiak,
2018). Our discoveries suggested different paths for lying
supine (from tidal volume, through heart activity variation and
average heart activity, to respiratory timing) than for standing
(from normalized respiratory activity variation to average heart
activity).

In a traditional approach, such a graph of connections is
treated as an input. We proposed a different context: from a
graph, one can indicate which interventions (changes in training
schedule) may be applied to expect specific results. This is related
to the “bottom-up” strategy of thinking about designing the
training based on the optimal parameter that describes and shows
adaptation status, not the inverse (Młyńczak and Krysztofiak,
2018).

Going into greater detail, the next step is temporal causality
analysis. Granger-based causality or transfer entropy are the
two most important methods (Faes et al., 2013; Porta et al.,
2017; Valenza et al., 2018). In general, regardless of the details
in various formulations, they may cover different aspects of
relations between two time series, except for linear Gaussian
processes, when they can be considered equivalent (Porta and
Faes, 2016). The novel frameworks also include the generalization
of the basic concept, in which the effect of zero-lag can also be
considered and evaluated. Causal inference related to Time Series
using Restricted Structural Equation Models (TiMINo) has also
been introduced (Peters et al., 2013).

As the methods mentioned above can produce some
parameters and indices, we hypothesize that they can be used
to improve athlete profiles and analyze trends during a training
period.

Therefore, the main objectives were:

• to apply several methods for temporal causality analysis to
cardiorespiratory data;

• to establish causal links between the collected cardiac and
respiratory signals; and

• to determine how parameterized connections differed across
groups depending on the static and dynamic activity
component during performance, or control.

2. MATERIALS AND METHODS

2.1. Subjects and Device
A group of 100 elite athletes practicing different sports (31
female; mostly overlapping with the previous paper (Młyńczak
and Krysztofiak, 2018), the difference in 5 subjects is coming
from the need to ensure the stationarity of the signal for sufficient
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temporal causality analysis) and 20 healthy students (treated as
a control group; 6 female) took part in the study, carried out
at the National Centre for Sports Medicine in Warsaw during
the routine periodic health evaluation and medical monitoring
program, 3–4 months before the 2016 Olympic Games in Rio de
Janeiro.

The sport types are defined according to Mitchell et al. (2005),
where numbers refer to the static component of heart activity
expressed as % of its maximal voluntary contraction (MVC):

• Low (I-29 subjects);
• Medium (II-42); and
• High (III-29);

and letters to the dynamic component (e.g., % of VO2max)
occurring during competition:

• Low (A-5 subjects);
• Medium (B-45); and
• High (C-50).

The demographic descriptive statistics of the athletes are
summarized in Table 1.

The procedure was approved by the Ethics Committee
of Warsaw Medical University (permission AKBE/74/17). All
participants were informed about the general aim of the
measurements, and each athlete had previously signed a general
consent form for the routine medical monitoring (consisting of
a statement of acceptance of the use of the results for scientific
purposes). The students provided separate written consent.

The data were collected using our device, Pneumonitor 2
(Młyńczak et al., 2017). This is the academically-developed
prototype, intended for conducting research and teaching.
Respiratory-related curves were obtained through impedance
pneumography, along with a single-lead ECG (lead 2). The
impedance data were measured using the tetrapolar method,
with the electrode configuration proposed by Seppa et al. (2013).
StandardHolter-type, disposable ECG electrodes were used. Both
signals were sampled at 250 Hz. Task Force (1996) stated it
is the smallest sufficient in terms of R peak finding and heart
rate variability analysis and over-sampled from a respiratory
perspective.

2.2. Protocol and Pre-processing
The measurements were performed in a diagnostic room
designated for cardiological examinations. All participants were
asked to follow a protocol comprising:

• attachment of the electrodes,
• 10-min stabilization phase,
• 5-min session of spontaneous breathing while lying supine,

and
• 5-min session of spontaneous breathing while standing.

None knew the impact of breathing and position on the study
outcomes. The protocol is inspired by the orthostatic maneuver;
however, we did not take into account several sub-periods
(adaptation, recovery, etc.), but rather performed the analysis for
the entire supine and standing segments.

ECG signals were processed by non-linear detrending for
baseline alignment. Consecutive R peaks in each signal were
then found based on the Pan-Tompkins algorithm. On the
respiratory side, raw IP signals were first pre-processed by
smoothing with a 1 s averaging window (Młyńczak and Cybulski,
2017). Then, inspiratory and expiratory phases were detected
from the differentiated, flow-related signal. We did not transform
impedance into the volume, instead assuming that impedance
changes reproduce the tidal volume signal in terms of shape
(linear fitting provides the best agreement between IP and
the reference, pneumotachometry) (Młyńczak et al., 2015).
Therefore, no calibration was performed.

Next, three kinds of dataset (to assess the reliability of several
temporal causality methods when applied to cardiorespiratory
data) were calculated for each participant in each body position:

1. tidal volume (TV) + instantaneous respiratory rate (iRR)
+ and instantaneous heart rate (iHR), all down-sampled to
25 Hz (for the temporal causal analysis of signals);

2. the same data further down-sampled to 2.5Hz (for the spectral
causal analysis of signals); and

3. lengths of consecutive RR intervals + TV-related impedance
amplitude + iRR + breathing phase, the last three measured at
the R peaks (for the causal analysis of beat-by-beat sequences;
1 is an arbitrary value standing for inspiratory phase, –1 for
expiratory, and 0 for pause).

The iRR was calculated by estimating intervals between
consecutive inspiratory onsets, then interpolating to the initial
sampling frequency. In the same manner, the iHR was calculated
by estimating intervals between successive R peaks, then
interpolating to fit the number of samples for TV data.

The first down-sampling was intended to reduce
computational complexity (deep embedding in terms of
samples), the second - to analyze the proper subrange of
frequencies. Both were accompanied by suitable low-pass
filtering. All analyses were carried out in MATLAB.

The stationarity analyses were performed on the signals from
the first dataset using augmented Dickey-Fuller Test (in R,
using tseries package, Trapletti and Hornik, 2018). As the null
hypothesis is that the time series has a unit root, we considered
the data to be stationary when p < 0.05.

2.3. Causality Analysis
Four methods of causality analysis were studied:

• Granger causality;
• Spectral Granger causality;
• Extended Granger causality; and
• Time Series Models with Independent Noise (TiMINo).

First three techniques are based on the Granger concept of
causality intended for time series. The main idea of this approach
is that X can be treated as a “cause” of Y if taking previous X
values along with Y ones enables preparing the model, which
predicts the next Y values better than by only taking previous
Y values. The efficiency of the prediction can be parameterized
by the variance of the differences between predicted and actual
Y values. So-called G-causality combines the variances of two
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TABLE 1 | The demographic summary of the study group; the sports types are defined according to Mitchell et al. (2005) and the description in Materials and Methods.

Group (sport type) N Height [cm] Body mass [kg]

Female Male Min Mean SD Max Min Mean SD Max

Control 6 14 157.0 176.0 7.5 186.0 52.0 66.5 9.9 91.0

IIIA 0 5 168.0 176.8 9.2 189.0 68.0 80.8 10.2 95.0

IB 4 20 170.0 193.5 11.2 208.0 61.0 82.9 12.9 104.0

IIB 7 2 167.0 174.7 9.4 193.0 55.0 65.0 15.0 98.0

IIIB 4 8 158.0 174.3 12.0 197.0 53.0 79.8 32.6 151.0

IC 1 4 169.0 176.0 9.3 190.0 55.0 71.8 13.0 85.0

IIC 11 22 162.0 185.3 12.8 207.0 49.0 81.2 17.9 115.0

IIIC 4 8 171.0 179.5 6.4 189.0 63.0 75.4 6.3 88.0

models with or without including X, and can be calculated with
the equation (1):

GCx→y,p = ln

(

Var
(

ŷ ‖ y, p
)

Var
(

ŷ ‖ y+ x, p
)

)

(1)

where p is the model order, and the arrow presents tested
direction.

It appears that the G-causality parameter has F-distribution
and the statistical test can be proposed to assess the significance
of the predictability improvement when using X along with Y.
When p-value is lower than an arbitrarily adopted threshold at
the level of 0.05, X can be considered to be a “Granger-cause” of
Y (Granger, 1980; Barnett and Seth, 2014).

The first approach, pairwise-conditional one (because of
multivariate data), was applied to the first dataset and based on
the MVGC framework (Barnett and Seth, 2014). It uses VAR
modeling, and the best model order is chosen based on the
automatically-established Bayesian Information Criterion (BIC),
as presented in the Supplementary Material S1.

The second approach, pairwise-conditional spectral analysis,
was applied to the second dataset and also uses MVGC
framework (Barnett and Seth, 2014). The possibility of Granger
analysis in the frequency domain is based on the concept of
cross-power spectral density decomposition and utilizing the
generalized definition of G-causality. The process (and also the
justification of the usage of F-statistics for a conditional case) is
described in detail in Geweke (1982) and Barnett and Seth (2014).

The third approach, extended Granger causality framework,
is built on the same concept; however, differently as in the
original case, it also takes into account zero-lag, instantaneous
effects. This assumption came from physiological analyses,
when phenomena take place within the same cycle,
for cardiorespiratory conditions mostly affected by the
parasympathetic system. The implementation is presented
in detail by Schiatti et al. (2015). We applied the method to the
third dataset, with an arbitrarily-established maximum lag of 4
(as R peak is a trigger it usually covers from the middle to the full
respiratory cycle).

The last approach, Time Series Models with Independent
Noise (TiMINo), is based on generalized additive models
(GAMs) as an extension of the Structural Equation Model

framework to time series data (Peters et al., 2013). Not like
it is in the Granger definition, which exploits the residual
variance, TiMINo models require independent residual time
series. Another aspect is the model class restriction to additive
noise ones. As described by Peters et al. (2013) both lagged
and instantaneous effects can be found and so-called unfaithful
feedbacks between the time series may be also deduced. Peters
et al. (2013) showed that when the data are causally insufficient
or the proposed model is misspecified, this method will avoid
incorrect answers. Additionally, this method is not built on the
asymmetry of time direction but rather considers identifiability
emerging from restricted structural equation models (Peters
et al., 2013). Similarly, this approach was also applied to the third
dataset, with a maximum lag of 4.

Then, we calculated the G-causality values with the first
and third methods and determined the peak amplitude and
frequency of spectral G-causality with the second method. All
values were stored only when statistically significant. Granger
causality methods were implemented in MATLAB; to ensure
reproducibility, the code used to calculate G-causalities from
a hypothetical dataset, along with accompanying p-values, is
provided as Supplementary Material S1. The G-causality values,
along with demographic and descriptive information about the
subjects, are provided as Supplementary Material S2.

From the G-causality, one can calculate the prediction
improvement in the case where the cause variable is assumed in
the model, based on Equation (2):

Prediction Improvement = 100 · eG−causality − 100 [%]
(2)

The fourth method, TiMINo, was used to view the problem in a
completely different context. We established causal links for the
entire athlete and control groups and separately for both body
positions, according to the TiMINo results.

The quantitative data (from the first three methods and from
each connection, except for breathing phases and tidal volume
for the third approach, which are dependent) enabling the best
distinction between groups and between different competitive
levels of activity components were found using Recursive Feature
Elimination (RFE) with a random forest algorithm used to
produce a model and estimate performance (10-fold cross-
validation was implemented). The exploratory accuracy and
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Cohen’s Kappa (without dividing the data into training and
testing subsets) were calculated.

TiMINo, exploratory statistical analysis, and RFE were
performed in R (R Core Team, 2018). The relevant code is
provided as Supplementary Material S3.

The entire flow of the analysis is presented in Figure 1.

3. RESULTS

3.1. General Findings
Granger causality analysis is originally intended for stationary
data, therefore augmentedDickey-Fuller stationarity analysis was
performed. It showed that:

• 2 TV-related signals during supine body position,
• 4 TV-related signals during standing body position,

• 1 iHR signal during supine body position, and
• 4 iHR signals during standing body position

can be labeled as non-stationary; however, it occurred jointly in
no case.

The sample signals acquired for both supine and standing
body positions were presented in the Figure 2.

All the Granger-based methods revealed that iHR seems to
cause TV. This can be due to the applied convention that
inspiration causes the respiratory-related signal to increase, and
expiration-to decrease. Therefore, at the instantaneous peak of
heart rate during inspiration, the phase of iHR seems to precede
that of TV. This is further debated in the Discussion section.

Apart from the spectral analysis, iRR appeared causally
independent of iHR and TV, which may suggest that the heart
activity is more related to the depth of breathing than to the rate.

FIGURE 1 | The diagram presenting the entire flow of the analysis.

FIGURE 2 | The sample part of impedance and tachogram signals acquired for the first participant for both supine and standing body position.
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3.2. Pairwise-Conditional Granger
Causality
The first method showed iHR causing TV changes, more for
the supine body position (2.5% median prediction improvement;
only 11 results out of 120 were statistically insignificant) than for
standing (median of 1.7%; 20 insignificant results). The summary
is stored in Table 2. For supine, the median G-causality for the
athletes was greater than for the control group, but insignificantly
so (p = 0.33 for the Wilcoxon rank test). The medians
increased slightly, still insignificantly, for sports types with
greater dynamic components (Figure 3; p = 0.81 for the Kruskal-
Wallis test). For standing, the medians increased insignificantly
for sports types with greater static components (Figure 4; p =

0.12 for Kruskal-Wallis). It is worth noting that the modest
improvements are mainly caused by a relatively high sampling
rate (from the perspective of the Granger causality framework).
Inducing Granger causality appears quite insufficient when the
sampling rate is so high compared to the physiological activity
changes.

3.3. Pairwise-Conditional Spectral Granger
Causality
The median peak frequency at which iHR influences TV was
identified as 0.23Hz for lying supine (medianG-causality equaled
0.82, vs. 0.27 for the opposite direction, only 3 results statistically
insignificant) and 0.19 Hz for standing (median G-causality of
0.68, vs. 0.14 for the opposite, 15 results insignificant). The
second method also showed that iHR and TV seem to cause iRR
at 0.04Hz on average, for both supine and standing. All directions
are summarized in Table 3.

3.4. Extended Granger Causality
The third method confirmed the direction to be from the lengths
of successive RR intervals to the amplitudes of impedances at
the R peaks. The median prediction improvement was 20.3%
for supine (only 5 insignificant) and 14.2% for standing (also 5
insignificant). The summary appears in Table 4. For supine, the
median G-causality value for the sports group was greater than
for the control (p = 0.042 for Wilcoxon). Medians increased

insignificantly for sports types with greater static components
(Figure 5; p = 0.86 for Kruskal-Wallis). For standing, the
median G-causality value for the sports group was greater than
for the control (p = 0.042 for Wilcoxon). Medians increased
significantly for sport types with greater static components
(Figure 6; p = 0.028 for Kruskal-Wallis). Pair-wise, post-hoc
Wilcoxon rank test indicated that significant differences appear
between mild- and high-static-component groups (p = 0.048),
and between moderate- and high-static-component groups (p =

0.048).
The level of prediction improvement for the third approach,

compared to the first, shows that Granger causality is more
reliable for physiological beat-by-beat parameterizations than for
raw signals sampled at 25 Hz.

3.5. TiMINo
As expected for physiological data, many results of TiMINo
analysis were left unidentified due to unfulfilled model

FIGURE 3 | The exploratory box-plot presenting the G-causality values of the

link from iHR to TV (in terms of % of prediction improvement of the models

when taking causal information into account) for different competition levels of

the dynamic component (and for the control group), while supine.

TABLE 2 | The summary of prediction improvements (PI) for all considered directions for the first approach (raw signals sampled at 25 Hz); 1. TV; 2. iRR; 3. iHR; NA, not

assigned, if statistically insignificant (the more NAs, the more uncertain the link).

Body position Link Mean PI SD PI Median PI IQR PI NA count

Supine 1 → 2 0.24 0.12 0.19 0.19 69

1 → 3 0.84 1.80 0.55 0.47 29

2 → 3 0.58 0.43 0.41 0.60 30

2 → 1 0.37 0.36 0.25 0.33 63

3 → 1 2.57 1.48 2.53 2.03 11

3 → 2 0.25 0.12 0.20 0.18 80

Standing 1 → 2 0.28 0.16 0.24 0.13 69

1 → 3 0.47 0.40 0.37 0.38 46

2 → 3 0.64 0.45 0.49 0.58 36

2 → 1 0.45 0.33 0.34 0.31 58

3 → 1 1.70 1.28 1.67 1.51 20

3 → 2 0.21 0.10 0.17 0.10 99

Bold values represent the most prominent and discussed link in the text.
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assumptions (independence of residuals or model complexity too
high for the amount of data available). The outputs suggested
mostly that breathing phases cause the changes in lengths
of consecutive RR intervals (29% for supine athletes, 21%
for standing athletes, 40% for supine controls and 20% for
standing controls). In this context, TiMINo seems to favor the
respiratory sinus arrhythmia effect, no matter which convention
of respiratory curve presentation is applied. Other connections
are present, but only for a few cases, and only for athletes. The
graphical summary is presented in Figure 7.

3.6. Distinguishing Sports or Lack Thereof
Recursive feature elimination suggested that 14 variables form
the best set for distinguishing athletes and non-athletes (83.3 ±

3.9% accuracy). The top five of these are:

• frequency at the peak of G-causality (2nd approach) from iHR
to TV, while standing;

FIGURE 4 | The exploratory box-plot presenting the G-causality values of the

link from iHR to TV (in terms of % of prediction improvement of the models

when taking causal information into account) for different competition levels of

the static component (and for the control group), while standing.

• G-causality value from the 1st approach, from TV to iRR,
while standing;

• G-causality value from the 3rd approach, from lengths of
consecutive RR intervals to breathing phases at R peaks, while
standing;

• G-causality value from the 3rd approach, from lengths of
consecutive RR intervals to TV-related impedance amplitudes
at R peaks, while standing; and

• G-causality value from the 3rd approach, from lengths of
consecutive RR intervals to TV-related impedance amplitudes
at R peaks, while supine.

Another set was identified as the best for differentiating between
moderate and high dynamic components during competition (we
neglected low-dynamic-component-participants as there were
only 5 subjects in this group (63.1± 14.6% accuracy):

• frequency at the peak of G-causality (2nd approach) from iRR
to iHR, while standing;

• G-causality value from the 3rd approach, from iRR at R peaks
to breathing phases at R peaks, while supine;

• G-causality value from the 3rd approach, from iRR at R peaks
to the breathing phase at R peaks, while standing;

• G-causality value from the 3rd approach, from TV-related
impedance amplitude at R peaks to lengths of consecutive RR
intervals, while standing;

• G-causality value from the 1st approach, from iRR to iHR,
while standing; and

• G-causality value from the 1st approach, from iHR to TV,
while supine.

Finally, a set of 30 variables appears best for analysis of various
levels of the static component (51.8± 12.3% accuracy), of which
the top five are:

• G-causality value from the 3rd approach, from lengths of
consecutive RR intervals to breathing phases at R peaks, while
supine;

• G-causality value from the 3rd approach, from breathing
phases at R peaks to iRR at R peaks, while supine;

TABLE 3 | The summary of medians and IQRs for peak G-causality and frequency for all considered directions for the second, spectral approach (raw signals sampled at

2.5 Hz); 1. TV; 2. iRR; 3. iHR; G, G-causality; f, frequency in Hz; NA, not assigned, if statistically insignificant (the more NAs, the more uncertain the link).

Body position Link Median G IQR G Median f IQR f NA count

Supine 1 → 2 0.50 0.71 0.04 0.01 2

1 → 3 0.27 0.37 0.10 0.06 2

2 → 3 0.10 0.14 0.07 0.09 28

2 → 1 0.04 0.04 0.21 0.12 63

3 → 1 0.82 0.65 0.23 0.12 3

3 → 2 0.23 0.49 0.04 0.01 7

Standing 1 → 2 0.45 0.65 0.04 0.02 4

1 → 3 0.14 0.20 0.06 0.04 15

2 → 3 0.14 0.20 0.07 0.03 15

2 → 1 0.06 0.06 0.18 0.08 40

3 → 1 0.68 0.68 0.19 0.09 3

3 → 2 0.22 0.31 0.04 0.02 12

Bold values represent the most prominent and discussed link in the text.
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TABLE 4 | The summary of prediction improvements (PI) for all considered directions for the third approach (beat-by-beat sequences); 1. Lengths of consecutive RR

intervals; 2. TV-related impedance amplitude at R peaks; 3. iRR at R peaks; 4. Breathing phases at R peaks; NA, not assigned, if statistically insignificant (the more NAs,

the more uncertain the link).

Body position Link Mean PI SD PI Median PI IQR PI NA count

Supine 1 → 2 24.44 16.48 20.33 17.32 5

1 → 3 7.41 6.96 5.92 2.49 92

1 → 4 16.71 14.09 11.34 14.08 29

2 → 3 9.32 7.73 7.05 4.41 88

2 → 4 69.15 39.76 56.99 54.43 2

3 → 4 6.06 3.35 4.58 4.53 102

2 → 1 19.42 25.74 12.60 11.81 40

3 → 1 7.51 4.21 6.52 5.54 97

4 → 1 11.58 8.95 8.16 7.04 66

3 → 2 6.22 2.58 5.66 2.56 90

4 → 2 34.50 21.88 33.56 26.08 9

4 → 3 7.43 5.95 5.61 2.37 78

Standing 1 → 2 15.37 8.40 14.18 12.15 5

1 → 3 4.34 2.81 3.49 1.89 105

1 → 4 10.36 9.72 7.24 6.87 54

2 → 3 6.63 3.28 4.90 3.85 89

2 → 4 68.28 32.13 61.62 43.59 0

3 → 4 8.05 8.69 4.84 3.88 103

2 → 1 10.11 9.75 6.75 6.92 51

3 → 1 10.91 12.58 5.72 9.61 97

4 → 1 8.07 6.58 5.72 4.56 74

3 → 2 5.85 3.58 4.18 3.82 100

4 → 2 31.62 22.67 30.53 31.71 7

4 → 3 5.73 3.22 4.40 3.52 93

Very high numbers for the connections between 2 and 4 are ignored, due to their intrinsic relationship. Bold values represent the most prominent and discussed link in the text.

FIGURE 5 | The exploratory box-plot presenting the G-causality values of the

link from the lengths of successive RR intervals to the amplitudes of

impedance at R peaks (in terms of % of prediction improvement of the models

when taking causal information into account) for different competition levels of

the static component (and for the control group), while supine.

• peak amplitude of G-causality (2nd approach) from iHR to
iRR, while standing;

• peak amplitude of G-causality (2nd approach) from iRR to
iHR, while standing; and

• frequency at the peak of G-causality (2nd approach) from iRR
to TV, while supine.

FIGURE 6 | The exploratory box-plot presenting the G-causality values of the

link from the lengths of successive RR intervals to the amplitudes of

impedance at R peaks (in terms of % of prediction improvement of the models

when taking causal information into account) for different competition levels of

the static component (and for the control group), while standing.

4. DISCUSSION

The main finding of our analysis is that the instantaneous
heart rate (iHR) signal is causally related to the tidal volume
(TV) signal. The Granger methods showed that iHR caused TV
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FIGURE 7 | The links between parameters derived from beat-by-beat sequences for athletes and controls, for both supine and standing body positions, along with

the number of cases in which each link was considered significant and the number where the method produced no results (unidentified output) due to independence

of residuals or excessive model complexity relative to volume of available data. Only links significant in at least two cases are included; since breathing phases and

volume are dependent, links between them are excluded, for clarity.

changes, in both time and spectral domains and for both raw
signals and beat-by-beat sequences.

As it is incoherent with the respiratory sinus arrhythmia effect
(which is expected to have the largest impact, particularly during
static supine; respiratory centers modulate the frequency of the
heart through the vagal sinus node intervention (Eckberg, 2009)
and the observations being the basis of the clinical autonomic
screening tests (CARTs), we hypothesize that this is mainly due
to the definition of the Granger causality-the cause should be
before its effect. Relatively similar signal shape for RR intervals
seems to appear before tidal volume, as the heart rate peak occurs
during inspiration. In other words, the phase of iHR seems to
precede that of TV when inspiration is presented as an increase
of the signal’s value. A visualization of this remark is presented in
Figure 8.

Another method, Time SeriesModels with Independent Noise
(TiMINo), suggested differently that breathing phases recorded
at consecutive R peaks cause the lengths of RR intervals. As
from the definition it is not based on the asymmetry of time,
the RSA phenomenon is emphasized and confirmed (Shaffer
et al., 2014; McCraty and Shaffer, 2015). An opposite effect,
described by Sobiech et al. (2017), in which R peaks occur at
strict intervals before the inspiratory onset, requires different
mathematical approaches and different data preparation process.

The concept of analyzing both signals and sequences of
parameters triggered by the heart activity with Granger methods
is considered as a “test” of information capacity that can be
extracted. The first approach is therefore inspired by recurrent,
or even convolutional, deep learning methods, in which raw time

series can be used as an input for the analysis. The results showed,
however, that for signal-related analysis high computational
complexity may distort the final inference. This is also most likely
due to the redundancy that complicates the VARmodeling. Apart
from that, the spectral analysis seems more proper when the
intervals between the samples are equal.

We supposed that said relationships can be quantitatively
parameterized to add extended data for sports training
scheduling and monitoring. Koenig and Thayer (2016) found
substantial differences between sexes regarding autonomic
control of the heart. So why not explore the possible
differences across sports, the levels of specific components
during competition, static and dynamic conditions, body
positions, etc.?

Therefore, we believe causality analysis may become a
valuable and practical tool for trainers and physicians, as a
method that not only finds or confirms causal connections and
their directions, but can also parameterize them. As Schneider
et al. (2018) wrote, training context is key. In our opinion,
there are two steps to unlocking its promises. The first is to
supplement the standard heart activity parameters in order to
assess trends and competitive performance. Greenham et al.
(2018) in their meta-analysis summarized that many biological
and biochemical biomarkers varied with training intensity but
not with performance. Several, like neutrophils, glutamine,
urea and the testosterone/cortisol ratio, may be used to track
performance. However, such approaches need not be individual.
Cardiorespiratory data and analysis could be an objective
addition, even more robust when combined with causality
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FIGURE 8 | The visualization presenting the order of maxima when analyzing tidal volume and RR intervals curve.

inference (it should not be used independently when the reported
accuracies remain far from sufficient). This should be studied
further.

The second is to use newfound knowledge of causal structures
to better predict the effects of interventions (establishment of
sufficient training load) to determine optimal training schedules
(Pearl, 2010). This suggests the need to consider activitymeasures
from both systems together. All may be performed inside or
outside the laboratory; our prototype, Pneumonitor 2 (which
can measure changes in thoracic impedance, which is related
to changes in the amount of air in the lungs, Młyńczak et al.,
2017), appears appropriate for that task, because the results
suggested that the depth of breathing is more important than its
rate.

This is also indirectly connected with the statement of Fossion
et al. (2018), that homeostasis may be quantified using time-series
analysis, which might offer several explanations for physiological
mechanisms. Use of a portable device allows accounting for
various conditions, e.g., body positions. From the analysis, we
discovered that the relations between cardiac and respiratory
parameters are quite similar for both analyzed body positions.
However, the prediction improvement associated with adding a
cause parameter was lower for standing than for supine (which
is expectable, but can still serve as an additional input). We did
not note the effect described by Radovanovic et al. (2018), who
reported that even a slight change of body position may change
the direction of the cardiorespiratory relationships; however, it
merits further study.

Another interesting outcome is the frequency for which the
peak G-causality value occurred: about once every 5 s. This is
longer than a typical cardiac interval, but could be related to
mean breathing rate. This would show a mechanism in which the
frequency of breathing serves as a trigger for the causal process
even if the depth is more directly related with changes in RR
intervals.

Also, as many effects may occur too quickly for the
measurement system to track at current time resolution,
considering zero-lag elements in the model is in our opinion a
crucial step in similar physiological research. This is why (Schiatti
et al., 2015) introduced the apparatus for extended Granger
causality. Beyond the traditional set of connections, a matrix

of instantaneous effects may be prepared. In the analysis, the
framework showed the significance of zero-lag effects, not only
between durations and amplitudes but also between durations
and breathing phases at R peaks (this was not explicitly presented
in the text for clarity). The approach seems to also be tied to the
kernel regression criteria, which can be exploited for causality
inference (Zheng et al., 2012; Vinod, 2016).

Another commonly used measure to assess direction-
sensitive connections is the transfer entropy, which can
consider equivalent to Granger causality approach for linear
Gaussian processes (Schreiber, 2000; Porta and Faes, 2016).
The simple implementation of the method based on mutual
information distance or generalized correlation sum is written
in TransferEntropy R package (Mount et al., 2016). Similar to
extended Granger causality, the concept was presented earlier
by Faes et al. (2013), who introduced so-called compensated
transfer entropy, which also includes zero-lags elements into
consideration. Instantaneous transfer entropy has also been
already used by Valenza et al. (2018) for physiological analyses.
Nevertheless, we decided not to incorporate the method in the
analysis as there is no output value for transfer entropy such as
prediction improvement or p-value, that can be easy to interpret
for physicians.

4.1. Limitations of the Study
The study included only 100 athletes, who formed a
heterogeneous group, unevenly distributed in relation to
the Mitchell et al. (2005) division. All were studied in the “hot
period” 3–4 months before the Olympic Games, which may
suggest a state of over-training. Therefore, the findings should be
compared with another similar procedure.

As cardiorespiratory parameters and relations (in general)
are affected by a number of factors, e.g., age, gender, and
levels of physiological or psychological stress, they might have
been considered as both confounders and even direct cause
variables (Schulz et al., 2015; Widjaja et al., 2015). However, we
decided not to include them for clarity and due to the lack of
psychologically-oriented questionnaires gathered from athletes.
Also, the control group did not answer any questions, so it is not
possible to evaluate the differences in their physical preparation
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relative to the athletes (beyond the fact that no students reported
professional participation in sports).

Also, the R peak locations are determined at the 250 Hz
sampling frequency, so the uncertainty in the location of the R
peaks is of 4 ms, which may affect the estimates of G-causality
computed using such a tachogram.

The collection of only one observation per subject precludes
reproducibility analysis. Also, measurements were carried out
for a single protocol in an atypical environment. The results of
registrations performed outside the laboratory, during normal
training, or even with 24 h Holter-based tracking, would yield
more condensed and more general findings.

Moreover, the classical Granger causality framework is a linear
approach. Several nonlinear generalizations would better fit
cardiorespiratory signal specifications. Segments of registrations
where analyzed whole, so only a single coefficient was estimated
per segment.

Accuracy analysis of the use of causal parameters to
distinguish groups was illustrative, not conclusive: there are too
little data and the groups are unbalanced. However, one can
conclude, those causal parameters may be treated as additional
information to standard parameterization, where the accuracies
are too weak for them to be used independently.

We did not assume any control variables in the protocol. As
this is a retrospective study, we cannot change the respiratory
protocol after registration, and also we cannot introduce any
interventions to evaluate its effect).

Additionally, our modeling is based on the signals, which
cover end-organ responses modulated by multiple levels of
complex mechanisms (Dampney, 2015). However, in this study,
we attempted a data-driven approach, without including prior
knowledge (Młyńczak and Krysztofiak, 2018). Also, one should
be aware of the very possible collinearities between X and Y in
the original Granger’s formulation. This is whywe tried to analyze
both directions of possible connections and a possible reason for
why the causal structure strengths were estimated as mild.

Also, the analysis of two body positions (particularly standing)
without segmenting the signals into sub-periods may cause that
the results do not cover our mechanisms and processes, and their
changes in time. Our choice is, however, dictated by the need
to maintain the appropriate signal length for Granger causality
approaches.

Finally, we focused only on the data types which can be
registered using Pneumonitor 2. However, as the presented
protocol was “static,” adding different modalities appears
relatively simple. For example, Sobiech et al. (2017) suggested
that arterial blood pressure is probably the driver (cause) of both
cardiac and respiratory function.

4.2. Considerations for Further Studies
The discussion identified several issues for further study:

• how would the accuracy of athletes profiling increase with the
addition of causal parameters to standard cardiorespiratory
data?

• how would causal links and their strengths differ during
natural activity of the subject?

• how coherent are causal parameters for a specific participant
in comparable conditions? (reproducibility analysis)

• how would adding restricted breathing to the protocol affect
the causal parameters?

• how would the causal links be changed or emphasized with
the addition of an arterial blood pressure signal (Silvani et al.,
2017; Zhang et al., 2017)?

• can the causal analysis be made more specific and more
robust (free or insensitive to collinearity) with model terms
conditioned on covariates or even with the addition of a
non-linear kernel of Granger-like analysis?

• can the DAG structures be confirmed with a prospective study,
which assumes sufficient perturbations and interventions on
the cause variable?

One could also evaluate different methods, e.g., based on
directional coherence analysis. Schäck et al. (2018) proposed a
novel method, robust time-varying generalized partial directed
coherence (rTV-gPDC), which carries information about the
non-linear connectivity structure using a piecewise linear time-
varyingmoving-average (TVMA)model. It is worth investigating
in the presented contexts because the approach assumes a model
which is non-linear and which, even more importantly, may
adapt over the course of measurement.

5. CONCLUSIONS

Physiological markers of training performance may be not
only biochemical- or cardiac-, but also cardiorespiratory-related.
Besides temporal-, spectral-, or information-domain approaches,
causal link analysis using pairwise-conditional standard, spectral
or extended Granger causality or TiMINo frameworks may
introduce new contexts, make the inference more robust and
improve result resolution.

We proposed a protocol for elite athletes and controls inspired
by the orthostatic maneuver, consisting of free breathing while
resting supine and while standing, and took into account various
forms of registered data: (1) raw signals sampled at 25 Hz, (2)
raw signals sampled at 2.5 Hz, and (3) beat-by-beat sequences of
cardiac and respiratory parameters.

Based on the data gathered from 100 elite athletes and 20
students included in the control group, we found that temporal
causal links are the most evident between the tidal volume
signal and the instantaneous heart rate curve (RR intervals or
tachogram), and that adding a “cause” variable may improve
the prediction of the “effect” variable by 20.3% (median) for
supine body positions. While the same causal directions are
suggested for standing, the complexity seems higher, as the
improvement falls to 14.2% (median). The causal link structures
and directions can be parameterized and enable distinguishing
athletes from non-athletes with 83.3% accuracy on average. The
classification of static and dynamic components can probably
be supplemented with causal parameters; however, this requires
further investigation and confirmation.

In our opinion, the presented approaches would extend the
set of techniques used for profiling training trends by connecting
cardiorespiratory data with other psychological information.
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