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Introduction: Hypoxemia is a critical component of several respiratory diseases and
is known to be involved in the processes underlying co-morbidities associated to
such disorders, notably at the cardiovascular level. Circulating level of Adiponectin
(Ad), known as a metabolic regulator and cardio-protective hormone was previously
suggested to be reduced by hypoxia but consequences of such variation are unclear.
The evaluation of the specific effect of hypoxemia on Ad forms and receptors could
improve the understanding of the involvement of Ad axis in hypoxemia-related diseases.

Methods: Ad-pathway components were investigated in a murine model of sustained
intermittent hypoxemia (FiO2 10%, 8 h/day, 35 days).

Results: Sustained intermittent hypoxemia (SIH) induced a redistribution of Ad
multimers in favor of HMW forms, without change in total plasmatic level. Mice submitted
to hypoxia also exhibited tissue-specific modification of adiporeceptor (AdipoR) protein
level without mRNA expression change. A decreased AdipoR2 abundance was
observed in skeletal muscle and heart whereas AdipoR1 level was only reduced in
muscle. No change was observed in liver regarding AdipoR. Lipid profile was unchanged
but glucose tolerance increased in hypoxemic mice.

Conclusion: Sustained intermittent hypoxemia, per se, modify Ad oligomerization state
as well as AdipoR protein abundance in a tissue-specific way. That suggests alteration
in Ad-dependant pathways in pathological conditions associated to SIH. Investigation
of Ad-pathway components could therefore constitute useful complementary criteria
for the clustering of patients with hypoxemia-related diseases and management of co-
morbidities, as well as to develop new therapeutic strategies.
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INTRODUCTION

Adiponectin (Ad), a 30-kDa protein mainly secreted by adipose
tissue, is known for its anti-inflammatory, anti-atherogenic, and
anti-diabetic effects on multiple target tissues such as liver, heart,
and muscle (Yano et al., 2008; Yamauchi and Kadowaki, 2008;
Tian et al., 2012). Post-translational modifications of Ad are
required for its biological activity and its secretion in the blood
stream. Ad exists in three different forms in the circulation:
low (LMW), medium (MMW), and high molecular weight
(HMW) forms (Wang et al., 2008; Yamauchi and Kadowaki,
2008). HMW forms are considered as the most biologically
active forms through their more potent ability to activate AMPK
and increase insulin sensitivity (Wang et al., 2008; Yamauchi
and Kadowaki, 2013). Ad exerts its beneficial effects on glucose
and lipid metabolism via two receptors: AdipoR1 and AdipoR2
(Yamauchi et al., 2007, 2014). These receptors share 67% amino
acid identity and possesses seven transmembrane domains. These
receptors are ubiquitously expressed, with the most important
expression in skeletal muscle and liver for AdipoR1 and AdipoR2,
respectively (Yamauchi and Kadowaki, 2013; Yamauchi et al.,
2014; Wang et al., 2017). Adiporeceptor (AdipoR) were shown
to activate different signaling pathways. Indeed, AdipoR1 is
associated to AMPK activation, whereas AdipoR2 is involved in
PPAR-α activation (Yamauchi et al., 2007).

In previous in vitro studies, Ad expression was shown to
be modulated upon hypoxic conditions. Indeed, as hypoxia
was suggested to appear in adipose tissue in case of obesity,
some scientists have evaluated Ad expression in adipocytes
exposed to hypoxia in vitro. They observed that hypoxia
reduced Ad expression at mRNA and protein levels (Hosogai
et al., 2007; Ye et al., 2007; Guo et al., 2017; Priyanka
et al., 2017). In another study, a reduced secretion of total
Ad and HMW forms was observed in 3T3-L1 adipocytes
exposed to intermittent hypoxia (Magalang et al., 2009). In
rodents, exposure to a chronic intermittent hypoxia reduced
serum Ad levels (Fu et al., 2015; Pan et al., 2015) as well
as Ad mRNA expression in white adipose tissue (Fu et al.,
2015). A reduced Ad plasmatic (Adpl) level was also observed
in rats exposed to continuous neonatal hypoxia for 8 weeks
(Chaiban et al., 2008). However, He et al. (2014) reported
that the intensity of the effect on Adpl level depends on
the pattern of hypoxemia. Indeed, intermittent hypoxemia
(IH: FiO2: 5%, 30 s hypoxemia/90 s normoxia, 8 h/day for
8 weeks) and sustained intermittent hypoxemia (SIH: FiO2:
10%, 8 h/day for 8 weeks) both reduced Adpl level compared
with normoxic rats but a higher decrease was observed in
the IH model (He et al., 2014). The authors also mentioned
that these different patterns of hypoxemia could induce similar
effects through distinct signaling pathways. This emphasizes
that divergent patterns of hypoxia exposure have to be applied
to study the effect of this component in different pathological
contexts. Indeed, intermittent hypoxemia is a major factor
contributing to pathophysiological processes of obstructive sleep
apnea (Dewan et al., 2015), whereas continuous hypoxemia is a
hallmark feature of people living at high altitude or of patients
with severe Chronic Obstructive Pulmonary Disease (COPD)

(Lewis and O’Halloran, 2016). Indeed, progression of COPD is
associated to a lung function decline leading to an increased
risk of hypoxemia in these patients (Kent et al., 2011; Tantucci
and Modina, 2012). Before the development of a persistent
hypoxemia, the dysregulation of the central respiratory drive
contributes to the occurrence of a nocturnal desaturation in
COPD patients (Kent et al., 2011; Lewis and O’Halloran, 2016).
An exercise-induced desaturation is also observed in a large
cohort of COPD patients (van Gestel et al., 2012). Although 5 and
61% of COPD patients exhibited nocturnal or exercise-induced
desaturation, respectively (Lewis et al., 2009; van Gestel et al.,
2012), the relationship between this pattern of hypoxemia and
Ad production and effects remains unclear. The use of an in vivo
model of SIH seems appropriate to evaluate the specific effect
of moderate hypoxemia on Ad pathways in this pathological
context. Indeed none of the previous studies evaluated the
specific effect of hypoxemia on Ad signaling pathway, whereas
a modulation of AdipoR abundance as well as Ad multimer
(Admer) distribution could considerably modify the beneficial
effect of Ad on oxidative stress, inflammation, and metabolism.
Indeed, Yamauchi et al. (2007) observed that disruption of
AdipoR1 and AdipoR2 expression counteracts Ad’s effects and
enhanced tissue triglyceride content, insulin resistance, and
glucose intolerance.

In the present study, by using a reductionist murine model,
we evaluated the specific effect of a SIH on Adpl level, Admer
distribution, and AdipoR abundance in several tissues as well as
associated systemic metabolic abnormalities.

MATERIALS AND METHODS

Ethics Statement
All procedures met the Belgian national standard requirements
regarding animal care and were conducted in accordance with
the Ethics and Welfare Committee of the University of Mons. The
protocol was approved by the Ethics and Welfare Committee of
the University of Mons (reference number LE020/02).

Animals
Mice were housed in cages with ad libitum access to water and
food and were maintained at 35–40% relative humidity and
a temperature of 20–23◦C in a 12:12 h light–dark cycle. At
6 weeks of age, male C57BL6J mice bred in our animal facility
(accreditation number LA1500022) were randomly assigned
into two experimental groups: mice submitted to sustained
intermittent hypoxemia (SIH, n = 13) and control mice
(Ctl, n = 13). Mice were exposed to sustained intermittent
hypoxia (10% FiO2, 8 h/day, 7 d/week during light cycle)
for 35 days in a device previously developed and validated
(Chodzyński et al., 2013). Normoxic mice were exposed to
ambient air in a similar cage and placed nearby SIH mice to
reproduce similar noises. Food intake, and body weight were
measured once a week during the 5-week exposure period.
Mice were housed individually and food intake was evaluated
by measuring food weight every week. The day following the
end of the protocol, mice were sacrificed, blood and tissues
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were collected for RT-qPCR, ELISA and Western blot analysis.
Hematocrit measurement was performed on blood sample by
using a hemocytometer.

Glucose Tolerance Test
A glucose tolerance test (GTT) was performed at day 0, 1, 7,
14, 21, 28, 35 as described in Pierard et al. (2016). Briefly, an
intraperitoneally administration of a dose of 2 g/kg body weight
of D-glucose (Roth, Karlsruhe, Germany) to fasting animals was
realized. Blood glucose level was measured 0, 30, 60, and 120 min
after glucose injection using a One Touch R©Vita R©glucometer
(Zug, Switzerland).

Triglyceride and Cholesterol
Measurement
Triglyceride and cholesterol plasmatic levels were assessed by an
enzymatic colorimetric method according to the manufacturer’s
instructions (triglycerides: 1 5710 99 10 021, cholesterol: 1 1300
99 10 021, Sopachem Diagnostics, Belgium).

RNA Extraction – Reverse Transcription
and Real-Time PCR
The total RNA from frozen muscle, liver and heart was
extracted using the miRNeasy Micro Kit (Qiagen R©, Hilden,
Germany) according to the manufacturer’s instructions. The
same amount of RNA was reverse transcribed into cDNA
with PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara,
Japan). This reverse transcription kit included a DNase I
digestion step to avoid genomic DNA contamination. The
qPCR was performed with Lightcycler 480 Real-Time PCR II
(F. Hoffmann Roche R©, Ltd., Basel, Switzerland). The cycling
conditions were as follows: 30 s at 95◦C, 40 cycles of 20 s at
60◦C, and 15 s at 65◦C. All samples were run in duplicate.
The primers used for AdipoR and RPLP0 are detailed in
supporting informations (Supplementary Table S1). The target
gene cycle threshold (Ct) was normalized to the expression of the
housekeeping gene RPLP0, and gene expression was calculated
using the δCt method.

ELISA
The Ad and leptin plasmatic concentration were measured
by using the mouse Ad/Acrp30 Quantikine ELISA Kit and
the mouse Leptin Quantikine ELISA Kit, according to the
manufacturer’s instructions (Ad: MRP300; Leptin: MOB00, R&D
Systems, Minneapolis, MN, United States).

Western Blot
The relative amounts of LMW, MMW, and HMW Admer
as well as AdipoR protein level were evaluated as previously
described in Pierard et al. (2016). Briefly, Admer proportion
was determined using a non-denaturing PAGE–SDS followed
by a Western blot. 5 µl of plasma diluted to contain 5 µg/ml
of Ad was loaded onto a 6% polyacrylamide gel in the
presence of SDS. The AdipoR protein level was evaluated on
frozen heart, liver, and skeletal muscle tissue (gastrocnemius).
50 µg of total protein extracts were loaded on 12% gel

and transferred on a nitrocellulose membrane (Millipore,
Darmstadt, Germany). Red Ponceau dye was used for protein
detection and to confirm the quality of protein transfer.
After blocking with 5% fat-free dry milk-TBS, the membranes
were incubated with a rabbit polyclonal primary antibody
directed against Ad (Ab85827, 1:1000, Abcam, Cambridge,
United Kingdom), against AdipoR1 (1:1000) or AdipoR2 (1:750)
(AdipoR12-A, AdipoR22-A; Alpha Diagnostic, San Antonio,
TX, United States). Primary antibodies were detected with an
appropriate horseradish peroxidase-labeled secondary antibody
(1:5000, Sigma-Aldrich, St. Louis, MO, United States) and
revealed with the ECLTM Western Blotting Detection kit
(GE Healthcare, Little Chalfont, United Kingdom) or Femto
(Thermo Fisher Scientific, Waltham, MA, United States). The
immunoreactive bands were then submitted to a densitometric
analysis using the Image J software. The drastic alteration of
metabolic and vascular pathways induced by hypoxia necessitated
the use of a loading control other than traditionally used
actin, β-tubulin, or GAPDH controls (Yamaji et al., 2003;
Bakhashab et al., 2014; Zieseniss, 2014; Parker et al., 2017).
While RPLP0 is not modulated by hypoxia and was used in
RT-qPCR experiment as a housekeeping gene, the molecular
weight of its protein is too close of that of AdipoR. Moreover,
the protein abundance of RPLP0 vary depending on the tissue,
making it difficult to detect in all tissues. Given that no perfect
loading control exists in hypoxic condition, equal loading was
confirmed using Ponceau staining. Such normalization was
previously realized for AdipoR detection (Mullen et al., 2009;
Matyal et al., 2014).

Statistical Analysis
The statistical analyses of body weight, food intake and glucose
tolerance were performed using a Mann–Whitney rank sum test.
Hematocrit, HMW proportion, Ad and leptin plasmatic levels
as well as triglyceride, and cholesterol levels were assessed using
a Student’s t-test. A Mann–Whitney rank sum test was used to
determine the statistical significance for mRNA expression and
protein level of AdipoR1/2 in muscle, heart and liver. Differences
were considered statistically significant at a P-value < 0.05.
All data are represented as mean ± SEM or boxplot (5th and
95th percentile) for parametric or non-parametric statistical
tests, respectively.

RESULTS

Sustained Intermittent Hypoxemia
Induced a Secondary Erythrocytosis in
Mice
Exposure to hypoxia is known to induce physiological
adaptations such as an increased erythrocyte production
(Michiels, 2004). We therefore evaluated hematocrit at the end
of the protocol. We observed an increased hematocrit in mice
submitted to SIH compared with control mice (Ctl) (Figure 1A,
Mean ± SEM: Ctl : 35, 8 ± 1,4%; SIH: 50, 7 ± 1,8%; p<0.001).
Body weight and food intake were also measured once a week.
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FIGURE 1 | Effect of hypoxemia on hematocrit, body weight and food intake. (A) Hematocrit level. Mean ± SEM, ∗p<0.001, SIH vs. Ctl; T-test. (B,C) Body weight
and food intake evolution. Data are represented as boxplots, Mann–Whitney Rank Sum Test: NS.
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No difference between groups was observed in body weight and
food intake throughout the experiment (Figures 1B,C).

Sustained Intermittent Hypoxemia
Induced an Admer Redistribution While
No Modulation in Total Adpl Level Was
Observed
As Ad circulates in different multimeric forms, we evaluated
whether SIH have an impact on total Ad plasmatic level and on
the plasmatic proportion of LMW, MMW, and HMW Admer.
We did not find any modulation of Ad level between groups
(Figure 2A). However, an increased proportion of HMW forms
was observed in mice exposed to SIH compared with control
mice (fold change = 1.26; p<0.05) (Figures 2B,C). In parallel, we
evaluated leptin plasmatic level and leptin/Ad ratio. No statistical
difference was found between groups (Figures 2D,E).

Sustained Intermittent Hypoxemia
Induced a Tissue-Specific Modulation of
AdipoR1 and AdipoR2 Protein
Abundance Without Change in Their
mRNA Expression
We evaluated whether SIH in mice could modulate AdipoR1
and AdipoR2 mRNA and protein levels in different Ad
target tissues (skeletal muscle, heart, and liver). Whereas
AdipoR1/2 mRNA expression did not change significantly in
skeletal muscle, heart and liver (Figures 3A–F), we observed
a tissue-specific modulation of Ad receptors at a protein
level (Figure 4). Indeed, a decrease of AdipoR1/2 protein
levels was observed in skeletal muscle of SIH mice compared
with Ctl mice (AdipoR1: fold change = 0.52; AdipoR2: fold
change = 0.40; p<0.001). In heart, AdipoR2 protein level
was decreased in hypoxemic mice (fold change = 0.63;
p<0.05) without modification in AdipoR1 abundance. In liver,
no modulation of AdipoR1/2 protein levels was observed
between groups.

Mice Submitted to Sustained Intermittent
Hypoxemia Exhibited an Improved
Glucose Tolerance but Did Not Show
Modulation in Their Plasma Lipid Profile
As AdipoR protein levels were decreased in hypoxemic mice,
we evaluated whether this reduction is associated to a modified
lipid profile and glucose tolerance. Circulating triglyceride
and cholesterol levels were measured at the end of the
protocol and hyperglycemic response once a week. We did
not observe any modification of lipid profile between groups
(Figures 5A,B). However, a decreased area under the curve
(AUC) of glycemia, reflecting an increased glucose tolerance,
was observed in SIH mice compared with controls (Figure 5C).
This effect was observed from the first day (fold change = 0.79;
p<0.05) and were maintained until the end of the experiment
(fold change = 0.66; p<0.001).

DISCUSSION

Hypoxemia is a critical component of respiratory diseases.
Before the development of a persistent hypoxemia, a nocturnal
desaturation is observed in COPD patients (Kent et al., 2011;
Lewis and O’Halloran, 2016) or in patients with obesity
hypoventilation syndrome (Pierce and Brown, 2015). Identifying
novel therapeutic targets in these patients appear to be still
necessary as they are characterized by multiple troubles leading
to an increased cardiovascular risk (Kent et al., 2011). Therefore,
studying the modulations of Ad, a cardio-protective hormone,
could improve our understanding of the early changes observed
in these patients. Consequently, to avoid confounding factors,
we evaluated the specific effect of a SIH on Adpl in a murine
model. Ad multimer distribution as well as AdipoR expression
were also evaluated to provide a more complete picture of its
biological activity.

Regarding the characterization of the murine model, we
notice that mice exposed to hypoxemia exhibited an increased
hematocrit. This effect is likely mediated by hypoxia-inducible
factor 1 (HIF-1), main mediator of cellular adaptation in response
to hypoxia (Michiels, 2004; Haase, 2010). Indeed, hypoxia is well
known to increase erythrocyte production through an HIF-1-
dependant regulation of gene expression such as erythropoietin.
As expected, our murine model of hypoxemia is characterized
by a secondary erythrocytosis as observed in hypoxemic patients
(Kent et al., 2011; El-Korashy et al., 2012).

Ad plasmatic level is not modified in hypoxemic mice in
our experimental conditions. However, in previous in vitro and
in vivo studies, Ad expression was reported to be reduced in
adipocytes exposed to hypoxia in vitro (Hosogai et al., 2007; Ye
et al., 2007; Guo et al., 2017; Priyanka et al., 2017) as well as
in a rodent model of chronic intermittent hypoxemia (7–21%
FiO2, 30/30 s, 8 h/day) (Fu et al., 2015; Pan et al., 2015). The
difference between these results and our observations could be
linked to the used model. In our study, mice were submitted
to SIH (10% FiO2, 8 h/day during 35 days), a pattern known
to induce different pathophysiological adaptations as compared
to intermittent hypoxemia (He et al., 2014). Indeed, oxidative
stress level and pro-inflammatory cytokine release were higher
in rats exposed to IH than in rats submitted to SIH (10%
FiO2, 8 h/day, 8 weeks) (Zhou et al., 2012; He et al., 2014). As
an increased oxidative stress was shown to reduce Ad mRNA
level in adipocytes (Furukawa et al., 2004), the absence of Ad
level modulation in our model could be partly explained by
a distinct level of oxidative stress. In addition to the type of
hypoxemia, the duration of exposure is another parameter that
could influence Ad circulating levels. Indeed, previous studies
did not find any modification of Ad levels in rats submitted to
intermittent or continuous hypoxia for 14 days, as well as in mice
exposed to hypoxia for 21 days (Chaiban et al., 2008; van den
Borst et al., 2013; Briançon-Marjollet et al., 2016). By contrast,
after 8 weeks of exposure to continuous hypoxia (FiO2: 10%,
24 h/day), Chaiban et al. (2008) observed an increased Ad level
in hypoxemic mice.

Whereas no modification in Ad plasmatic levels was found
in our hypoxemic mice, we observed an increased proportion of
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FIGURE 2 | Effect of hypoxemia on Ad and leptin levels (A) Ad plasmatic level. Data are represented as mean ± SEM; T-test: NS (B) Admer distribution analysis. The
proportion of high (HMW), medium (MMW), and low (LMW) molecular weight Ad forms were determined by using non-denaturant PAGE–SDS followed by Western
blot. Admer/total Ad ratios were obtained after densitometric analysis. Mean ± SEM. ∗p<0.05, SIH vs. Ctl; T-test. (C) Ad-mer distribution: representative blots
(D) Leptin plasmatic level (E) Leptin/Ad ratio. Data are represented as mean ± SEM; T-test: NS.

HMW Ad forms. These observations have not been previously
investigated in other rodent models of hypoxemia. Although
HMW forms were described as the most active forms through its
more beneficial activity on insulin sensitivity, inflammation and
atherosclerosis (Daniele et al., 2012; Yamauchi and Kadowaki,
2013), no prior study has evaluated the effect of hypoxemia
on Ad a multimers. While mechanisms underlying this effect
are not known, some hypothesis could be considered. As the

different forms of Ad do not interconvert once in the blood
stream (Liu and Liu, 2014), the higher proportion of HMW forms
in hypoxic condition could be due to an increased synthesis
and secretion of these oligomers. Indeed, hypoxia was shown to
modulate the expression of the disulfide bond A oxidoreductase-
like protein (DsbA-L), a protein involved in Ad multimerization
in adipose tissue (Jiang et al., 2013). A modulation of HMW form
clearance upon hypoxia could constitute another explanation.
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FIGURE 3 | Effect of hypoxemia on AdipoR1/2 expression in peripheral tissues. AdipoR1/2 expression levels were determined by RT-qPCR. (A–C) AdipoR1 mRNA
expression in muscle (A), heart (B), and liver (C). Data are represented as boxplots (5th and 95th percentiles); Mann–Whitney Rank Sum Test: NS. (D–F) AdipoR2
mRNA expression in muscle (D), heart (E), and liver (F). Data are represented as boxplots (5th and 95th percentiles); Mann–Whitney Rank Sum Test: NS.

Indeed, Ad post-translational modifications such as desialylation
were previously found to increase the clearance of this protein
(Richards et al., 2010). Therefore, more studies should investigate
the effect of hypoxemia on the plasmatic level of Ad multimers.
These investigations will provide us a better understanding of the

effect of an increased HMW forms on several processes involved
in the progression of hypoxemia-associated diseases.

The redistribution of Ad multimers observed in our study was
associated to a tissue-specific modulation of AdipoR abundance.
Indeed, AdipoR1 and AdipoR2 protein abundance were reduced
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FIGURE 4 | Effect of hypoxemia on AdipoR1 and AdipoR2 protein abundance in peripheral tissues. AdipoR1 and AdipoR2 protein abundance was determined by
PAGE–SDS followed by Western blot. The relative quantification was obtained after densitometric analysis. (A–F) Representative blots and densitometric analysis of
AdipoR1 and AdipoR2 protein abundance in muscle (A,D), heart (B,E), and liver (C,F). Data are represented as boxplots (5th and 95th percentiles). ∗p < 0.05, SIH
vs. Ctl, Mann–Whitney Rank Sum Test.

in sketelal muscle of hypoxemic mice. In the heart, AdipoR2
abundance was also reduced in hypoxic conditions while
AdipoR1 protein level did not change. No modulation of AdipoR
abundance was observed in liver between groups. Previous
studies have also found a regulation of AdipoR expression
depending on the target tissue (Huang et al., 2006; Pierard et al.,
2016). However, to our knowledge, there is no study concerning
the effect of hypoxemia on AdipoR abundance in vivo. As it is well

known that distinct cells exhibit different sensitivity to hypoxia
and different physiological adaptations in vitro (Michiels, 2004;
McNamee et al., 2013), a tissue-specific regulation of AdipoR
protein levels was not surprising. An hypothesis is that AdipoR
protein variations could be influenced by HIF-1α basal level
and regulation, which vary among tissues (Stroka et al., 2001;
Michiels, 2004). Moreover, Stroka et al. (2001) found that nuclear
HIF-1α protein level was detected in liver of mice only when they
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FIGURE 5 | Effect of hypoxemia on blood lipid profile and glucose tolerance. (A,B) Cholesterol (A) and triglycerides (B) plasmatic levels. Plasma lipid concentrations
were determined by an enzymatic colorimetric method. Mean ± SEM; T-test: NS. (C) Modulation of the area under the curve of glycemia over time. Fasted mice
were submitted to an intraperitoneal injection of glucose (2 g/kg b.w.). Glycemia was measured before (0) and 30, 60, and 120 min after injection. The area under the
curve (AUC) of glycemia was calculated from 0 to 120 min. Data are represented as boxplots (5th and 95th percentiles). ∗p<0.05, ∗∗p<0.001, SIH vs. Ctl,
Mann–Whitney Rank Sum Test.
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were exposed to a severe hypoxemia (6% FiO2). The absence of
modulation of AdipoR abundance in liver in our murine model
of hypoxemia (10% FiO2) may therefore be related to a less severe
sensitivity. Moreover, as we did not detect any modification of
AdipoR expression at the mRNA level, our results suggest that
hypoxemia could modulate AdipoR protein abundance through
post-transcriptional or post-traductional modifications. Indeed,
the microRNA 218 was previously found to decrease AdipoR2
protein level (Du et al., 2015) and reported to be induced in
hypoxic condition (Liu et al., 2017). Another mechanism could be
an increased lysosomal degradation of AdipoR. Such regulation
of AdipoR protein level was reported in previous studies (Ding
et al., 2009; Almabouada et al., 2013), but its occurence upon
hypoxemia remains to be elucidated.

In our study, we also observed that hypoxemia exerts different
effects on AdipoR1 and AdipoR2 in the same tissue. In muscle,
the abundance of both AdipoR was decreased in hypoxic
conditions, while only a reduced AdipoR2 protein level was
observed in the heart. The differential regulation of AdipoR1
and AdipoR2 was previously shown in other studies and could
have different consequences as those adiporeceptors exhibit
divergent functions.

Because of the know role of AdipoR-dependant pathways on
lipid metabolism, we evaluated plasma lipid profile (triglycerides
and cholesterol levels) in hypoxemic mice and we did not
observe any modification as compared with controls. No other
study has been conducted to evaluate lipid profile upon long-
term SIH but an increased triglyceride and cholesterol levels
was reported in mice exposed to 4 or 12 weeks of intermittent
hypoxia (Savransky et al., 2007; Drager et al., 2013; Yao et al.,
2013). Interestingly, Holland et al. (2017) found recently that
transgenic mice overexpressing AdipoR in the liver exhibited
lowered basal serum triglycerides than wild-type mice, suggesting
an impact of hepatic AdipoR expression on this parameter. In our
experimental conditions, hepatic abundance of AdipoR did not
differ between groups.

Regarding the hyperglycemic response, hypoxemic mice
exhibited an increased glucose tolerance compared with control
mice. This effect was observed from day 1 and was maintained
until the end of the protocol. It is well established that
hypoadiponectinemia is associated to insulin resistance in
humans (Addy et al., 2003). Indeed, Ad improves insulin
sensitivity by an increased muscle glucose uptake, a decreased
hepatic gluconeogenesis as well as by an increased fatty acid
oxidation in liver and skeletal muscle (Kadowaki et al., 2006;
Lustig et al., 2012). The increased glucose tolerance observed in
our study could therefore be induced by the increased plasmatic
levels of HMW forms, which exhibited a more important action
on insulin sensitivity (Wang et al., 2008; Yamauchi and Kadowaki,
2013). However, as observed in our study, the increased HMW
forms proportion was reported to be also associated to a
decreased abundance of AdipoR1 and AdipoR2 in skeletal
muscle, therefore inducing a phenomenon called “Ad resistance.”
Previous studies found that the stimulatory effect of Ad on muscle
fatty acid oxidation and insulin-stimulated glucose transport
could be impaired in skeletal muscle, at least partly due to a
downregulation of AdipoR expression (Mullen et al., 2007, 2009;

Sente et al., 2016). Moreover, Yamauchi et al. found that the
beneficial effects of Ad on glucose levels was abolished in
AdipoR1 and AdipoR2 double-knockout mice. In addition,
an improvement of glucose tolerance in hypoxemic mice was
previously described in other studies (Gamboa et al., 2011;
Thomas et al., 2017). While the exact mechanism remains
controversial, various mechanisms were suggested such as an
increased AMPK activity, GLUT4 translocation (Thomas et al.,
2017), or Akt activation which leads to an increased glycogen
synthesis (Gamboa et al., 2011). As the anti-diabetic effects of
Ad include the contribution of all of these components, we could
hypothesize that, although the reduced AdipoR abundance could
interfere with the beneficial effects of Ad, the improved glucose
tolerance may be partly attributed to an increased levels of
HMW forms. This hypothesis is in accordance with the absence
of modulation of AdipoR protein levels in liver, suggesting
that HMW forms could improve glucose tolerance through its
beneficial effects on this tissue. However, as HIF-1 is well known
to increase enzyme expression of the glycolytic pathway (Goda
and Kanai, 2012) as well as glucose uptake in muscle by increasing
GLUT4 translocation (Sakagami et al., 2014), we are not able to
exclude that other mechanisms could contribute to the improved
glucose tolerance observed in our model. Indeed, Serebrovska
et al. (2017) observed an increased expression of HIF-1 target
gene and an improved glucose tolerance in subjects with
prediabetes (n = 11) exposed to intermittent hypoxia (12/21%
FiO2, four cycles of 5/5 min during 1 month). They suggested
a beneficial effect of intermittent hypoxia on glucose tolerance,
but the strict lifestyle environment they have applied could have
interfered with this relation. Further studies are needed to better
understand the impact of SIH on glucose homeostasis.

CONCLUSION

In conclusion, SIH in mice modulated Admer distribution
with an increased proportion of Ad HMW forms and
also induced a tissue-specific modulation of AdipoR protein
abundance. Indeed, whereas hypoxemia, per se, did not
modify AdipoR expression in peripheral tissues, it causes a
decreased AdipoR1/2 protein abundance in skeletal muscle
and a reduced AdipoR2 protein level in heart. Although
molecular mechanisms underlying hypoxemia-mediated effects
have to be further investigated, modulations of Ad forms and
receptors suggested modifications of Ad-dependant pathways in
pathological conditions associated to hypoxemia. Investigation of
those parameters could constitute useful complementary criteria
for risk stratification and to identify novel therapeutic targets
to counteract the development of metabolic and cardiovascular
co-morbidities in respiratory diseases.
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