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Detrended fluctuation analysis (DFA) is a popular tool in physiological and medical studies

for estimating the self-similarity coefficient, α, of time series. Recent researches extended

its use for evaluating multifractality (where α is a function of the multifractal parameter q)

at different scales n. In this way, the multifractal-multiscale DFA provides a bidimensional

surface α(q,n) to quantify the level of multifractality at each scale separately. We recently

showed that scale resolution and estimation variability of α(q,n) can be improved at each

scale n by splitting the series into maximally overlapped blocks. This, however, increases

the computational load making DFA estimations unfeasible in most applications. Our

aim is to provide a DFA algorithm sufficiently fast to evaluate the multifractal DFA

with maximally overlapped blocks even on long time series, as usually recorded in

physiological or clinical settings, therefore improving the quality of the α(q,n) estimate. For

this aim, we revise the analytic formulas for multifractal DFA with first- and second-order

detrending polynomials (i.e., DFA1 and DFA2) and propose a faster algorithm than

the currently available codes. Applying it on synthesized fractal/multifractal series we

demonstrate its numerical stability and a computational time about 1% that required

by traditional codes. Analyzing long physiological signals (heart-rate tachograms from

a 24-h Holter recording and electroencephalographic traces from a sleep study), we

illustrate its capability to provide high-resolution α(q,n) surfaces that better describe the

multifractal/multiscale properties of time series in physiology. The proposed fast algorithm

might, therefore, make it easier deriving richer information on the complex dynamics

of clinical signals, possibly improving risk stratification or the assessment of medical

interventions and rehabilitation protocols.

Keywords: hurst exponent, multiscale analysis, multifractality, HRV, EEG

INTRODUCTION

In the mid of the 90s, the algorithm of detrended fluctuation analysis (DFA) gave a great boost
to the study of fractal physiology providing an easy-to-calculate method for evaluating the Hurst’s
exponent of physiological times series (Castiglioni et al., 2017). DFA estimates the slope α of the
log-log plot of a fluctuations function, F(n), over a range of time scales n. The fluctuations function
is the root mean square, or second-order moment, of the deviations of blocks of n data from a
polynomial trend. Due to the intrinsic variability of the F(n) estimate, α is calculated as the slope of
the least-square regression line fitting log F(n) on log n.

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00115&domain=pdf&date_stamp=2019-03-01
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pcastiglioni@dongnocchi.it
https://orcid.org/0000-0002-8775-2605
https://doi.org/10.3389/fphys.2019.00115
https://www.frontiersin.org/articles/10.3389/fphys.2019.00115/full
http://loop.frontiersin.org/people/180526/overview
http://loop.frontiersin.org/people/644348/overview


Castiglioni and Faini Fast Multifractal Multiscale DFA

DFA became quickly popular in the field of heart rate
variability analysis and since its first applications the F(n)
of heart rate was described by two slopes, one at the
shorter (n < 16) and one at the longer scales (Peng et al.,
1995). Then, similar multi-slope approaches were proposed
for electroencephalogram (EEG) recordings (Hwa and Ferree,
2002; Jospin et al., 2007). The idea that α may change with
the scale n and that the resulting α(n) profile may provide
information on physiological or pathophysiological mechanisms
was further investigated by different groups in the following
years. Continuous α(n) profiles from noisy F(n) estimates
were obtained by applying a simplified Kalman filter whose
coefficients, however, were defined empirically, making the
procedure somehow arbitrary (Echeverria et al., 2003). Other
authors extended the two-slope approach fitting the regression
line over a short running window (Gieraltowski et al., 2012;
Xia et al., 2013): in this way a continuous α(n) profile
was obtained as the central point of the window, n, moved
from the shortest to the longest scale. The running-window
approach was also applied to study multifractality. Multifractal
series are composed by interwoven fractal processes and the
multifractal DFA approach extends the calculation of the second-
order fluctuations function to a range of positive and negative
moments that includes q = 2 (the second-order moment): in
fact, positive q moments amplify the contribution of fractal
components with larger amplitude and negative q moments
the contribution of fractal components with smaller amplitude
(Kantelhardt et al., 2002). This led to the calculation of the
local slope of the qth-order fluctuation function, α(q,n), as
the slope of the regression lines fitting Fq(n) over a running
window at each q separately (Gieraltowski et al., 2012). It
should be considered that the scale resolution achievable with
the regression line method is limited because the window
width cannot be too short to make α insensitive to the
estimation variability.

A third approach is based on estimating the slope as the
first derivative of log F(n) (Castiglioni et al., 2009, 2011a).
Assuring higher α(n) resolution, it allows obtaining a more
detailed description of the deviations of log F(n) from the
straight line, which resulted useful for describing the autonomic
integrative control (Castiglioni et al., 2011a) and its alterations
(Castiglioni and Merati, 2017). However, this approach requires
minimizing the variability of the F(n) estimator because of its
sensitivity to noise. Traditional DFA estimators calculate F(n)
splitting the series into consecutive non-overlapped blocks. If the
series is split into maximally overlapped blocks, which means
that consecutive blocks of size n have n-1 samples in common,
the variability of the F(n) estimator decreases substantially,
allowing the evaluation of the slope as the first derivative
(Castiglioni et al., 2018). A drawback of this approach is the
much higher computational load that may make unfeasible
the analysis of long series of data, as often occur in heart-
rate variability or EEG studies. The computational load is even
greater for calculating Fq(n) and the multifractal-multiscale
spectrum, α(q,n).

Strictly related to the determination of the local slope of
Fq(n) is the identification of number and position of crossover

scales where the fractal properties change. Crossovers may be
due to interferences affecting the measures (Ludescher et al.,
2011) or may reflect specific aspects of the physiological
system generating the series, like short-range correlations (Höll
and Kantz, 2015). Statistical models for identifying crossover
points in Fq(n) are based on fitting piecewise regressions
and on iterative hypothesis testing (Ge and Leung, 2013).
Other approaches identify the scales where the Fq(n) curves
change their slope by introducing the focus-based multifractal
formalism (Mukli et al., 2015): accordingly, if one assumes a
bimodal scale dynamics, the multifractal fluctuations function
is directly modeled by one or two fan-like structures in
which log-log straight lines, each corresponding to an order
q, may converge to a focus at the largest scale. Multifractal
crossovers are then decomposed by an iterative process that
minimizes the residual errors of least-square fittings (Nagy
et al., 2017; Mukli et al., 2018). Clearly, the estimation
variability of the Fq(n) curves negatively affects the identification
of the focuses and decreases the overall statistical power
of these methods. Therefore, also these methods can take
advantage of the use of maximally overlapped blocks for
improving the Fq(n) estimates and for better modeling the
multifractal dynamics.

The examples of Figure 1 illustrate the reduction of
estimation variability and the related computational costs
when using maximum overlapping. In the example of a
first-order autoregressive process generated by white Gaussian
noise (Figure 1, Upper), the variability of the Fq(n) estimate
without overlapping might suggest the presence of a focus
at the larger scales. A focus should not be present, because
at scales larger than the cut-off frequency the dynamics is
determined by white noise. Actually, when the Fq(n) curves
are estimated with maximally overlapped blocks, they run in
parallel (see inset) with slope α close to 0.5 at the largest
scale. In the example of a random series with multifractal
Cauchy distribution (Figure 1, Lower), the large variability of the
estimate without overlapping makes it difficult to identify the
scale where the focus occurs and may completely hide possible
crossover points between n = 103 and n = 104 for positive
q. These drawbacks are largely mitigated by using maximum
overlapping but at the cost of an increased computational
load that may lead to unacceptable calculation times for
long series.

To overcome this limit, we designed a fast algorithm for
Fq(n) calculation, particularly efficient in case of maximally
overlapped blocks. Therefore, the aim of the present work is
(1) to describe the theoretical aspects on which we based our
fast algorithm; (2) to illustrate its performance by comparison
with the traditional DFA algorithm; (3) to show potential
applications in the fields of heart rate variability analysis and
of EEG signals analysis; and (4) to provide the source code for
its implementation. The algorithm optimizes the computation
time of Fq(n) and readers can then estimate α(q,n) with any
of the methods proposed in literature: Kalman filtering, least-
square regression over a running window or first derivative of
log Fq(n) vs. log n. In this work, we also include the code
for slope estimation with the latter method because our fast
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FIGURE 1 | Effect of blocks overlapping on variability and computation time of Fq(n) estimates. (Upper) DFA1 fluctuation functions for an autoregressive series {xi} of

N = 16,384 samples generated as xi =axi−1+wni where wni is white Gaussian noise with zero mean and unit variance and a = 0.9391014 as in Kiyono (2015),

corresponding to a low-pass filter with cut-off frequency fco= 0.01, or a cross-over scale nco= 100 (Höll and Kantz, 2015); calculation time for estimating Fq(n) over

38 block-sizes n was 4 s without overlapping and 3min with maximum overlapping on a personal computer. (Lower) DFA1 fluctuation functions for N = 300,000

random samples with Cauchy distribution (location 0, scale 3); calculation time for estimating Fq(n) over 55 block-sizes n was 58 s without overlapping, 5 h and 22min

with maximum overlapping.

algorithm was specifically designed for evaluating α(q,n) with the
derivative approach.

FAST Fq(n) CALCULATION

Given a time series of N samples, Sj, with j = 1, . . . N, mean µS

and standard deviation σS, the mean is removed and the series
normalized to unit standard deviation:

sj =
Sj − µS

σS
(1)

The normalization in Equation (1), not required by DFA, is
useful for recognizing data blocks with very low dynamics (see
section Calculation precision and small blocks overfitting). The
cumulative sum yi, with i= 1,. . . N, is:

yi =

i
∑

j=1

sj (2)

To evaluate Fq, the yi series is split into consecutive blocks of
size n. At a given scale n, the number of blocks, M, depends
on the length of the series N, on the block size n and on the
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number of overlapped samples between consecutive blocks, L,
with 0≤ L<n, as:

M =

⌊

N − n

n− L

⌋

+ 1 (3)

If N-n is not multiple of n-L, a short segment of N-(M-1)(n-L)-n
samples at the end of the series are excluded from the analysis.
In the case of maximum overlapping, when L = n-1, all the N
samples contribute to the estimation of Fq(n) and the number
of blocks reaches the highest value: M = N-n+1. Each of the
M blocks is detrended by least-square fitting a polynomial p(i).
The usual notation to indicate a DFA employing a polynomial
of order O is DFAO. The variance of the residuals in the k-th
detrended block is

σ 2
n

(

k
)

=
1

n

Ik+n−1
∑

i=Ik

(

yi − p (i)
)2

(4a)

with Ik =(n-L)×(k-1)+1 index of the first sample falling into the
k-th block. According to Kantelhardt et al. (2002), the variability
functions for DFA multifractal analysis are:



















Fq(n) =

(

1
M

M
∑

k=1

(

σ 2
n

(

k
))

q/2
)1/q

for q 6= 0

Fq(n) = e

1
2M

M
∑

k=1

ln(σ 2
n (k))

for q = 0

(5)

Because of the normalization in Equation (1), the variability
function of the original series is Fq(n)×σS.

Most of the computational load for evaluating Fq(n) is due to
the calculation of Equation (4a), which requires (1) a least-square
polynomial fitting and (2) the evaluation of the variance of the
residuals, over n points. These steps should be repeated for each
of the M blocks and M reaches very large values, close to N, for
maximally overlapped blocks (Equation 3). In the following, we
describe how tomake these calculation steps faster for detrending
polynomials of order 1 or 2, i.e., for DFA1 and DFA2. We
did not consider polynomials of a higher order because all the
DFA biomedical applications we are aware of did not employ
detrending polynomials of order greater than 2. However, the
same optimization strategy we present here can be extended to
higher orders.

Least Square Polynomial Fitting
Freely available DFA codes, as accessible in Ihlen (2012) or
described in Peng et al. (1995) and Gieraltowski et al. (2012)
and downloadable in Goldberger et al. (2000), calculate the
polynomial p(i) of orderOwith algorithms for least-square fitting
a data-set of n points with coordinates (i,yi). This means solving
n linear equations operating with a n×(O+1) Vandermonde
matrix. The fitting polynomials of first and second order are:

y = b1i+ a1 (6a)

y = c2i
2 + b2i+ a2 (6b)

Coefficients of Equation (6a) are:

b1 =
Siy

Sii
(7a)

a1 = ȳ− b1 ī (7b)

with

ī =
1

n

Ik+n−1
∑

i=Ik

i (8a)

ȳ =
1

n

Ik+n−1
∑

i=Ik

yi (8b)

Siy =
1

n

Ik+n−1
∑

i=Ik

iyi − īȳ (8c)

Sii =
1

n

Ik+n−1
∑

i=Ik

i2 − ī2 (8d)

Coefficients of Equation (6b) are:

c2 =
Si2ySii − SiySii2

SiiSi2i2 −
(

Sii2
)2

(9a)

b2 =
SiySi2i2 − Si2ySii2

SiiSi2i2 −
(

Sii2
)2

(9b)

a2 = ȳ− b2 ī− c2i2 (9c)

with, in addition to Equation (8a–d):

i2 =
1

n

Ik+n−1
∑

i=Ik

i2 (10a)

Sii2 =
1

n

Ik+n−1
∑

i=Ik

i3 − īi2 (10b)

Si2i2 =
1

n

Ik+n−1
∑

i=Ik

i4 − i2i2 (10c)

Si2y =
1

n

Ik+n−1
∑

i=Ik

i2yi − i2ȳ (10d)

Equations (8a,d) and Equations (10a–c) require summing powers
“V” of i, with V an integer between 1 and 4 and i consecutive
natural numbers. Remembering the Faulhaber’s formula:

n
∑

i=1

iV =
1

V + 1

V+1
∑

i=1

(−1)δiV
(

V + 1
i

)

BV+1−in
i (11)
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where Bi is the i-th Bernoulli’s number,

(

V
i

)

is the binomial

coefficient, and δiV is the Kroenecker’s delta (Weisstein, 1999),
we have:

n
∑

i=1

i =
n2

2
+

n

2
(12a)

n
∑

i=1

i2 =
n3

3
+

n2

2
+

n

6
(12b)

n
∑

i=1

i3 =
n4

4
+

n3

2
+

n2

4
(12c)

n
∑

i=1

i4 =
n5

5
+

n4

2
+

n3

3
−

n

30
(12d)

Since

Ik+n−1
∑

i=Ik

iV =

Ik+n−1
∑

i=1

iV −

Ik−1
∑

j=1

jV (13)

the sum of powers of n consecutive integers does not require the
actual summation of n terms and can be obtained through the
much faster expressions of Equations (12). However, Equations
(8b,c, 10d) include sums of the product between iVyi, with V
integer between 0 and 2. There are no analytic expressions for
these sums but a fast way to calculate them is to define the arrays
Av,w(i), i= 0,. . . ,N, as:

{

AV ,W (i) = 0 for i = 0

AV ,W (i) = AV ,W (i− 1) + iVyWi for i > 0
(14)

Once the arrays have been initialized, the sum of n consecutive
iVyWi products is calculated by the following difference:

Ik+n−1
∑

i=Ik

iVyWi =AV ,W (Ik + n− 1) − AV ,W (Ik − 1) (15)

Variance of the Residuals
To avoid another summation over n points, let’s writing the
squared expression in Equation (4a) for the linear fitting
(Equation 6a) as:

σ 2
n

(

k
)

=
1

n

Ik+n−1
∑

i=Ik

[

yi −
(

b1i+ a1
)]2

=

= a21 +
1

n





Ik+n−1
∑

i=Ik

yi
2 + b1

2
Ik+n−1
∑

i=Ik

i2

+2a1b1

Ik+n−1
∑

i=Ik

i− 2b1

Ik+n−1
∑

i=Ik

iyi − 2a1

Ik+n−1
∑

i=Ik

yi



 (16a)

and for quadratic fitting (Equation 6b) as:

σ 2
n

(

k
)

=
1

n

Ik+n−1
∑

i=Ik

[

yi −
(

c2i
2 + b2i+ a2

)]2
=

= a22 +
1

n



c2
2
Ik+n−1
∑

i=Ik

i4 + 2c2b2

Ik+n−1
∑

i=Ik

i3 +
(

b22 + 2a2c2

)

Ik+n−1
∑

i=Ik

i2

+2b2a2

Ik+n−1
∑

i=Ik

i



+

+
1

n





Ik+n−1
∑

i=Ik

yi
2 − 2c2

Ik+n−1
∑

i=Ik

i2yi − 2b2

Ik+n−1
∑

i=Ik

iyi − 2a2

Ik+n−1
∑

i=Ik

yi





(16b)

The sums in Equations (16a,b) are obtained analytically with
Equations (12a–d, 13), and directly from Equation (15) with
V = 0 andW = 1 or 2, and withW = 1 and V = 1 or 2.

CALCULATION PRECISION

To avoid subtracting terms with very different magnitude, which
may introduce errors due to the finite precision of numbers
representation, the starting point of the k-th block, Ik, is shifted
to 1 rewriting Equation (4a) as:

σ 2
n

(

k
)

=
1

n

n
∑

j=1

(

yj+Ik−1 − p′
(

j
))2

(4b)

The difference in Equation (13) is nomore required and Equation
(15) is calculated as inAppendix. However, numerical errorsmay
affect Av,w(i) in Equation (14). In fact, the array initialization
requires adding the term iVyWi to a running summation AV ,W(i-
1) whichmay reach very high values for long series when i is close
to N, propagating precision errors from the lower to the higher
indices i. To avoid this problem, the running summation is split
into a sequence of shorter sums over segments of 128 samples.
This is done defining the matrix AV ,W(r,c) of 129 rows (0 ≤ r ≤
128) and Q= ⌊(N-1)/128⌋+1 columns (1≤c≤Q), as:







AV ,W (r, c) = 0 for r = 0
AV ,W (r, c) = AV ,W (r − 1, c)

+[r + (c− 1) × 128]VyWr+(c−1)×128 for r > 0
(17)

Any index i> 0 corresponds to the column c=⌊(i-1)/128⌋+1 and
to the row r = i-c×128, and AV ,W(i) is calculated as







AV ,W (i) = AV ,W (r, c) for c = 1

AV ,W (i) = AV ,W (r, c) +
c−1
∑

k=1

AV ,W

(

128, k
)

for c > 1
(18)

avoiding most of the sums that include terms with very different
magnitude.

For extremely long series, even Equation (18) cannot exclude
errors due to the finite precision of numbers representation.
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To control further these errors, the variance of the residuals
in Equation (4b) is compared with a threshold. The idea is
that when the variance of the residuals is extremely low, the
relative weight of errors due to the finite precision of numbers
representation might have a detectable influence on the estimate.
In this case, the variance is recalculated directly as the summation
of the n consecutive powers iVyWi and not through (Equation 15).
Because of the normalization in Equation (1), the threshold does
not depend on the standard deviation of the time series, but only
on its length N, on the precision of number representation and
on the detrending order. In our implementation the default value
of the DFA1 threshold, Th1, is

{

Th1 = 10−3 for N ≤ 105

Th1 =
N
108

for N > 105
(19a)

and of the DFA2 threshold, Th2, is
{

Th2 = 10−2 for N ≤ 102

Th2 =
N
104

for N > 102
(19b)

A numerical problem of different nature may require comparing
the variance of the residuals in Equation (4b) with another

threshold EPS, as described in Ihlen (2012). A detrending
polynomial of too high order might overfit the blocks of
smaller size n, or pre-processing procedures, as low-pass filtering,
might remove fractal components at the shortest scales. In
these cases, the variance of the residuals could be so low
to severely distort log Fq(n) at negative q. The solution
proposed in Ihlen (2012) is to discard variances lower than
an EPS threshold set “to the precision of the measurement
device that is recording the biomedical time series.” Since we
normalized the series to unit variance, our approach is to set
EPS as a fraction of the dynamics of the original series (for
instance, EPS=10−4).

ALGORITHM PERFORMANCE

To assess numerical stability and speed of our algorithm (see
Matlab source code in the Supplemental File FMFDFA.m), we
applied it to synthesized time series. We synthesized three series
of N = 106 samples: a white Gaussian noise with zero mean
and unit variance, {wni}; a Brownian motion as the integral of
a zero-mean white noise with variance= 0.01986918, {Bmi}; and

FIGURE 2 | Fq(n) functions by the traditional (MF DFA) and the proposed fast algorithm (Fast MF DFA) for the {wbi} series. The series of N = 200,000 samples is the

superposition of white noise and Brownian motion (see text); estimates without overlapping by the traditional algorithm (Left) and by our fast algorithm (Center) and

with maximum overlapping by our fast algorithm (Right) were performed over 56 block sizes exponentially distributed over the n axis, with thresholds Th1 and Th2 as

in Equations (19) and EPS = 0. On a laptop computer, the traditional algorithm employed T = 57 s for calculating DFA1 and T = 146 s for calculating DFA2 without

overlapping, the fast algorithm employed 2.2 s without overlapping and 65 s with maximum overlapping for calculating both the DFA1 and DFA2 estimates

simultaneously.
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the series {wbi} obtained as their superposition, i.e.,:

wbi = wni + Bmi (20)

As indicated in Kiyono (2015), the power spectrum of {wbi} has
a crossover frequency separating the spectral profiles of white

TABLE 1 | Largest relative error in Fq(n) estimates induced by calculating the sum

of n products with the fast Equation (15).

Time series

{wni}; {Bmi}; {wbi}; {bcni};

Length DFA1 DFA2 Length DFA1 DFA2

N = 102 1.4E-11 1.9E-11 N = 28 3.1E-11 2.1E-11

N = 103 1.0E-09 2.3E-08 N = 210 4.8E-10 1.2E-10

N = 104 1.0E-07 5.0E-07 N = 212 2.6E-09 3.9E-09

N = 105 1.9E-05 6.1E-06 N = 214 1.1E-06 4.0E-07

N = 106 6.0E-03 4.4E-04 N = 216 4.6E-06 2.2E-06

{wni}, white noise; {Bmi}, Brownian motion; {wbi}, sum of {wni} and {Bmi}; {bcni},

stochastic binomial cascade embedded in noise (see text for details).

and brown noises at fco= 10−2.5, corresponding to a crossover
scale nco=316 samples. Figure 2 shows an example of DFA1 and
DFA2 estimates on N = 200,000 samples of {wbi} (we analyze
EEG series of the same length in the next paragraph “Application
on real biomedical time series”).

To evaluate how the finite precision of number representation
may affect the sum of n consecutive products when obtained
by Equation (15), we extracted segments of length N = 10k+1,

with k integer between 1 and 5, from the three synthesized
series. For each segment, we estimated Fq(n) for all integers

q between −5 and +5 and for scales nb= 10b with b an
integer between 1 and k-1 (e.g., for a segment of length N4

= 10,000 samples we considered the scales n1= 10, n2= 100
and n3= 1,000 samples). Estimates were performed with the
fast algorithm with maximally overlapped blocks, setting Th1
and Th2 as in Equations (19) and EPS = 0. These “fast”
estimates were compared with estimates from a reference
algorithm in which the difference on the right side of Equation
(15) is replaced by the slower but more precise summation
of n products on the left side of the equation. The relative
error between the fast estimate, Fq(nb)

F , and the reference
estimate, Fq(nb)

R, was computed for each q and each block

FIGURE 3 | Fq(n) functions for a multifractal binomial cascade embedded in noise of N = 65,536 samples. Estimates without overlapping by the traditional (Left) and

fast (Center) algorithm and with maximum overlapping by the fast algorithm (Right) were performed over 38 block sizes, with thresholds as in Equations (19) and

EPS = 0. On a laptop computer, the traditional algorithm employed T = 4.3 s for DFA1 and T = 9.5 s for DFA2 without overlapping while the fast algorithm employed

0.12 s without overlapping and 3.6 s with maximum overlapping for calculating DFA1 and DFA2 estimates simultaneously.

Frontiers in Physiology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 115

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Castiglioni and Faini Fast Multifractal Multiscale DFA

size nb as:

ε(q, nb) = |Fq(nb)
F − Fq(nb)

R|/Fq(nb)
R (21)

The largest of these errors among all the nb block sizes, among
all the q values and among the three series ({wbi}, {wni} and
{Bmi}) was taken as a global measure of the precision of the

fast algorithm for any given length Nk. Relative errors are
reported in Table 1: even in the worst case (corresponding to
the length N = 106 samples), the highest relative error is less
than 1%.

We also generated a stochastic binomial cascade embedded
in noise, {bcni}, with a procedure similar to that described in
Gieraltowski et al. (2012). We started from a series of N = 214

FIGURE 4 | Comparison of Fq(n) calculation times (sum of DFA1 and DFA2) for series of length N. Times for analyzing {wbi} (square) and binomial cascade (circle)

series (see text) by traditional (solid symbols) and fast MF DFA algorithm (open symbols): average of 10 runs on a personal computer with Intel i7-7600U CPU at 2.80

GHz, 16 GB RAM and Samsung MZVLW1T0HMLH-000L7 hard disk. As the series length, N, increases, the number of block sizes, n, also increases remaining

constant the block-size density of four n values per decade. The calculation time of the traditional algorithm for maximum overlapping and N = 106 has been

extrapolated (cross symbol).

FIGURE 5 | Multifractal multiscale coefficients by DFA1, α1, and by DFA2, α2. Values as derivative of log Fq(n) vs. log n with maximally overlapped blocks: mean ± SD

for 10 white noises and 10 Brownian motions. Dashed horizontal lines represent the theoretical value for white noise (=0.5) or Brownian motion (=1.5).
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samples equal to 1, we split it into two segments of the same
length, and multiplied one segment by the weight 0.25 and one
by the weight (1-0.25), randomly selecting the weights of the
first and second segment. We repeated the splitting/weighting
procedure for each segment of the previous step, up to 14 steps.

To include random noise, we substituted all values lower than
10−6 with random samples uniformly distributed between 0 and
0.01. From this cascade, we subtracted its reversed duplicate
to obtain a symmetric distribution. Figure 3 shows examples
of F(n) estimates for the {bcni} series (we analyzed heart-rate

FIGURE 6 | Multifractal Multiscale coefficients by combining DFA1 and DFA2. Weights defined by Equations (23a–c).

FIGURE 7 | Weights for combining DFA1 and DFA2 estimates. The weighted estimate, αw(q,n), is a linear combination of DFA1 coefficients, α1(q,n), and DFA2
coefficients, α2(q,n), and it is proposed if there are no specific reasons to prefer one of the two detrending orders and if the time-series dynamics is assumed to be

composed by fractional Gaussian noises or fractional Brownian motions. The weights, based on Equations (23), range between 0 (yellow) and 1 (dark blue). When

n ≤ 12, αw = α1 for all q values; when n≥24, αw = α1 for q = 5, αw = α2 for q = −5, and α1 and α2 weights change linearly with q between −5 and +5 so that αw is

the average between α1 and α2 for q = 0. The α1 and α2 weights change linearly also with n between 12 and 24.
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series of similar length in the paragraph “Application on real
biomedical time series”). We generated and concatenated four of
these binomial cascades to obtain a series of length N = 216.
Relative errors were assessed from fast, Fq(nb)

F , and reference,
Fq(nb)

R, estimates (calculated with maximally overlapped blocks,
thresholds as in Equation 19 and EPS= 0) for segments of length
Nk =22k+6 with 1 ≤ k ≤ 5, and block sizes nb= 22b+1 with 1 ≤

b ≤ k (e.g., for the length N4 = 16,384 we considered the scales
n1= 16, n2= 64, n3= 256 and n4= 1,024). Results inTable 1 show
negligible errors also for this multifractal series.

We compared the calculation times employed by the
traditional and the fast MF DFA algorithm to analyze {wbi} series

of length Nk = 10k+1 and binomial cascade series of length Nk=

22k+6, with 1 ≤ k ≤ 5. Results in Figure 4 indicate that the
fast algorithm is about two orders of magnitude faster than the
traditional one.

LOCAL SLOPES OF Fq(n)

Once that Fq(n) has been estimated with maximally overlapped
blocks, the multifractal DFA coefficients α(q,n) may be
obtained as the first derivative of log Fq(n) vs. log n. To
have equispaced log n values we interpolate the log Fq(n)
samples by a spline function, obtaining H values Fq(nh)

FIGURE 8 | Multifractal fluctuation functions of heart-rate variability during Wake and Sleep with maximally overlapped blocks. The original series are two 4-h

segments of beat-by-beat R-R intervals from a 24-h ECG recording in a healthy volunteer. The first horizontal axis is the box size n, in number of beats; the second

horizontal axis is the temporal scale τ , in seconds, obtained multiplying n by the mean R-R interval, which is shorter inWake than in Sleep. Thresholds Th1 and Th2 as

in Equations (19) and EPS = 0.
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with nh real numbers spaced exponentially on the scale
axis. The slope at nh is the derivative formula on 5 points
(Castiglioni et al., 2018):

α
(

q, nh
)

=
8
(

log Fq
(

nh+1

)

− log Fq
(

nh−1

))

−
(

log Fq
(

nh+2

)

− log Fq
(

nh−2

))

3
(

log
(

nh+2

)

− log
(

nh−2

))

for 2 < h < H − 1 (22a)

or on 3 points at the extremes of the scale axis:

α
(

q, nh
)

=
− log Fq

(

nh+2

)

+ 4 log Fq
(

nh+1

)

− 3 log Fq
(

nh
)

log
(

nh+2

)

− log
(

nh
) for h = 1 (22b)

α
(

q, nh
)

=
log Fq

(

nh+1

)

− log Fq
(

nh−1

)

log
(

nh+1

)

− log
(

nh−1

) for h = 2 and h = H − 1 (22c)

α
(

q, nh
)

=
log Fq

(

nh−2

)

− 4 log Fq
(

nh−1

)

+ 3 log Fq
(

nh
)

log
(

nh
)

− log
(

nh−2

) for h = H (22d)

The code for calculating Equations (22) is available as the
Supplemental Matlab File slpMFMSDFA.m.

COMBINING INFORMATION FROM DFA1

AND DFA2

Our algorithm provides both DFA1 and DFA2 estimates in a
single run. In some cases, there are reasons to prefer one of
the two estimates. For instance, DFA1 may identify the scale
where possible crossovers occur better than DFA2 (Höll and
Kantz, 2015; Kiyono, 2015); however, if the power spectrum
of the time series depends on the frequency f proportionally
to 1/f β, then DFA2 estimates the correct α up to β < 5,
while DFA1 can estimate it only up to β < 3 (Kiyono, 2015).
Furthermore, it is possible that the nature of the physiological
system under analysis may make preferable one of the two
detrending orders. For instance, in the field of heart-rate

FIGURE 9 | Scale coefficients of heart-rate variability during Wake and Sleep, for original and surrogate series. Coefficients calculated by Equations (22), combining

DFA1 and DFA2 estimates by Equations (23); for surrogate data, the figure shows the average α surface over 100 series generated shuffling the phases of the Fourier

spectrum of the original series. To more easily compare Wake and Sleep conditions, which are characterized by different heart rates, the τ axis represents the

temporal scale in seconds; τ is obtained multiplying the box size, n, with the mean R-R interval (see Figure 8).
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variability analysis, some studies highlighted that the slope α at
q = 2 reflects the sympatho/vagal balance over scales shorter
than 11 beats and allows stratifying the cardiovascular risk
(Perkiomaki, 2011). Since high-order detrending polynomials
overfit the shortest blocks (Kantelhardt et al., 2001), most of
the clinical studies estimated this index by DFA1, and a first-
order detrending should be used to get an autonomic index
comparable with the medical literature. On the other hand, a
crossover at the larger heart-rate scales was found for DFA1

but not for DFA2 during light sleep, suggesting that in this
sleep phase DFA2 can better remove long-term trends (Bunde
et al., 2000). This would make DFA2 preferable to DFA1 when
comparing heart rate variability by phases of sleep over the
larger scales.

These examples suggest that the best detrending order may
differ if the focus of the analysis is on the shorter rather than
on the larger scales. For a multifractal series, it is even possible
that the best detrending order may depend also on q because
components with different amplitude may have different fractal
structures. Therefore, it is conceivable that the assessment of
α(q,n) could be improved by properly combining the results of
DFA1 and DFA2 at each scale. To investigate this possibility,
we considered 10 white-noise and 10 Brownian-motion series,
each of N = 200,000 samples. Often the fractal dynamics of
physiological time series is described as belonging to the family of
fractional Gaussian noises and fractional Brownian motions (Eke
et al., 2000), and the behavior at the extremes of this family of
random processes (i.e., white noise and Brownian motion) may
be assumed to represent a large class of physiological series. Then
we calculated α(q,n) by DFA1 and by DFA2 with q = −5, q = 0,
and q = +5, for each series. Figure 5 illustrates the deviations of
the scale exponents from the theoretical value showing mean and

standard deviation of the estimates separately over the groups of
white noise and Brownian motion. The figure shows that at the
shorter scales the estimation bias is greater for DFA2 while, at the
larger scales, DFA2 appears more stable than DFA1 for q = −5,
less stable than DFA1 for q = +5 and of quality similar to DFA1

for q= 0.
These findings suggest that if the time series is composed by

fractional Gaussian noises and/or fractional Brownian motions,
DFA1 is preferable to DFA2 at the shorter scales, while at the
larger scales the choice may depend on the sign of q, and if q
= 0 averaging the DFA1 and DFA2 coefficients might improve
the estimate. Accordingly, we combined the estimates by DFA1,
α1(q,n), and by DFA2, α2(q,n), defining a weighted average,
αw(q,n), when q=−5, as:







αw (−5, n) = α1 (−5, n) for n < 12

αw (−5, n) = 24−n
12 α1 (−5, n) + n−12

12 α2 (−5, n) for 12 ≤ n ≤ 24

αw (−5, n) = α2 (−5, n) for n > 24

(23a)

when q= 0, as:







αw (0, n) = α1 (0, n) for n < 12

αw (0, n) = 36−n
24 α1 (0, n) + n−12

24 α2 (0, n) for 12 ≤ n ≤ 24

αw (0, n) = α1(0,n)+α2(0,n)
2 for n > 24

(23b)

and when q=+5, as:

αw (5, n) = α1 (5, n) (23c)

FIGURE 10 | Statistical significance of the nonlinearity test on scale coefficients of heart rate. Each point represents the two-sided, type-I error probability to reject the

null hypothesis comparing scale coefficients of the original series and of Fourier-phase shuffled surrogate series at each scale τ and at each moment-order q;

differences significant at p < 0.01 are indicated in yellow. The temporal scale τ , in seconds, is obtained multiplying the box size, n, by the mean R-R interval

(see Figure 8).
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Figure 6 shows the αw coefficients derived from α1 and α2

of Figure 5.
Values of αw for q between −5 and +5 are calculated linearly

interpolating the weights for q = −5 and q = +5. Figure 7
illustrates how the weights for the mixed coefficients are defined.

APPLICATIONS ON REAL BIOMEDICAL
TIME SERIES

This section presents examples of applications of our algorithm
on physiological time series collected in volunteers that gave
their written informed consent to participate to the study, which
was approved by the Ethics Committee of Istituto Auxologico
Italiano, IRCCS, Milan, Italy.

Heart Rate
Most of DFA applications in physiology regard the analysis
of heart rate variability. In this field, the evaluation of the
self-similarity exponents as a continuous function of the scale,
α(n), proved useful for associating a short-term crossover to
the dynamics of removal of noradrenaline released by the
sympathetic nerve endings (Castiglioni, 2011), for quantifying
alterations during sleep at high-altitude (Castiglioni et al., 2011b)
and for evaluating clinical conditions like congestive heart failure
(Bojorges-Valdez et al., 2007) or spinal lesions (Castiglioni
and Merati, 2017). When the self-similarity exponents were
estimated as a multifractal multiscale surface of the moment q
and scale n, α(q,n), they provided information on the autonomic
development from fetal heart rate recordings (Gieraltowski
et al., 2013), on differences between the dynamics of heart

FIGURE 11 | Fluctuation functions of EEG during NREM and REM sleep with maximally overlapped blocks. Time series are 1600-s segments of an EEG C4 lead

sampled at 128Hz during sleep in a healthy volunteer. The first horizontal axis is the box size, n, in number of samples, the second horizontal axis is the temporal

scale, τ , in milliseconds, obtained multiplying n by the sampling period. Thresholds Th1 and Th2 as in Equations (19) and EPS=10−4.
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rate and other cardiovascular variables (Castiglioni et al., 2018)
and helped modeling the heart rate dynamics during sleep
(Solinski et al., 2016).

In this context, our fast algorithm is expected to improve
existing methods by calculating α(q,n) surfaces with higher scale
resolution and lower estimation variability, thanks to its ability
to provide estimates with maximally overlapped blocks in short
time. As an example in the field of heart rate variability, we
compare multiscale multifractality during nighttime sleep and
during daytime activities in a healthy male volunteer. We derived
R-R interval series from a 24-h electrocardiogram sampled
at 250Hz. We compared Fq(n) functions calculated on two
segments of 4 h duration, one selected during daytime, from 2
p.m. to 6 p.m. (Wake condition), one during nighttime after
sleep onset, from 2 a.m. to 6 a.m. (Sleep condition). The mean
heart rate was 50 bpm during Sleep (N = 12,000 beats) and
71 bpm during Wake (N = 17,000 beats). Four premature
beats were identified visually and removed, and Fq(n) functions
were derived by DFA1 and DFA2 with maximally overlapped

blocks. Since the mean heart rate is lower in Sleep than in
Wake condition, the same block of n beats corresponds to
different time scales, in seconds, during Sleep and during
Wake. Therefore, the fluctuation functions were plotted vs. the
corresponding temporal scale τ , in seconds, by multiplying
n by the mean R-R interval. Figure 8 shows that Wake and
Sleep have different fluctuations functions, increasing with τ

as parallel lines in Wake and converging to a focus at the
longest scales in Sleep. This suggests a multifractal behavior
(i.e., different slopes for different q), more evident at some
scales (i.e., a multiscale dynamics), during sleep. The Fq(τ )
functions by DFA1 and by DFA2 appear similar: this confirms a
previous observation on 24-h heart rate recordings (Gieraltowski
et al., 2012) and does not suggest the presence of long-term
trends that make one of the two detrending orders preferable.
Therefore, we derived the surface of multifractal multiscale
coefficients by applying the weighted approach of Equations
(23). Figure 9 illustrates the resulting α(q,τ ) surfaces. During
daytime, the surface represents a relatively monofractal process

FIGURE 12 | Scale coefficients during NREM and REM sleep. Coefficients calculated by Equations (22), combining DFA1 and DFA2 estimates by Equations (23), for

original (Left) and Fourier-phase shuffled surrogate series (Right). The scale τ , in milliseconds, is the box size n multiplied by the sampling period.
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with multiscale dynamics, i.e., α depends more on τ than on
q. By contrast, during sleep, the surface also shows a strong
dependence on q at some scales, like at τ =1250 s, where it ranges
between α = 2.05 at q=−5 and α = 0.9 at q=+5.

Fractal structures in physiological systems may arise from
nonlinear chaotic dynamics or may be due to linear spectral
features. We tested whether the α(q,n) surfaces we estimated
for the heart-rate series actually reflect an underlying nonlinear
dynamics with the method of surrogate data analysis (Theiler
et al., 1992). For this purpose, we generated a dataset of 100
Fourier-phase shuffled time series (Schreiber and Schmitz, 2000)
from each of the two recordings. The surrogate series have the
same power spectrum of the original recording but a random
phase. We calculated α(q,n) for the “Wake” and “Sleep” surrogate
datasets. The average of each dataset is plotted in Figure 9 for
comparison with the original data.Multifractal structures evident
in the original series are absent in the surrogate data.

The statistical significance of the difference between the
original and surrogate series was assessed evaluating in which
percentile of the surrogate dataset the α(q,τ ) coefficients of the
original series fall. Figure 10 plots the significance p at each
scale and moment order. The figure demonstrates the presence
of a multifractal dynamics that does not depend on the linear
characteristics of the power spectrum, and which characterizes
Sleep more than Wake. The whole surrogate analysis of the 200
phase-shuffled series took less than 10min with our algorithm,
while the traditional algorithm would take more than 18 h
according to Figure 4.

Electroencephalogram
Another important field of DFA applications in physiology
regards the study of EEG recordings (Hardstone et al., 2012).
Traditionally, EEG is described by two (Ferree and Hwa, 2003;

Abasolo et al., 2008) or three DFA coefficients (Jospin et al., 2007),
but α(n) represented as a continuous function of the scale n
suggests more complex structures (Castiglioni, 2011). Therefore,
we considered an overnight EEG recording (C4 lead) during
sleep in a healthy adult male as an additional example. The EEG
signal was band-pass filtered (cut-off frequencies between 0.3 and
35Hz) before sampling at 128Hz, and two segments of 1,600 s
duration (N = 204,800 samples) were selected, one duringNREM
and one during REM sleep. Due to the 128Hz sampling rate,
the scale n, expressed in number of samples, corresponds to the
temporal scale τ = n×(1000/128) milliseconds. The fluctuation
functions (Figure 11) have an almost flat profile at scales larger
than 4 s, likely an effect of the filter. Furthermore, they show
remarkable differences between sleep phases at shorter scales,
running in parallel during NREM sleep and following a sigmoidal
pattern in REM sleep. Since DFA1 and DFA2 estimates are
similar, excluding the shorter scales where DFA1 provides a more
linear increase of log Fq(τ ) with log τ , we estimated the scale
coefficients with the weighted approach of Equations (23). The
α(q,τ ) surfaces (Figure 12) show a more evident multifractal
structure in REM than in NREM sleep.

We also generated a surrogate dataset of 100 Fourier-phase
shuffled time series for each recording, one during NREM
and one during REM sleep. The average α(q,τ ) surface of
each surrogate dataset is plotted in Figure 12 for comparison
with the original series. Figure 13, shows the significance of
the difference between original and phase-shuffled series and
indicates that the null hypothesis is rejected and nonlinearity
detected almost at all scales and moment orders. The whole
analysis on 200 surrogate series took 3 h and 22 min: this
calculation time should be compared with the calculation time
of 27 days and 8 h that the traditional algorithm would take, as
from Figure 4.

FIGURE 13 | Statistical significance of nonlinearity test on EEG scale coefficients. Each point represents the two-sided, type-I error probability to reject the null

hypothesis comparing scale coefficients of the original series and of Fourier-phase shuffled surrogate series at each scale τ and moment-order q; differences

significant at p < 0.01 are indicated in yellow. The scale, τ , in milliseconds, is the box size n multiplied by the sampling period.
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SUMMARY OF ADVANTAGES AND
LIMITATIONS, AND CONCLUSIONS

Since the DFA introduction, hundredths of works in
physiological or clinical settings quantified the fractal dynamics
by α. Almost all of them provided a monofractal description,
most considering only one or two ranges of scales (Perkiomaki,
2011; Sassi et al., 2015). Even if the results were promising,
particularly in the field of heart rate variability, it is questioned
whether a monofractal DFA estimating one or two coefficients
may improve health assessment and risk stratification compared
to nonfractal methods (Sassi et al., 2015). Therefore, the more
advanced research in this field is investigating how DFA can be
enhanced by jointly depicting the multifractal and multiscale
nature of the time series in order to model pathophysiological
mechanisms more completely (Zebrowski et al., 2015;
Solinski et al., 2016).

In this regard, the proposed algorithm is aimed at improving
scale resolution and at reducing estimation variability of the
multifractal fluctuations function without the cost of an increase
in calculation time that may make unfeasible the analysis of
relatively long series. Therefore, we redesigned the multifractal
DFA algorithm to provide estimates in a relatively short
time even by using maximally overlapped blocks, with first
and second-order detrending polynomials simultaneously. This
allows comparing DFA1 and DFA2 estimates easily, which may
be useful for evaluating the consistency of the estimates and for
selecting the best detrending order. Simultaneously obtaining the
DFA1 and DFA2 scale coefficients, which have a certain degree
of statistical independence, also suggests new ways to improve
the estimate, as in the weighted approach we proposed. The
examples on real biomedical series point out that the algorithm
is sufficiently fast to allow using challenging bootstrapping
procedures on surrogate data that may separate linear and
nonlinear components of the multiscale/multifractal dynamics.
The possibility to apply such tests in clinical studies may make

it easier deriving richer information to improve diagnosis or risk
stratification from DFA.

Some limitations, however, should be considered. The
algorithm employs detrending polynomials of first and second
order only. Although these orders are used in most (if not all)
DFA applications on real biosignal, the algorithm cannot be
considered as general as other DFA codes. If a higher order “o”
is required, the analytic expression of the polynomial regression
should be derived as done in Equations (7–10) for DFA1 and
DFA2, powers summations should be calculated by extending the
array definition of Equation (14) and, to maintain calculation
errors negligible also for DFAo, a new threshold Tho should
be defined in Equations (19), which will decrease the speed of
the algorithm.
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APPENDIX

Given the time series yi with index i from 1 to N, let’s shift i by
the integer quantity J so that each sample yi is associated with the
new index j= i-J running from 1-J to N-J.

The average i= 1
n

J+n
∑

i=J+1
i can be rewritten as

i = 1
n

n
∑

j=1

(

j+ J
)

=

= 1
n

n
∑

j=1

j+ J =

= j+ J (A1)

Similarly, the summation siy =
1
n

J+n
∑

i=J+1
iyi in Equation (8c) can be

rewritten as

siy =
1
n

n
∑

j=1

(

j+ J
)

yi =

= 1
n

n
∑

j=1

jyi + J × ȳ =

= sjy + J × ȳ (A2)

and si2y =
1
n

J+n
∑

i=J+1
i2yi in Equation (10d) as

si2y =
1
n

n
∑

j=1

(

j+ J
)2
yi =

= 1
n

n
∑

j=1

j2yi + 2J 1n

n
∑

j=1

jyi + J2 1n

n
∑

j=1

jyi

= sj2y +
(

2J + J2
)

× sjy (A3)

Through Equations (A1–3), sjy and sj2y can be obtained from siy
and si2y as calculated in Equation (15).
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