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Background: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic
tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However,
visual interpretation of the FHR usually leads to significant inter-observer and intra-
observer variability, and false positives become the main cause of unnecessary cesarean
sections.

Goal: The main aim of this study was to ensure a novel, consistent, robust, and effective
model for fetal hypoxia detection.

Methods: In this work, we proposed a novel computer-aided diagnosis (CAD) system
integrated with an advanced deep learning (DL) algorithm. For a 1-dimensional
preprocessed FHR signal, the 2-dimensional image was transformed using recurrence
plot (RP), which is considered to greatly capture the non-linear characteristics. The
ultimate image dataset was enriched by changing several parameters of the RP and was
then used to feed the convolutional neural network (CNN). Compared to conventional
machine learning (ML) methods, a CNN can self-learn useful features from the input
data and does not perform complex manual feature engineering (i.e., feature extraction
and selection).

Results: Finally, according to the optimization experiment, the CNN model obtained the
average performance using optimal configuration across 10-fold: accuracy = 98.69%,
sensitivity = 99.29%, specificity = 98.10%, and area under the curve = 98.70%.

Conclusion: To the best of our knowledge, this approached achieved better
classification performance in predicting fetal hypoxia using FHR signals compared to
the other state-of-the-art works.

Significance: In summary, the satisfied result proved the effectiveness of our proposed
CAD system for assisting obstetricians making objective and accurate medical decisions
based on RP and powerful CNN algorithm.

Keywords: computer-aided diagnosis system, fetal heart rate signal, recurrence plot, convolutional neural
network, optimization experiment
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INTRODUCTION

Since the brain of a neonate is easily influenced by the oxygen
supply, fetal distress caused by a lack of oxygen may lead to
different abnormalities that can be considered to be non-life-
threatening or life-threatening during pregnancy and delivery
(Tharmaratnam, 2000). Thus, an effective tool is required that
can monitor the fetal state in real-time and allow obstetricians
to take appropriate measures in a timely manner before
there is permanent damage to the fetus when an abnormal
situation occurs.

In clinical practice, electronic fetal monitoring (EFM), often
also called cardiotocography (CTG), is a common way of
monitoring a fetal state for obstetricians during intrauterine life
(Menihan and Kopel, 2014). The rationale of EFM relies on
the understanding that when normal metabolic processes are
interrupted either by a lack of oxygen or an inability to expel
end-products, the accumulation of acids may threaten all or a
part of the vital functions. It has been well established that fetal
well-being has a strong relationship with the placenta, the uterus,
and the umbilical cord since it depends on not only the adequate
functioning of sources and suppliers of oxygen but also on waste
removal mechanisms (Ayres-de-Campos, 2016).

Cardiotocography consists of two simultaneously recorded
biophysical signals; that is, fetal heart rate (FHR), which is
measured in beats per minute (bpm), and uterine contraction
(UC) signals, which are measured in either mmHg or an
arbitrary unit. With regard to perinatal care, EFM has become a
standard tool for preventing unnecessary interventions as well as
detecting symptoms of fetal distress (Kunzel, 2012). FHR traces
are assessed visually in agreement with common guidelines, such
as the International Federation of Gynecology and Obstetrics
(FIGO) guideline (Ayres-de-Campos et al., 2015) by obstetricians
in clinical practice. However, due to the non-linearity and
complexity of fetal dynamics, this visual examination causes
high inter- and even intra-observer variability among clinicians
(Rhose et al., 2014). Additionally, a false positive is referred
to as one of the causes behind the increase in the number of
Cesarean sections (CSs) (Steer, 2008). As mentioned previously,
although FHR has several drawbacks, it continues to be practiced
as a primary diagnostic test in obstetric clinics. To ensure
more consistent interpretations of the FHR signal, two basic
approaches have been proposed in the literature: extensive
training of clinicians and use of computerized systems for
medical decision support (Ayres-de-Campos et al., 2010).

Computerized FHR analysis has been adopted as the most
promising way to tackle the drawbacks of visual interpretation.
This idea is not novel, and in fact, the early studies in this field
date back to before the release of general FIGO guidelines (Visser
et al., 1981). The majority of these studies focused on either the
detection of basic features reflecting FHR characteristics (Dawes
et al., 1982; Mantel et al., 1990; Cesarelli et al., 2009) or emulating
what experts do in their visual examination (Dawes et al., 1991;
Keith and Greene, 1994). Recently proposed systems have been
equipped with advanced signal processing, pattern recognition,
and machine learning (ML) techniques to anticipate adverse
outcomes (Krupa et al., 2011; Czabanski et al., 2012; Spilka

et al., 2012, 2014, 2017; Fanelli et al., 2013; Dash et al., 2014;
Xu et al., 2014; Doret et al., 2015; Comert and Kocamaz, 2016;
Georgoulas et al., 2017; Comert et al., 2018). This approach has
three key stages: preprocessing, feature transformation (feature
extraction and selection), and classification, which can be briefly
described as follows.

Signal Preprocessing
Gap detection, interpolation, outlier detection, and detrending
are frequently utilized in the preprocessing stage of FHR
analysis to achieve reliable signals (Cesarelli et al., 2007;
Romano et al., 2013).

Feature Transform
Feature transforms (also called feature engineering in the ML
field) have great importance for signal representation. The basic
morphological features such as baseline (Dawes et al., 1982), the
number of acceleration and deceleration patterns (Mantel et al.,
1990) and variability in the short-term and long-term (Cesarelli
et al., 2009) are fundamental parts of the computerized FHR
analysis. Additionally, the linear and statistical features coming
from the time-domain and frequency-domain are extracted to
support the automated analysis (Czabanski et al., 2012; Dash
et al., 2014; Spilka et al., 2014). Further, using non-linear
parameters (e.g., entropy, complexity, and fractal dimension)
in fetal state assessment have been proposed and tested (Spilka
et al., 2012; Fanelli et al., 2013; Doret et al., 2015; Comert
and Kocamaz, 2016). Recently, an image-based time-frequency
(IBTF) feature analysis approach comprised of a combination
of short term Fourier transform (STFT) and a gray level co-
occurrence matrix (GLCM) have been employed as diagnostic
indices for fetal hypoxia detection (Comert et al., 2018).
Moreover, transform-based analysis methods, such as a discrete
wavelet transform (DWT) (Chrelias et al., 2008) and empirical
mode decomposition (EMD) (Krupa et al., 2011), have been used
for both noise reduction and feature extraction. Especially, heart
rate variability (HRV) has become a valuable resource in FHR
signal characterization (Romano et al., 2018). On the other hand,
since not all extracted features are valuable for classification,
feature selection algorithms and dimensional reduction methods
have been utilized to select an optimal feature set to improve
the performance, including a genetic algorithm (GA) (Xu et al.,
2014), information gain (IG) (Spilka et al., 2012), and principal
component analysis (PCA) (Zhang and Zhao, 2017).

Classification
Last, after signal preprocessing and feature transformation, the
computerized systems employed ML algorithms to perform two
or multiclass classification tasks and thereby discriminate a
pathological fetus from a normal fetus. For example, Czabanski
et al. (2012) designed an expert system to predict neonatal
pathology using a two-stage analysis method based on weighted
fuzzy scoring (WFS) and least square support machine (LS-
SVM) and obtained good performance with an accuracy of
92.0%. Comert and Kocamaz (2016) applied an artificial neural
network (ANN) and performed a classification task with
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an accuracy, sensitivity, and specificity of 92.40, 95.89, and
74.75%, respectively.

Clearly, although the previous studies concerning
computerized FHR analysis presented good classification
performance in assessing the fetal state with an accuracy of 90–
95%, the conventional ML method needs to extract informative
features and select optimal features, which can then be fed into
classifiers. Therefore, this approach requires a heavy workload
and detailed physiological information regarding the fetus that
may be lost during the entire procedure.

Deep learning (DL) has become a highly useful tool
for image processing in recent years (LeCun et al., 2015).
Especially, convolutional neural networks (CNNs), which involve
many layers, have been found to be quite efficient for
most image classification problems (Krizhevsky et al., 2012).
A CNN essentially self-learns high-level informative features
spontaneously by constructing hidden multilayer networks and
training data to improve performance in biomedical data
processing (Bursa and Lhotska, 2017). Thus, CNN greatly
simplifies the subjectivity of feature extraction and discovers
the intricate patterns contained in input data compared to
manual feature engineering in traditional ML methods. Due to
the attractive advantages, CNNs are extensively utilized in the
medical field for the purpose of designing diagnostic tools that
automatically assist clinicians (Archarya et al., 2017; Comert and
Kocamaz, 2018; Li et al., 2018; Petrozziello et al., 2018). For
example, Archarya et al. (2017) designed the CNN structure to
diagnosis coronary artery disease using an electrocardiogram
(ECG) signal and achieved high accuracy of 95.11% (Archarya
et al., 2017). In addition, Comert and Kocamaz (2018) also
proposed a novel approach to detect fetal hypoxia based on
a deep CNN with transfer learning using the FHR signal and
Petrozziello et al. (2018) reported their investigation of long
short term memory (LSTM) and CNN in analyzing continuous
EFM traces from over 35,000 labors for the prediction of fetal
compromise. In this study, motivated by previous research,
an end-to-end classification strategy (which means that feature
transform procedures are ignored) is performed to determine the
fetal state using a CNN algorithm, which possesses the ability to
self-learn useful features from the input FHR signals.

The remainder of the paper is organized as follows: Section
“Materials and Methods” describes the database and overall
methodology of the proposed system; Section “Results” presents
the experimental setup, results, and relevant discussion; and
last, the study’s conclusions are presented and future research is
outlined in Section “Discussion.”

MATERIALS AND METHODS

In this work, we present a novel computer-aided diagnosis
(CAD) system aimed at predicting fetal hypoxia based on an
advanced DL algorithm. The system diagram of the proposed
approach is illustrated in Figure 1. A short description of our
approach according to the signal processing flow is given as
follows, which can be divided into four steps. First, a relatively
pure FHR signal is obtained with a preprocessing algorithm

(see Signal Preprocessing). Second, the 1-dimensional time series
to 2-dimensional image is transformed using recurrence plot
(RP). The ultimate image dataset is expanded by changing the
optional parameters of the RP (see Recurrence Plot). Then, based
on the enriched data representation, a designed CNN model
is applied to learn the intrinsic patterns automatically, which
considers the images as input and allows parallel feature self-
learning for various characteristics, avoiding time-consuming
manual feature engineering (see Convolutional Neural Network).
The learned features reflected by the internal parameters of
the CNN are then used to enable fetal state assessment. An
open-access database is used to test the performance and
the pH is chosen as the objective criterion to separate the
fetal state into a normal or pathological class (see Database
Description). Finally, the classification performance of the
proposed system is evaluated using 10-fold cross-validation (see
Performance Evaluation).

Database Description
A publicly accessible intrapartum Czech Technical University
- University Hospital in Brno (CTU-UHB) CTG database
was used in the experiment. Chudacek et al. (2014) collected
the whole signals between 2010 and 2012 using STAN
S21/S31 and Avalon FM40/50 EFM devices. All signals were
sampled at 4 Hz and stored in electronic form in an OB
TraceVue R© system provided by Philips. Furthermore, the
authors selected a total of 552 intrapartum CTG recordings
from a subset of 9164 recordings to constitute this database
after considering several technical and clinical criteria, such
as the woman’s age, week of gestation, type of gravidity,
type of delivery, signal quality, and labor outcome measures.
Table 1 shows the main parameters and their respective
distributions of this database. Due to a space restriction,
interested readers can refer to more detailed information about
the database in Chudacek et al. (2014). The maximum duration
of the recordings was 90 min and each recording started
at a maximum of 90 min before delivery. The database is
open access and can be freely downloaded from Physionet
(Goldberger et al., 2000).

All signals were visually interpreted as being divided into
four parts by nine experienced obstetricians (Hruban et al.,
2015). Moreover, subjective evaluation criteria, Apgar’s scores,
were provided for the 1st and 5th min. Conversely, additional
biochemical markers measured after delivery, such as the
umbilical artery pH, the base excess (BE), and the base deficit
in extracellular fluid (BDecf), were provided for an objective
categorization. In this work, to make the comparison among
different methods more effective (Spilka et al., 2012; Dash et al.,
2014; Hruban et al., 2015; Comert et al., 2018), we adopted the
suggestion of these studies and the pH value was adjusted to 7.15,
which served as a borderline to separate the fetal state into two
classes after comprehensive consideration. The signals that had
a greater or equal pH than the specified value were assessed as
normal. As a result, 447 normal and 105 abnormal (hypoxia) FHR
signals were obtained. To avoid the class imbalance problem, we
further randomly selected 105 of 447 normal fetuses to keep the
number of abnormal fetuses equal.
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FIGURE 1 | Flow chart of the proposed computer-aided diagnosis (CAD) system incorporating a recurrence plot (RP) and convolutional neural network (CNN).

TABLE 1 | Overview of the available information in the open-access intrapartum
CTU-UHB cardiotocography (CTG) database.

Information Mean Minimum Maximum

Maternal age (year) 29.8 18 46

Gestational age (week) 40 37 43

pH 7.23 6.85 7.47

BDecf (mmol/L) 4.60 −3.40

BE −6.36 −26.80 −0.20

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Gravidity 1.43 1 11

Parity 0.43 0 7

Birth weight (g) 3408 1970 4750

Birth gender 293/259

(Male/Female)

Signal Preprocessing
Preprocessing is an important step in biomedical applications
and can affect not only the subsequently extracted features but
also the final classification performance. The FHR signal has
two typical acquisition methods: the Doppler ultrasound probe
placed on the abdomen of a pregnant woman externally and the
direct ECG measured on an electrode connected to the fetal scalp
internally (Kunzel, 2012). From this point of view, the FHR may
be contaminated by many aspects of noise, such as the movement
of pregnant women and fetuses, improper placement of sensors
and other equipment, and external environmental factors. For the

sake of content integrity, we briefly describe the preprocessing
algorithm used in this work.

There are two manifestations of noise contained in the
FHR signal: missing values and spiky artifacts (Cesarelli et al.,
2007). For the former, a signal segment (FHR is equal to 0)
that lasts longer than 15 s is removed directly; otherwise, it
is linearly interpolated. Then, for the FHR signal that is not
stable (the absolute value of two adjacent points is greater
than 25 bpm), interpolation is again performed between the
initial sampling point and the first point of the next stable
part. Finally, the extreme points are also removed; that is, the
signal value is greater than 200 bpm or less than 50 bpm, and
the segment is then filled in with Hermite spline interpolation.
Overall, the preprocessing algorithm can be summarized as
having three steps: gap detection, interpolation, and outlier
detection (Romano et al., 2013). Figure 2 shows the original
noisy signal and preprocessed signal to be further analyzed
(10 min in length).

Recurrence Plot
As a non-stationary and non-linear time series, phase space
reconstruction is the first and most important step in the analysis
of the FHR signal based on the dynamics theorem. Packard et al.
proposed the method of utilizing the time delay coordinates
to reconstruct the phase space trajectory of the signal (Packard
et al., 1980). Then, Takens (1981) also presented an approach for
reconstructing a non-linear system which only requires a time-
ordered sequence. Based on Equation (1), a scalar 1-dimensional
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FIGURE 2 | Result of the preprocessing algorithm for the fetal heart rate (FHR)
signal used in the work. (A): original signal; (B): denoised signal.

time series ui (i = 1, 2, 3, . . ., L) is usually embedded into an
m-dimensional space using this method involving time delay.
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where the vector xk represents the k-th point on the orbit (k = 1,
2, . . ., L-(m-1)τ ). The τ is the delay time, m is the embedding
dimension and m is≥2, which are both difficult to be determined.

Furthermore, there is a prior condition in Takens’ theory that
assumes that the signal is infinite and does not contain noise,
where the delay time τ can be chosen almost arbitrarily (Packard
et al., 1980). Unfortunately, the real FHR signals recorded by
clinical equipment are mostly finite and noisy; therefore, we
needed to consider the choice of the delay time carefully. If τ
is too large, it may incur irrelevance, where the dynamics of an
attractor are independent and become causally disconnected. In
contrast, if τ is too small, it may lead to redundancy, where
the reconstructed attractor is compressed along the identity line
(Kim et al., 1999).

Similar to the delay time, the embedding dimension vitally
needs to be determined. If m is too small, the geometry of the
phase space is partly folded. If m is too large, it may result in
massive calculations and increasing the contamination because
of the rounding or instrumental error (Kennel et al., 1992).
The dimensions of the various portions of the non-linear signal
may differ from each other and tend to increase the required
dimension influenced by noise. Thus, the choice of a large enough
dimension that consists of the relevant dynamics for a noisy
signal is considerable (Fraser and Swinney, 1986).

Based on the above-mentioned phase space reconstruction,
RP is a qualitative analysis approach for biomedical signals. The
concept of RP was proposed by Eckmann et al. (1987), which
can depict the recurrence property of a deterministic dynamical
system; i.e., visualizing the time dependent behavior of orbits xi in
a phase space. The RP can intuitively reflect the high dimensional
phase space motion law of non-linear signals in 2- dimensional
space. The key step of an RP is to define the distance between any
two vectors in the phase space and its mathematical expression is:

Ri,j(ε) = 2(ε− ||xi − xj||), i, j = 1, ...,N (2)

2(x) =
{

1, x > 0
0, x ≤ 0

}
(3)

where ε is a predefined distance threshold; xi and xj represent
the i-th and j-th phase space vectors, respectively, which can
be reconstructed by using the Takens’ time delay approach
mentioned above; N is the total number of phase points and
N = L-(m-1)τ , | | . . .| | represents the norm (e.g., Euclidean
distance), and2(x) is a Heaviside function.

We can generally explain Equation (2) as follows: if xj is
sufficiently close to xi, which means that xj falls within a ball of
the cutoff distance ε centered at xi, Ri,j is 1, then a white dot is
placed at a point (i, j); otherwise, Ri,j is 0 and the dot is black.
Then, the binary values of Ri,j can be simply denoted as the white
(1) and black (0) points, respectively. Hence, we can consider
the RP as a visual inspection of a high-dimensional phase space
trajectory (Eckmann et al., 2008). An N × N distance matrix
can be converted into a 0-1 matrix and this allows the recursive
property of the time series graphically. The ε is chosen by k’s
nearest neighbors method in this work (Ouyang et al., 2014).

In summary, there are three optional parameters of RP that
can be adjusted: m, τ , and k, which indicate the embedding
dimension, delay time, and distance threshold, respectively.
Figure 3 shows the RPs of normal and pathological fetuses.

Convolutional Neural Network
As a brand-new field that has been developing rapidly for
more than a decade, DL has received increasing attention from
researchers, and it has obvious advantages over shallow models
(i.e., ML) in feature engineering and model building (Zhang and
Zhao, 2017). DL is good for excavating an increasing number of
abstract features that possess better generalization ability from the
original input data, especially the image (Schmidhuber, 2015). It
overcomes some of the problems that were thought to be difficult
to solve in artificial intelligence (AI) in the past. Moreover,
with the significant increase in the number of training datasets
and the dramatic increase in chip computational power, DL has
achieved remarkable success in object detection, computer vision,
natural language processing, and voice recognition, so it has also
promoted the development of AI (Deng and Yu, 2014; Bengio,
2015). DL is a hierarchical ML method that includes multilevel
non-linear transformations and the deep neural network (DNN)
is currently the main form (Canziani et al., 2017). The connection
mode between neurons in the DNN is inspired by animal visual
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FIGURE 3 | Preprocessed fetal heart rate (FHR) signals (left, A,C) and corresponding recurrence plots (RPs, right, B,D) of normal (top, A,B) and pathological fetuses
(bottom, C,D). The RP parameters are m = 2, τ = 1, and k = 6.

cortex organization, and CNN is one of the classical and widely
used structures (Bouvrie, 2006). The local connections, weight
sharing and pooling operations of the CNN can significantly
reduce the complexity of the network. Additionally, the number
of training parameters makes the model have a certain degree
of invariability to translation, distortion, and scaling (Krizhevsky
et al., 2012). In addition, CNN has strong robustness and fault
tolerance, and it is also easy to train and optimize. Based on
these superior characteristics, CNN effectively outperforms the
standard fully connected neural network in various signal and
information processing tasks (Bursa and Lhotska, 2017).

The basic structure of the CNN is composed of an input layer,
a convolution layer, a pooling layer (also called the subsampling
layer), a fully connected layer, and an output layer (Bouvrie,
2006). Convolution and pooling layers generally involve several
alternate convolution and pooling layers; that is, one convolution
layer is connected to one pooling layer, a pooling layer is followed
by one convolution layer, and so on (Liu et al., 2015). Because
each neuron of the output feature map in the convolution
layer is locally connected to its input, the weighted sum of the
corresponding connection weights and local input plus the bias
value determine the input value of the neuron. The principle is
equivalent to the convolution process in mathematical meaning,
and it was therefore given the name CNN. Figure 4 shows
a graphical representation of our designed CNN architecture
consisting of an image input layer and two convolutions; that is,
normalization, ReLU layers, two average pooling layers, two fully
connected layers, a dropout layer and a final softmax output layer.

Convolution Layer
CNN learns from filters (also referred to as kernels) in the
convolution layer, which is an important part of the hidden layers
(Bouvrie, 2006). The convolution operation is applied in this
layer to the input data, and the extracted features are passed
to the next layer, composed of output multiple feature maps.
Each feature map is formed by the convolution operation of the
convolution kernel for the feature map of the previous layer,
expressed as Equation (4). The convolution kernel is the content
that the network will learn, including the weight matrix, W (i.e.,
m-dimensional filter) and the bias term, b. Equation (4) shows
that the weight matrix W is the same for all neurons in this
layer X(l), and convolution layers share weights representing
learning of the network, which embodies an important feature
of CNN. In the convolution layer, the stride, padding factor,
number and size of the filters are determined according to the
optimization experiment.

X(l) = f (w(l) ⊗ X(l−1)
+ b(l)) (4)

Activation Layer
After the convolution layer, a batch normalization layer is useful
in reducing sensitivity to variations with the input data and
an activation layer is usually applied to introduce the non-
linearities into the network through mapping to the input data
(Krizhevsky et al., 2012). Compared with traditional sigmoid and
tanh functions, we employed the rectified linear unit (ReLU) as
the activation function because of several attractive advantages
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FIGURE 4 | Convolutional neural network (CNN) architecture designed for the proposed computer-aided diagnosis (CAD) system in this work.

(Hara et al., 2015): (i) They possess stronger ability to represent
the learned features; (ii) No gradient vanishment phenomenon
and the convergence speed of the model is maintained at a stable
state; and (iii) The neurons in the neural network have a sparse
activation property and the sparse model enables better mining
of relevant features and fitting of training data. The form of the
function is shown as Equation (5).

f (X) = max(0,WX + b) (5)

Pooling Layer
The pooling layer focuses on a cluster of neurons to reduce
the number of weights using max pooling or average pooling
operations (Bouvrie, 2006). In this way, the output of a cluster
of neurons is represented by a single neuron. Each feature
map is downsampled to decrease the dimensions and amount
of data, while the important information is retained. This
downsampling operation contributes to control overfitting in
the learning process along the spatial dimensions, expressed as
Equation (6). In the majority of CNN architectures, pooling layers
are located among successive convolution layers. The average
pooling operation is adopted in this work. In other words, the
subsampling function down(·) calculates the average value of
each subset, where the input data are divided into a set of non-
overlapping rectangles. In addition, the stride, padding factor,
and size of the kernel in the pooling layer are determined
according to the optimization experiment.

X(l) = f (Z(l)) = f (W(l)down(X(l−1))+ b(l)) (6)

Fully Connected Layer
The output of the convolution and pooling layers described above
represent the advanced features extracted from the input images,
which are used for classification in the fully connected layer
(Akbar et al., 2017). Neurons in this layer have full connections to
all activations in the previous layer. The class scores are computed
in the fully connected layer. After that, the output of the softmax
layer is an N-dimensional vector (Rimer and Martinez, 2004),
corresponding to the number of classes desired, and N is set
to two classes (normal and pathological fetuses). In this work,

the cross-entropy is adopted as the loss function in the softmax
classification layer.

Dropout Layer
Overfitting occurs when a model matches better with the training
set, rather than the test set; i.e., the training accuracy is high, while
the generalization accuracy is low. A dropout layer followed by
the fully connected layer in the CNN model prevents overfitting
by setting random activations to zero during the training
period (Srivastava et al., 2014). The probability of dropout is
0.8 in this work.

Performance Evaluation
To alleviate the influence of class imbalance, we randomly
selected the same number of normal and pathological fetuses,
which were both 105. The 1-dimensional preprocessed FHR
signal was then transformed into a 2-dimensional RP image.
By changing three optional parameters (m = 2, 3; τ = 1 to 10
in step of 1; k = 1 to 10 in step of 1), the ultimate dataset
contained 21, 000 images for each class; i.e., 21,000 normal and
21,000 abnormal cases, which were considered to be sufficient
for DL training.

In this work, the training strategy of 10-fold cross-validation
was employed in the performance evaluation to obtain more
reliable results. The total RP images were separated equally into
10 segments, thereby 9 of 10 images were used in the training
and validation of the CNN model while the remainder (1 of 10)
of the images were used to test the performance of the proposed
system. This process was iterated 10 times by randomly shifting
the training data, as shown in Figure 5. The final results recorded
in all 10 iterations were averaged and considered to be the overall
classification performance.

As with the conventional ML methods, we need some
indicators to measure the performance of the proposed system.
The confusion matrix is commonly used in a binary classification
problem and it consists of four parameters: True Positive (TP),
False Positive (FP), False Negative (FN), and True Negative (TN).
The literal meaning of above mentioned positive and negative
terms denote normal and hypoxia fetuses, respectively. In clinical
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FIGURE 5 | Division of the recurrence plot (RP) image dataset used for
training, validation, and testing.

practice, the accuracy (Acc), sensitivity (Se) and specificity (Sp)
are specifically employed to assess the classification algorithms, as
shown in Equations (7) to (9). The Se points out the performance
of the model on the detection of normal fetus whereas the Sp
measures the performance of the system on detecting a hypoxic
fetus. In addition, the area under (AUC) the receiver operating
characteristic (ROC) curve is also useful for obstetricians.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

FP + TN
(9)

RESULTS

Experiment One: Optimization of the
CNN Parameters
In this study, we trained our CNN model on a workstation with
an Intel Core 3.70 GHz (i3-4170) processor and a 4GB RAM.
The entire process of the proposed approach was implemented
with MATLAB R© (2018a).

It is generally acknowledged that the CNN algorithm has
many tuning parameters that can influence the classification
performance to different degrees. In this work, the initial learning
rate was set to 1 × 10−3, which controls the relatively stable
learning speed. L2 regularization was applied to overcome
overfitting with a factor of 1× 10−4. The training and validation
process of the CNN model is presented in Figure 6. It can
be clearly observed that, as the iteration (epoch) progresses,
the Acc increases and the loss decreases for both training and
validation. To obtain better results, an optimization experiment
was employed using the validation set in this work divided into
three primary aspects.

First, we experimented with the effect of different layer
parameters on performance, which were adjusted in turn. For
the convolution layer of the CNN model, the size and number
of kernels had a certain relationship with the classification

FIGURE 6 | Change in accuracy (top, A) and loss (bottom, B) during the
training and validation processes (Note: 1 epoch = 500 iterations and the
validation process is carried out for each epoch).

FIGURE 7 | Comparison of the validation accuracy with the size and number
of kernels.

performance, as shown in Figure 7. Based on the validation set,
we discovered that the Acc of the size of the convolution kernel of
5× 5 and 7× 7 remained approximately the same but was higher
than that of 1 × 1 and 3 × 3. The validation Acc increased with
the number of kernels before reaching 8. Thereby, we set the size
and number of kernels to be 5 × 5 and 8 for higher Acc and less
training time (as indicated in Figure 7), respectively. In addition,
we found that the parameters of the stride and padding factor
in the convolution layer, the stride, padding factor and size of
pooling kernel in the pooling layer made the Acc basically stable.
In summary, Table 2 presents the determined parameters for each
specific layer corresponding to Figure 4.

Second, we experimented with the effect of size of the mini-
batch and max epoch on the training process, as shown in
Figure 8. It can be seen that regardless of the max epoch, the
validation Acc was higher when the size of the mini-batch was
equal to 64. On the other hand, we observed the trained CNN
model might not fully learn the image information when the max
epoch was 5. Once the max epoch reached 10, the model learned
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TABLE 2 | Details of the convolutional neural network (CNN) architecture for the proposed computer-aided diagnosis (CAD) system.

Layer Type Size Input Output

Number Stride Padding Feature map

0–1 Image input – – – – 64 × 64 × 3

1–2 Convolution 5 × 5 8 1 0 60 × 60 × 8

2–3 Average pooling 3 × 3 – 2 0 29 × 29 × 8

3–4 Convolution 5 × 5 8 1 0 25 × 25 × 8

4–5 Average pooling 3 × 3 – 2 0 12 × 12 × 8

5–6 Fully connected 144 – – – 144 × 1

6–7 Fully connected 2 – – – 2 × 1

7–8 Classification output – – – – 2 × 1

The normalization and ReLU layers after each convolution layer and the dropout layer located in two successive fully connected layers are not shown above, since they
do not change the output feature map.

FIGURE 8 | Comparison of the validation accuracy with the size of the
mini-batch and max epoch.

as many features as possible about the fetal state from the input
data and the Acc remained essentially constant with increases of
the max epoch. Thus, the size of the mini-batch and max epoch
were selected as 64 and 10 (as indicated in Figure 8), respectively.

Third, the training of kinds of multilayer neural networks
requires the back propagation (BP) algorithm to train the feed-
forward neural network better and faster and to obtain the
weight and bias parameters of each layer of the neural network.
In recent years, researchers have proposed several powerful
BP algorithms for the training of a CNN, including stochastic
gradient descent (SGD), adaptive moment estimation (ADAM),
and root mean square propagation (RMSP). Table 3 presents
the three algorithms together with individual parameter settings
and the corresponding results. It was obvious that the Acc of the
ADAM algorithm was higher than the other two.

Experiment Two: Performance of the
CNN Model
Based on the same optimal experimental method described in
Experiment 1, we investigated the influence of different layers
of the CNN model with their corresponding CNN parameters
on the classification performance and Table 4 presents the
experimental results using the testing set. Architectures with

more than 12 layers demonstrated overfitting or underfitting and
therefore were not considered. Clearly, in the beginning, as the
number of layers increased, the performance of our proposed
system improved. When the number of layers reached 8 layers,
consisting of one input layer, two convolution layers, two pooling
layers, two fully connected layers, and one output layer (i.e.,
13 layers including the normalization and ReLU layers followed
by each convolution layer and the dropout layer located in the
successive fully connected layers), the best performance was
achieved: of 2,100 normal fetuses, only approximately 0.95% (20)
were wrongly classified as pathological. Likewise, for hypoxia
fetuses, a total of 2.33% (49) were wrongly classified as normal.
Moreover, as the number of layers continued to increase, the
system performance began to decline instead. Figure 9 shows
the ROC curve with the optimal AUC value (CI: 0.9797–0.9875)
when the number of layers was 8. In addition, it can be observed
from Table 4 that different layers of CNN architecture had
approximately the same testing time for one-fold. In other words,
once the proposed CNN algorithm was successfully trained,
the corresponding CAD system could immediately identify an
unknown fetus regardless of the number of layers.

Furthermore, we conducted the experiment concerning the
impact of the signal length on the classification performance.
According to the optimal CNN configuration, Figure 10 shows
that when the signal length is less than 8 min, the Acc increases
gradually; and when the signal length is greater than 8 min, the
Acc fluctuates within a small range. Therefore, we discovered that
8 min was the minimum length of the FHR signal containing
relevant information regarding the fetus, and 13 min achieved
better performance (Acc = 98.69%) using the CNN for fetal
state classification.

DISCUSSION

Since the vital activities of the fetus, such as nutrition and
breathing, directly depend on the placenta, there is a remarkable
relationship between them. The key role of the placental function
is to ensure the exchange between the fetus and the mother
via the umbilical cord, and this cycle is associated with the
maternal placental blood flow. This flow is significantly shaken
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TABLE 3 | Comparison of the validation accuracy with three back propagation (BP) algorithms.

BP algorithm Input parameter Output accuracy (%)

Momentum Gradient decay factor Epsilon

SGD 0.8 – – 97.6

ADAM – 0.6 1 × 10−6 99.3

RMSP – 0.6 1 × 10−6 98.4

The best performance is indicated in bold.

TABLE 4 | Comparison of the averaged classification performance with different layers of the convolutional neural network (CNN) model using the test dataset across
10-fold for the proposed computer-aided diagnosis (CAD) system.

Layers: type TP FP FN TN Acc (%) Se (%) Sp (%) Time(s)

5: I-C-P-F-O 1884 225 216 1875 89.50 89.71 89.29 25.33

6: I-C-P-C-F-O 1950 138 150 1962 93.14 92.86 93.43 27.51

7: I-C-P-C-P-F-O 2037 86 63 2014 96.45 97.00 95.90 25.37

8: I-C-P-C-P-F-F-O 2080 49 20 2051 98.36 99.05 97.67 26.58

9: I-C-P-C-P-C-F-F-O 2045 68 55 2032 97.07 97.38 96.76 24.71

10: I-C-P-C-P-C-P-F-F-O 2011 75 89 2025 96.10 95.76 96.43 28.29

11: I-C-P-C-P-C-P-F-F-F-O 2063 59 37 2041 97.71 98.24 97.19 27.44

12: I-C-P-C-P-C-P-C-F-F-F-O 2038 63 62 2037 97.02 97.05 97.00 26.13

I, image input layer; C, convolution + normalization + ReLU layer; P, average pooling layer; F, fully connected + dropout layer; O, classification output layer. The best
performance is indicated in bold.

FIGURE 9 | Receiver operating characteristic (ROC) curve with the optimal
area under the curve (AUC) of 0.9836 using an 8-layer convolutional neural
network (CNN) model. The blue dot represents better performance at the
balance of the false positive rate and true positive rate.

by the tone of the uterine muscle. A contraction over 30 mmHg
leads to stopping of the maternal blood flow, and then the
fetus encounters with a stressful condition arising from lack of
oxygen (Sundstrom et al., 2005). In order to maintain growth
and energy production, it is necessary to transport oxygen to
the tissues and cells. Depends on the oxygen saturation in the
umbilical cord, fetus uses its own defense mechanisms to regulate
its physiological condition by balancing its cardiac activities. This
in part reflects the physiological resilience of the healthy fetus

FIGURE 10 | Comparison of the averaged accuracy with different fetal heart
rate (FHR) signal lengths using the test set across 10-fold for the proposed
computer-aided diagnosis (CAD) system.

and this process is monitored via EFM devices (Lear et al., 2018).
In a stressful condition arising from oxygen deficiency, the fetus
decreases the cardiac activity and energy consumption. A healthy
fetus can tolerate to this condition about hours. This stressful
condition matches a deceleration pattern on the CTG trace. In
addition, several complex physical events such as major placental
abruption, uterine rupture, umbilical cord prolapsed, maternal
cardiorespiratory disorders, Aorto-Caval compression, etc., may
also cause undesired situations (Ayres-de-Campos, 2016). On
the other hand, when the tissues and cells are well oxygenated,
the fetus increases cardiac activity and consumes energy. This
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period can be observed as an acceleration pattern on a CTG trace.
The variability in short and long terms, as well as acceleration
patterns, point fetal well-being whereas deceleration patterns
are associated with stressful conditions. Although there is not
a gold standard regarding the FHR length in the computerized
FHR analysis, observing an acceleration pattern in 15 min is
adopted as a healthy condition for the fetus (Ayres-de-Campos
et al., 2015). In summary, the interpretation of these physiological
complex events on a paper trace is a difficult task. For this reason,
it should be cautious during the visual examination, and this
process should be supported using numerical approaches in order
to ensure a more consistent objective examination.

Continuous EFM is used worldwide to visually evaluate
whether a fetus is exhibiting signs of hypoxia during labor, and
may benefit from an emergency operative delivery. Previously,
computerized EFM assessment that mimics clinical experts
showed no benefit in randomized clinical trials (Petrozziello
et al., 2018). The current CAD systems utilize some specific
morphological features to make a decision about the fetal status
according to the common guidelines (e.g., FIGO), including
the baseline, number of acceleration and deceleration patterns
(Ayres-de-Campos et al., 2015). However, as an example of
routinely collected ‘big’ data, EFM interpretation should benefit
from data-driven computational approaches, such as ML and
DL, which allows automated evaluation based on large clinical
datasets (Abdulrahman et al., 2017).

To decrease the incidence rate of the unnecessary CSs caused
by subjective diagnostic error, many researchers have proposed
different methods for automated assessment of fetal well-being
based on advanced AI algorithms, as summarized in Table 5.
It can be observed that the previous work employed the same
strategy: signal preprocessing, feature extraction and selection,
and final classification. In other words, the authors first required
to extract and select an optimal set of informative features,
which were then fed into classifiers. Therefore, this conventional
method has some drawbacks: the feature engineering process is
much too complex and sometimes the physiological information
about the fetal state may be lost or the used features may be
insufficient for FHR classification, which make the performance
of fetal state assessment not high (the Acc is less than 94%).

In this study, our proposed CAD system did not perform any
feature transformation, which was embedded in the CNN model
for signal classification simultaneously, representing the unique
advantage of DL compared with conventional ML approaches.
To the best of our knowledge, when tested on the same open-
access CTG database, the proposed approach achieved better
classification performance so far compared to all other related
work in predicting fetal hypoxia: Acc = 98.69%, Se = 99.29%,
Sp = 98.10%, especially considering similar studies using the
1-dimensional FHR signal and the CNN model (Comert and
Kocamaz, 2018; Li et al., 2018; Petrozziello et al., 2018), as
illustrated in Table 5. Obviously, the attractive result proves that
the CNN algorithm moderately improves on the performance of
published feature extraction based methods. The fundamental
advantage of the proposed method relies on the convolutional
layers in the deep architecture that provide distinctive local
features to describe the input data. In this manner, the input

data can be put in the proper class without needing any feature
extraction and selection processes. The performances of the
conventional shallow networks can be improved by feeding the
networks with these local discriminative deep features. Therefore,
this method can be adopted as an end-to-end learning method
and we can conclude that CNN plays an important role in the
field of automated FHR analysis, but requires further work.

In addition, EFM devices ensure continuous monitoring of
the fetal hypoxia in antepartum as well as intrapartum periods.
In clinical practice, the length of the FHR signals is frequently
kept as between 10 and 30 min for providing a consistent
interpretation. Nonetheless, there is not a gold standard for the
length of the FHR time series in the computerized FHR analysis.
The duration of the CTG test may vary according to the special
conditions of the pregnant or fetus. In this work, we determined
the ideal FHR length for fetal hypoxia detection as 13 min in
accordance with the experimental result (Figure 10).

As for the CNN model, the effect of the convolutional network
depth on its accuracy is another important issue. The number of
convolutional layers and used filters affect the network success.
The deeper networks need more hardware resources and more
time for training. These types of networks have a great complex
architecture. The FHR signals possess the high-level non-linear
characteristic. For this reason, a deep model is required to catch
hypoxia from FHR traces. After the extensive experimental setups
(Table 4), we found the 8-layer deep CNN was quite efficient.
Moreover, a CNN network can be trained from scratch if there
is enough time, an available large-scale data source, and sufficient
hardware, as in our previous experiment. However, in most of
the “real world” problems, pretrained networks are configured
for a new specific task using a transfer learning approach, since
it is truly difficult or sometimes impossible to provide sufficient
conditions to train a CNN network from scratch. Comert and
Kocamaz (2018) used the transfer learning approach on a
pretrained network called Alexnet, which was trained using 1.2
million images for 1000 classes. As a result, the authors reported
promising results with Se of 56.15% and Sp of 96.51%.

In summary, the proposed CAD system has several
attractive advantages:

(1) Feature extraction and selection techniques are
not required;

(2) The 8-layer deep CNN is implemented and its parameters
are analyzed to obtain optimal performance;

(3) Eight minutes is the minimum length of the FHR signal
containing relevant information regarding the fetus, and
13 min achieves better performance using the CNN for fetal
state classification.

(4) The system achieves better classification performance
in predicting fetal hypoxia than other state-of-the-
art methods.

CONCLUSION

Fetal distress induced by hypoxia has become one of the main
causes of neonatal death; therefore, its precise diagnosis can offer
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TABLE 5 | Summary of related works aimed at the prediction of the fetal state using fetal heart rate (FHR) signals obtained from cardiotocography (CTG).

AuthorYear Database Distribution
(N/P)

Method Performance
(%)

FE FS C

Krupa et al., 2011 Private Imbalance
(30/60)

EMD / SVM Acc: 87
Se: 95
Sp:70

Spilka et al., 2012 Private Imbalance
(123/94)

33
S1, S2, S3

PCA, IG NB, SVM,
DT

Se:73.4
Sp:76.3
Fm:71.5

Czabanski et al., 2012 Private Imbalance
(146/43)

7
S1

/ WFS+
LS-SVM

Acc:92.0
QI:88.2

Fanelli et al., 2013 Private Balance
(61/61)

PRSA / ST AUC = 75

Xu et al., 2014 Private Balance
(255/255)

64
S1, S2, S3

GA SVM Se:83
Sp:66
AUC:74

Dash et al., 2014 Private Imbalance
(60/23)

8
S1

/ GM, NB Se: 61
Sp:82

Spilka et al., 2014 CTU-UHB Imbalance
(175/377)

33
S1, S2, S3

/ LCA+RF Se:72
Sp:78

Doret et al., 2015 Private Imbalance
(30/15)

12
S2, S3

/ ST AUC:87

Comert and Kocamaz, 2016 CTU-UHB Balance
(272/280)

11
S2, S3

/ ANN Acc: 92.40
Se:95.89
Sp:74.75

Georgoulas et al., 2017 CTU-UHB Imbalance
(508/44)

33
S1, S2, S3

AUC LS-SVM Se:72.12
Sp:65.30

Spilka et al., 2017 Private Imbalance
(1251/37)

20
S2, S3

/ S-SVM Se:73
Sp:75

Comert et al., 2018 CTU-UHB Imbalance
(439/113)

IBTF GA LS-SVM Se: 63.45
Sp: 65.88

Comert and Kocamaz, 2018 CTU-UHB Imbalance
(508/44)

STFT+CNN Se: 56.15
Sp: 96.51

Petrozziello et al., 2018 CTU-UHB Imbalance
(unknown)

LSTM/CNN AUC: 82

Li et al., 2018 Private Imbalance
(3012/1461)

CNN Acc: 93.24

Current work CTU-UHB Balance
(105/105)

RP+CNN Acc: 98.69
Se: 99.29
Sp: 98.10
AUC: 98.70

N, Normal; P, Pathological; QI, quality index; Fm, F-measure. FE, feature extraction; FS, feature selection; C, classifier. S1, morphological; S2, linear; S3, non-linear (the
detailed features can be found in their publications). PRSA, phase rectified signal average; SVM, support vector machine; S-SVM, Sparse SVM; RF, Random forest. ST,
statistical test (p-value); GE, grammatical evolution; LCA, latent class analysis. GM, generative model; NB, Naïve Bayes; DT, decision tree (C4.5). Other abbreviations can
be found in the text. The best performance is indicated in bold.

obstetricians an opportunity to intervene in a timely manner
before damage occurs to the fetus. The FHR signal, part of the
CTG, is routinely employed to monitor the fetal state during
the antepartum and intrapartum stages. Unfortunately, visual
interpretation of such signals is difficult for obstetricians since its
special properties are irreproducible and subjective. Thus, CAD
systems have been designed to analyze FHR signals automatically
and assess the fetal state objectively in recent decades.

In this work, we proposed a novel CAD system to predict
fetal hypoxia based on an RP and deep CNN. An open-access
CTU-UHB database was used to test the performance and
the umbilical artery pH was chosen as the gold standard to

separate the fetal state into two classes. We randomly selected
the same number of normal and pathological fetuses to avoid the
influence of class imbalance. After signal preprocessing, the RP
was adopted to reflect the non-linear characteristics of the FHR
signal. The final image dataset consisted of 21,000 cases for each
class by changing the values of three optional parameters of the
RP. After comprehensive experiments on optimizing the CNN
configuration, we obtained better performance: the Acc, Se, Sp,
and AUC were 98.69, 99.29, 98.10, and 98.70%, respectively.

Unlike conventional ML approaches, our proposed system
did not perform any complex feature engineering (i.e., feature
extraction and selection). To the best of our knowledge, we
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achieved better classification performance in predicting fetal
hypoxia using FHR signals compared with all other related work.
In summary, the results proved the effectiveness of our proposed
CAD system, which can assist obstetricians making objective
medical decisions more accurately in clinical practice.

In the near future, we will test the performance of the proposed
CAD system with more clinically collected data. Additionally, we
plan to combine the FHR signal with other biomedical signals
(e.g., UC) to improve accuracy when providing more reliable
decision support tools.
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