
fphys-10-00314 March 25, 2019 Time: 18:12 # 1

ORIGINAL RESEARCH
published: 27 March 2019

doi: 10.3389/fphys.2019.00314

Edited by:
Michele Vendruscolo,

University of Cambridge,
United Kingdom

Reviewed by:
Antonio Scialdone,

Helmholtz Center Munich – German
Research Center for Environmental

Health, Germany
Isabelle Callebaut,

Centre National de la Recherche
Scientifique (CNRS), France

*Correspondence:
Salvador Ventura

Salvador.ventura@uab.es

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Biophysics,
a section of the journal
Frontiers in Physiology

Received: 05 October 2018
Accepted: 07 March 2019
Published: 27 March 2019

Citation:
Iglesias V, Paladin L,

Juan-Blanco T, Pallarès I, Aloy P,
Tosatto SCE and Ventura S (2019)

In silico Characterization of
Human Prion-Like Proteins: Beyond

Neurological Diseases.
Front. Physiol. 10:314.

doi: 10.3389/fphys.2019.00314

In silico Characterization of
Human Prion-Like Proteins: Beyond
Neurological Diseases
Valentin Iglesias1†, Lisanna Paladin2†, Teresa Juan-Blanco3, Irantzu Pallarès1,
Patrick Aloy3,4, Silvio C. E. Tosatto2,5 and Salvador Ventura1*

1 Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma
de Barcelona, Barcelona, Spain, 2 Department of Biomedical Sciences, University of Padua, Padua, Italy, 3 Joint
IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona
Institute of Science and Technology, Barcelona, Spain, 4 Institució Catalana de Recerca i Estudis Avançats, Barcelona,
Spain, 5 CNR Institute of Neuroscience, Padua, Italy

Prion-like behavior has been in the spotlight since it was first associated with the
onset of mammalian neurodegenerative diseases. However, a growing body of evidence
suggests that this mechanism could be behind the regulation of processes such
as transcription and translation in multiple species. Here, we perform a stringent
computational survey to identify prion-like proteins in the human proteome. We detected
242 candidate polypeptides and computationally assessed their function, protein–
protein interaction networks, tissular expression, and their link to disease. Human
prion-like proteins constitute a subset of modular polypeptides broadly expressed
across different cell types and tissues, significantly associated with disease, embedded
in highly connected interaction networks, and involved in the flow of genetic information
in the cell. Our analysis suggests that these proteins might play a relevant role not only
in neurological disorders, but also in different types of cancer and viral infections.
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INTRODUCTION

Prions were first reported in the context of mammalian neurodegenerative disorders (Prusiner,
1982; van Rheede et al., 2003; Harrison et al., 2010; Sikorska and Liberski, 2012), but it is now
clear that different organisms exploit prion conformational conversion for functional purposes
(Halfmann and Lindquist, 2010). The most studied organism is Saccharomyces cerevisiae, with up
to 11 functional prions identified so far (Cascarina and Ross, 2014; Batlle et al., 2017c) Initially,
these yeast prions were proposed to be pathological agents (Nakayashiki et al., 2005; McGlinchey
et al., 2011), but nowadays they are widely recognized to provide beneficial advantages in
changing environments, predominantly by regulating transcription, translation, or RNA processing
(Halfmann et al., 2012; Newby and Lindquist, 2013). Yeast prions switch from an initially soluble
state through a structural conversion toward an aggregated amyloid conformation. This conversion
is encoded in PrDs; long intrinsically disordered regions of low complexity.

A significant number of proteins sharing most, but not all, prion characteristics have been
identified in different organisms, and generically named prion-like proteins (Pallares et al., 2015;
Si, 2015; Chakrabortee et al., 2016). In higher eukaryotes, prion-like structural conversion plays
a central role in diverse functions such as viral response (Hou et al., 2011; Franklin et al.,
2014; Xu et al., 2014) or long-term memory acquisition and maintenance (Si et al., 2010;

Abbreviations: GO, gene ontology; LCC, largest connected component; MSC, mean shortest distance; PPIs, protein–protein
interactions; PrD, prion domain; PrLD, prion-like domain.
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Majumdar et al., 2012; Si and Kandel, 2016). Even though
multiple beneficial functions have been assigned to prion-like
mechanisms across all kingdoms of life, aggregated proteins
in human neurodegenerative diseases such as Alzheimer’s and
Parkinson’s diseases and amyotophic lateral sclerosis also share
certain prion-like properties (Aguzzi and Rajendran, 2009; Gitler
and Shorter, 2011; Luk et al., 2012; Stohr et al., 2012; Kim et al.,
2013; Nomura et al., 2014).

The accumulated knowledge on the determinants of yeast
prions conformational conversion has provided strong stimuli
for the development of bioinformatics tools to uncover new
PrLDs in other organisms (Michelitsch and Weissman, 2000;
Harrison and Gerstein, 2003; Toombs et al., 2012; Espinosa
Angarica et al., 2014; Lancaster et al., 2014; Afsar Minhas et al.,
2017; Batlle et al., 2017c). Previous screenings for PrLDs in the
human proteome have targeted the characteristic compositional
bias of these protein regions (An and Harrison, 2016). We have
recently proposed that, in addition to a distinctive amino
acidic composition, PrLDs contain soft amyloidogenic sequence
stretches that would contribute to trigger the initial protein self-
assembly reaction (Sabate et al., 2015a,b). These cryptic amyloids
were not only shown to be present and promote conformational
conversion in bona fide yeast prions (Sant’Anna et al., 2016),
but they also exist in human prion-like proteins (Batlle et al.,
2017a) and appear to play key role in the induction, propagation,
and inheritance of the prion state in the mammalian cytosol
(Duernberger et al., 2018). The amyloid stretches embedded
within PrLDs can be identified computationally (Sabate et al.,
2015b; Zambrano et al., 2015).

Here we applied to the human proteome the same prediction
scheme that allowed us to uncover the first bona fide prion-
like protein in a bacterial proteome (Pallares et al., 2015; Yuan
and Hochschild, 2017). Human proteins were first analyzed for
the presence of regions with compositional similitude to yeast
PrDs using the prion-like compositional bias (PLAAC) algorithm
(Alberti et al., 2009; Lancaster et al., 2014) and afterward these
protein domains were individually screened for the presence
of soft amyloidogenic sequences using the pWALTZ program
(Sabate et al., 2015b). Indeed, we have recently shown that
such a combination of compositional and sequential PrLDs
prediction provides the best accuracy when forecasting the
aggregation propensities of individual human prion-like proteins
(Batlle et al., 2017b).

In the present work, we computationally characterized the
function, location, expression, PPI networks, and the connection
to disease of the human prion-like subproteome. The picture
that emerges from this analysis is that prion-like proteins
are widespread expressed proteins that function in biological
processes tightly associated to disease.

MATERIALS AND METHODS

Data Acquisition
The human reference proteome dataset was obtained
from Uniprot (UniProt Consortium, 2015) (Proteome ID
UP000005640; release 2016_09) and scanned for PrLDs with

PLAAC using as background probability the frequency of human
proteome. From the initial 70,940 proteins in the proteome,
431 PrLD containing candidates were identified. Their predicted
PrLDs were further evaluated with pWALTZ applying a cutoff
of 60.00, as in Batlle et al. (2017a), which resulted in 242 final
positive predictions (Supplementary Table S1).

Prion-Like Domain Localization Within
the Protein Sequence
Each prion-like protein sequence was divided into three
segments, the N- and C- terminal, accounted for 25% of the
residues each, whereas the resting 50% of the sequence was
considered as internal. Each predicted PrLD was located in the
sequence and the number of residues mapping in each of the
segments counted.

Functional Annotation
The GO annotation of all proteins in the prion-like dataset
were collected, excluding the terms Inferred from Electronic
Annotation (IEA) and filtering through the Generic GO slim
developed by GO Consortium (Gene Ontology Consortium,
2015). All UniProt human proteins were used as background set
to infer enrichment. A Fisher’s exact test of GO term distributions
was performed in the three ontologies separately, to calculate
the enrichment/depletion of dataset proteins with respect to
the whole UniProt. The Bonferroni correction was applied in
performing all the tests. The results are shown in Figure 3
applying the formula:

E = log
GO freq. in PPR

Tot GO in PPR
− log

GO freq. in PBack

Tot GO in PBack

where GO is the GO term, PPR and PBack are the datasets of
prion-like proteins and the whole proteome, respectively. The
abbreviations freq. and Tot stay for frequency and total.

Pfam Domains
Pfam (Finn et al., 2016) domains annotation in the dataset
proteins were collected and compared to the human proteome
(from UniProt). Fisher’s exact test was used to assess significance.

Tissue and Cellular Localization
Tissue and cellular localization data of human proteins were
retrieved from Human Protein Atlas (Uhlen et al., 2015). The
prion-like proteins identifiers were converted to Ensembl Gene
Ids. Human Protein Atlas reports a textual ranking of protein
expression of each coding gene. This ranking (“none,” “low,”
“medium,” “high”) was converted to numerical expressions, from
0 to 3, and each gene value for each particular tissue was
collected. The expression of the complete gene set for the tissue
was then averaged.

Association to Diseases
OMIM disease annotation was extracted from the field “diseases”
of the UniProt description (Amberger et al., 2015). All
information regarding the associated diseases was collected
from the OMIM FTP site. DisGeNET data were retrieved from
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DisGeNET download section (Pinero et al., 2015). For both
databases, the number of proteins associated to at least one
disease ID was divided by the total number of proteins, obtaining
the fraction of disease-associated proteins. The results were
compared to 100 random sampling of sets with the same number
of proteins than the one in the database.

Human Network Analysis
The human prion-like protein dataset was curated for duplicities
and scanned for PPIs with Interactome3D (2017_06 version)
(Mosca et al., 2013). Out of the 121 unique identities, 100
had annotated physical binary interactions. The degree and
the number of interactions between prion-like proteins were
analyzed and compared to a random distribution by sampling
the complete human binary interactome in Interactome3D.
Moreover, the sizes of the LCC and the MSD were measured
(Menche et al., 2015). The subnetwork of prion-like proteins
and their interactors were functionally characterized with DAVID
database (Huang da et al., 2009) for GO and KEGG pathways
enrichment (n = 1542). The significance of the differences was
assessed by Wilcox p-value or empirical p-value.

RESULTS

Human Prion-Like Proteins Prevalence
and Modularity
A combination of prion-like compositional bias (PLAAC) and
sequential amyloid propensity (pWALTZ) analysis was applied to
the complete human proteome. This resulted in the identification
of a total of 242 polypeptides (unique UniProt entries) bearing
PrLDs (Supplementary Table S1). Our list of candidates included
all human prion-like proteins shown to behave as such both
in vitro and in vivo: FUS (Ju et al., 2011), TDP-43 (Wang et al.,
2012), EWS (Couthouis et al., 2012), hnRNP A1 and hnRNP A2
(Kim et al., 2013), TIA1 (Li et al., 2014), and TAF15 (Couthouis
et al., 2011) proteins, reinforcing the suitability of our dataset
for the further evaluation of the global properties of human
prion-like sequences.

According to our predictions, prion-like proteins account
for a 0.34% of the human proteome. This is in line with two
previous independent surveys for human prion-like proteins
that exploited compositional bias alone for their detection; both
studies predicting that the prevalence of these proteins is <1%
(An and Harrison, 2016). Despite the percentage of proteins
with PrLDs in the proteomes of different organisms seems to
differ significantly (Michelitsch and Weissman, 2000; Espinosa
Angarica et al., 2013; Malinovska et al., 2015; Chakrabortee et al.,
2016; Pallares et al., 2018), their presence in all evolutionary
lineages analyzed so far suggests that these regions might play
conserved functional roles (Michelitsch and Weissman, 2000;
Malinovska et al., 2015; Batlle et al., 2017c).

Yeast prion proteins tend to be modular (Li and Lindquist,
2000; Alberti et al., 2009). PrDs being generally located near
the N- or C-terminal ends of the sequence (Baxa et al., 2007;
Zambrano et al., 2015). In our dataset, 195 proteins; an 80.6%
of the putative human prion-like proteins, presented their

PrLDs located in any of the protein’s ends (Figures 1, 2 and
Supplementary Table S1). PrLDs were 1.67 times more frequent
at the protein C-terminus. This was the case for 122 proteins,
while in 73 of them the PrLDs were located at the N-terminus.
This statistically significant imbalance between the presence of
PrLDs at C- and N- in human proteins (p-value < 0.005, Z-test),
contrasts with that found in bona fide yeast PrDs. In SUP35,
URE2, NEW1, MOT3, and SWI1 proteins, the PrD is placed
at the N-terminus, whereas only in RNQ1, it is located near
the carboxyl end (Baxa et al., 2007; Zambrano et al., 2015).
The modular architecture of prion-like proteins would allow the
self-assembly of the PrLDs without disturbing the structure and
productive associations of the adjacent globular moieties. This
is likely facilitated by the predicted disordered nature of these
protein segments (Supplementary Table S1).

Human Prion-Like Proteins Play a Major
Role in Nucleic Acid Binding
As a first step to gain insights into the biological role
of the candidate human prion-like proteins, we used a
GO term analysis. GO terms were collected for biological
process, molecular function, and cellular component categories
and their enrichment with respect to the human proteome
calculated (Figure 3). When we analyzed the “biological
process” category for the set of candidate proteins, we found
a statistically significantly enriched cluster of GO terms
related to RNA and DNA associated processes, including
positive regulation of transcription from RNA polymerase
II promoter (p-value < 1.20E-16, 30 proteins), positive
regulation of transcription DNA-templated (p-value < 6.92E-14,
22 proteins), mRNA splicing (p-value < 2.27E-9, 13 proteins),
transcription DNA-templated (p-value < 5.26E-8, 36 proteins),
RNA processing (p-value < 7.5E-8, 10 proteins), and negative
regulation of transcription from RNA polymerase II promoter
(p-value < 6.28E-4, 11 proteins) (Figure 3A). This result is
consistent with the observation that the prion-like subproteomes
identified in organisms belonging to different taxonomic
divisions are usually enriched in proteins associated to the
regulation of the flux of genetic information in the cell (Iglesias
et al., 2015; Pallares et al., 2018).

With respect to the “molecular function,” the most enriched
GO terms are all involved in essential activities related with
nucleic acid binding and transcription processes, such as
transcription coactivator activity (p-value < 5.63E-17, 20 pro-
teins), nucleotide binding (p-value < 4.96 E-17, 37 proteins),
poly(A)RNA-binding (p-value < 3.94E-15, 30 proteins), RNA-
binding (p-value < 2.99E-14, 31 proteins), chromatin binding
(p-value < 3.34E-14, 14 proteins), transcription factor activity-
sequence-specific DNA binding (p-value < 9.79E-6, 29 proteins),
and ATP binding (p-value < 1.14E-4, 13 proteins) (Figure 3B).
The conformational plasticity of PrLDs has been shown to be
behind certain transcription factors ability to bind to many
different targets and to play a role in the formation of
chromatin regulatory complexes (Boulay et al., 2017; Kataoka
and Mochizuki, 2017; Cho et al., 2018). Moreover, it is
becoming increasingly clear that PrLDs are crucial for the
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FIGURE 1 | Prion-like proteins modularity. Well-characterized prion-like human proteins have their PrLD (as identified by PLAAC in blue) and soft amyloid core (as
identified by pWALTZ in red) at the protein edges, separated from their respective globular domains (retrieved from Pfam database in violet).

formation of membraneless organelles, since they enable RNA-
binding proteins (RBPs) to undergo liquid–liquid transition,
confining their RNA cargos (Villarroya-Beltri et al., 2013;
Wang et al., 2018).

When we analyzed the cellular components populated by
our protein subset, the most enriched GO terms were the
nucleoplasm, nucleus, and the intracellular ribonucleoprotein
complex (Figures 3C,D). As expected, all these compartments
correspond to locations were the binding between nucleic
acids and proteins occur frequently. Of particular interest
is the so-called ribonucleoprotein complex which includes
cellular structures like the stress granules, or P-bodies, which
are sites for mRNA decay as well as for mRNA storage
and therefore act as important cell regulatory centers in
determining levels of gene expression (Anderson et al., 2015).
The RBPs associated to those membrane-less organelles are key
determinants in the control of the organelle function and have
been implicated not only in adaptation to stress but also in
tumor biology and the pathogenesis of neurodegenerative,
immunological, and infectious diseases (Loomis et al.,
1990; Villarroya-Beltri et al., 2013; Anderson et al., 2015;
Harrison and Shorter, 2017).

We extended our analysis to look for the role of the
constituent functional domains in the collection of PrLDs
containing proteins. In agreement with the above presented
results, Pfam domain clustering rendered DNA/RNA binding as
the most enriched functional group (Figure 3E). Among them,
the canonical RNA recognition motif (RRM) is by far the most
statistically enriched, with 14% of the detected proteins harboring
an RRM. This observation is line with previous studies (King
et al., 2012) and consistent with the fact that the RRM is the most
abundant domain in RBPs, conserved from bacteria to higher
eukaryotes (Reddy et al., 2015). This set of RRM-bearing prion-
like proteins includes FUS, TDP-43, TIA1, or hnRNP A1, all
involved in the formation of dynamic membraneless intracellular
compartments and associated to disease (Cascarina and Ross,
2014; March et al., 2016; Wang et al., 2018).

The second most enriched domain in our data set is the
FoxP coiled-coil (p-value < 2.95E-19, 10 proteins). It corresponds
to a coiled–coil domain involved in the modulation of the
dimeric associations of the forkhead box family of transcription
factors FoxP. There are multiple lines of evidence suggesting the
biological relevance of domain swapping in FoxP functionality
being important not only for their function regulation but
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FIGURE 2 | PrLD distribution along the protein sequence. The relative
position of PrLDs in the sequences of the complete protein dataset is plotted.
Protein sequences were divided into 20 bins corresponding to 5% of their
length and the PrLDs start position represented in blue and the end in red.

also linked to disease onset (Hafner-Bratkovic et al., 2011;
Medina et al., 2016).

The other two enriched Pfam families include Zinc-fingers
in Ran binding proteins (Zn_RanBP) (p-value < 1.14E-14,
9 proteins) and the Helicase conserved C-terminal domain
(p-value < 2.47E-05, 7 proteins). Zinc Finger domains are a very
versatile group of small protein domains which are evolutionary

conserved. Interestingly, RBPs with PrLDs such as FUS or
EWS accommodate in their structure a Zn_RanBP domain in
close proximity to an RRM domain. The Helicase conserved
C-terminal domain is found at the C-terminus of DEAD-box
helicases. Helicases function in the separation of double-stranded
RNA, DNA, and RNA/DNA structures in an energy-dependent
manner and therefore it is clear their role in RNA metabolism.
Interestingly, the first prion-like protein identified in bacteria
corresponds to the transcription terminator Rho, a helicase
that can undergo a prion-state that results in genome-wide
changes at the transcriptome level, contributing to rapid bacterial
adaptation to fluctuating environments (Pallares et al., 2015;
Yuan and Hochschild, 2017). The multitasking transcriptional
regulators DDX5 and DDX17 included in our dataset contain an
helicase domain in their structure reported to be associated with
cancer development and cell proliferation (Mazurek et al., 2012;
Fuller-Pace, 2013).

Prion-Like Proteins Are Widespread
Among Tissues
The histological localization of human prion-like proteins was
assayed by retrieving data from the Human Protein Atlas.
To compare the expression levels, proteins were mapped to
Ensemble gene annotations (121 genes). The expression data
were collected for each cell type and averaged by tissue and
organ. The result illustrates that prion-like proteins are widely
distributed in human tissues (Figure 4). Importantly, the data
indicate that, globally, the expression of these proteins in the

FIGURE 3 | Human prion-like proteins GO enrichment analysis. The prion-like proteins GO enrichment was performed and separated into its three ontologies.
(A) Biological process. (B) Molecular function. (C,D) Cellular component. Clusters were grouped by color and represented with the same color code in a mammalian
cell in D. (E) Pfam structural domains enriched in prion-like proteins were computed against the human proteome background.
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FIGURE 4 | Prion-like proteins expression in tissues. The average expression of prion-like proteins dataset is plotted for different tissues. The tissue bars are colored
based on the corresponding organ/tissue. Values range from 0 to 3 corresponding to Human Protein Atlas annotation “not detected,” “low,” “medium,” and “high.”

brain is not higher than in most organs or tissues, being more
represented in endocrine tissues, in the gastrointestinal tract, the
kidney, or the lung.

In order to identify interesting cases, we clustered the dataset
by representing each gene as a vector of the difference of its
expression with respect to the proteome-level tissue average
(Vg = [ ( E - Ē )1 . . . ( E - Ē )n ] where Vg : the vector of
gene expressions; E: gene expression in tissue n, and Ē: average
expression of all human proteome in tissue n). The clustering
was performed through k-means algorithm implementation of
scikit-learn Python module, which uses Euclidean distances by
default. We tested cluster numbers from 3 to 10 and chose 6 as
the most discriminative one (Average silhouette, Supplementary
Figure S1). Thus, the highest expression level cluster represents a
group of prion-like proteins that are generally over-expressed and
remarkably includes most of the human prion-like proteins for
which it has been already demonstrated their direct involvement
in disease: FUS, TDP-43, hnRNP A1, hnRNP A2/B1, hnRNP A3,
hnRNP U, hnRNP H1, and EWS. Many of these proteins have
already been described to be spread throughout most tissues and
identified at different developmental stages (Bastian et al., 2008;
Uhlen et al., 2015).

Prion-Like Proteins Are Disease Related
Given the widespread tissue distribution of the prion-like
proteins and the link to disease of proteins in the most
expressed cluster, we explored whether, globally, genes encoding
for these polypeptides were connected to pathological processes.

Their association to diseases was retrieved separately from the
Online Mendelian Inheritance in Man (OMIM) (Amberger et al.,
2015) and the database of gene-disease association (DisGeNET)
(Pinero et al., 2017). The percentage of genes with disease
annotations was calculated and compared with that in the
complete human UniProt dataset, which was used as background.
According to the OMIM database, 13.22% of the prion-like
proteins encoding genes are disease-related against a 2.39%
for the UniProt dataset, whereas values of 33.47 and 9.49%
were obtained in the case of DisGeNET (p-value < 1.0E-5 for
both databases, Z-test). Thus, the association with disease of
prion-like proteins was threefold and fivefold higher than the
one in the complete human proteome, according to DisGeNET
and OMIM, respectively. To assess the significance of this
enrichment, 100 random samples with the same size that the
prion-like proteins dataset were selected from the background,
the percentage of proteins associated to a disease in each sample
was counted and the distribution of the percentages calculated
(Figure 5). For both OMIM and DisGeNET, the prion-like
dataset proportion is clearly above the 95 percentile of the
distribution, which implies a significant over-representation of
disease-associated proteins among human prion-like proteins. At
this point, it is important to underline that the prion-like protein
identification pipeline is sequence-based and totally blind with
respect to the protein annotation.

Prion-like proteins have been associated to the onset of
neurological disorders (Harrison and Shorter, 2017). The 9% of
genes encoding for prion-like proteins, 11 out of 121, are linked
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FIGURE 5 | Prion-like proteins disease association. Number of disease associations for prion-like proteins (dotted blue line) compared to 100 random sampling of
the human UniProt from (A) OMIM and (B) DisGeNET databases. The median of the background sample is plotted as a black dotted line, while the red line refers to
the 95 percentile of the distribution (p-value < 0.05).

FIGURE 6 | Human prion-like interactome. (A) Degree distribution for the complete interactome in red and the prion-like proteins network (first neighbors) in blue.
(B) Prion-like proteins average interaction degree (blue dotted line) compared to a random sampling of 1000 sets. (C) Number of PPIs between prion-like proteins
(blue dotted line) compared to a random sampling of 1000 sets.

to neurological diseases, according to OMIM (Supplementary
Table S3). This constitutes a significant enrichment, relative
to the complete proteome (p-value < 1.5 E-8). However,
it is important to note that, despite proteins connected with
neurological disorders are over enriched by 1.4-fold within the
disease associated prion-like protein subgroup, this enrichment
is not statistically significant (p-value > 0.11). It is clear from
the results presented above that many of the detected proteins
are ubiquitous regulators involved in a wide range of signaling
pathways; which suggests that perturbations affecting their
function may have a great impact in multiple disorders and not
exclusively in neurological diseases, as it is usually assumed.

Prion-Like Proteins’ Role in Highly
Interconnected Subnetworks
Proteins rarely perform their functions independently; but
mostly rely on complexes to carry them out. The connectivity of
human prion-like proteins and the properties of their interactors
were analyzed. As above, prion-like proteins were first mapped

to genes to obtain unique entities. Out of the 121 resulting
genes, 100 had annotated physical binary interactions (physical
interactions between two individual proteins). Overall, prion-like
dataset and the proteins they interact with establish a subnetwork
of 1544 proteins with 2079 PPIs between them. Both the prion-
like dataset and the complete subnetwork have higher average
interaction degrees than the human interactome (Figure 6A).
To uncover whether prion-like proteins interact more than
expected by chance, the average degree of interactions of the
prion-like protein set was compared with 1000 random sets of
proteins of the same size (Figure 6B). This analysis confirms
that prion-like proteins exhibit a significant higher number
of interactions than the average human interactome. Next, we
assessed whether prion-like proteins interact more between them
than expected by chance, by comparing the number of intra-set
interactions with that in 1000 random sets, as before. The results
showed that prion-like proteins establish more interactions –
one order of magnitude higher – between them than expected
randomly (Figure 6C). To further describe the human prion-
like subnetwork, it was tested to what extent prion-like proteins
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TABLE 1 | Prion-like proteins are located nearer in the network than
expected by chance.

Prion-like Random

protein set expectation Z-score P-value

LCC size 32 3.16 16.8 <1.10−5

MSD 1.64 2.2 −6.78 <1.10−5

cluster into specialized interactome neighborhoods. The size of
the LCC and the MSD was measured and compared to 1000
random sets (Table 1). The results clearly show that prion-
like proteins share a higher interactomic vicinity than expected
randomly, providing support to the concept that they exist well-
defined interaction networks for human prion-like proteins.

To functionally characterize this subnetwork of prion-like
proteins and their interactors, the 1544 proteins were analyzed for
GO and KEGG pathways enrichment. GO enrichment analysis
are consistent with the results obtained for the prion-like proteins
dataset alone, as it highlights regulation of gene expression
through DNA and RNA binding as the main biological role
played by this protein subset (Supplementary Table S4).

When we examined the statistically enriched pathways
obtained from KEGG analysis, we observed that they can be
grouped into two main clusters. Remarkably, the largest cluster
collects pathways involved in different types of cancer, such
as transcriptional misregulation in cancer (p-value < 9.86E-15,
53 proteins), pancreatic cancer (p-value < 2.01E-12, 29 proteins),
prostate cancer (p-value < 1.31E-11, 33 proteins), or colorectal
cancer (p-value < 1.88E-7, 22 proteins) among others; 12 prion-
like proteins (10% of the total unique entries) and 122
(8.4%) of their interactors were found in these cancer related
pathways. These interactors include cornerstones in mitogenesis,
growth factor signaling, apoptotic attenuation, cell cycle
progression, angiogenesis, cell invasion, immune regulation, and
microenvironment alterations.

The second group encompasses pathways associated with
viral infection, such as viral carcinogenesis (p-value < 1.42E-15,
61 proteins), Epstein–Barr virus infection (p-value < 3.91E-14,
56 proteins), herpes simplex infection (p-value < 6.6E-12,
51 proteins), or hepatitis C (p-value < 1.07E-6, 38 proteins).
This is consistent with the involvement of RBPs, helicases, and
splicing-related proteins in the control of viral assembly and
trafficking of the viral genomic RNA from the nucleus. Prion-like
candidates such as DDX17 (Moy et al., 2014), DDX5 (Cheng et al.,
2018), and hnRNP A2B2 (Levesque et al., 2006) have been already
described to play key roles in these processes.

DISCUSSION

In the present work, we used a stringent computational approach
that considers that PrLDs should not be only disordered and
compositionally biased, but also encode for short sequences
with moderate, but significant, amyloid propensity (Sabate
et al., 2015b). We concluded that 242 polypeptides in the
human proteome fulfill the requirements to potentially behave

as prion-like proteins. This accounts for less than 1% of the
human proteins, which implies that, compared with organisms
like Plasmodium or Dictyostelium where 10–25% of their proteins
are predicted be prionogenic (Singh et al., 2004), the prionic
load of the human proteome is low. The dataset included several
widely studied proteins with prion-like behavior, such as FUS,
TIA1, TDP-43, EWS, and several hnRNPs, but also previously
undescribed proteins with very important cellular functions:
members of the mediator complex, nucleoporins, chromatin
remodeling proteins, and transcription factors.

As their counterparts in yeast (Santoso et al., 2000; Alberti
et al., 2009), human prion-like proteins, locate their PrLDs mostly
at their ends; with a slight preference for the amino terminus.
This might imply that the position of the PrLD within the protein
sequence might be relevant for its function. Indeed, previous
analyses on proteins containing low complexity regions already
suggested that these terminal positions would allow them to act
as act as promiscuous interfaces for protein binding, without
steric interferences by the adjacent globular domains (Coletta
et al., 2010). In a similar manner, prion-like modularity and the
preference for terminal regions are likely maintained in order to
delimit a flexible region which can switch its conformation and
assemble, modulating in this way the activity of folded domains
without impacting their native 3D structure.

According to the GO terms analysis, a highly significant
fraction of prion-like proteins are involved in functions related to
nucleic acid binding and transcription and translation activities.
This includes proteins of the Mediator complex, implicated
in the regulated transcription of nearly all RNA polymerase
II-dependent genes (Zhu et al., 2015; Cho et al., 2018), proteins
recruited in chromatin-remodeling complexes (Boulay et al.,
2017; Kataoka and Mochizuki, 2017), and a significant number of
transcription factors. The dataset also includes the large majority
of RBPs already described to behave as prion-like in humans,
such as FUS which is implicated in transcription, DNA repair,
and RNA biogenesis (Patel et al., 2015), TIA1 which functions
in mRNA turnover and regulation of translation (Li et al.,
2014), TDP-43 which is involved in transcriptional regulation
and RNA processing (Buratti and Baralle, 2008; King et al.,
2012), EWS which is implicated in RNA binding and processing,
or diverse hnRNPs involved in the packaging of pre-mRNA
into RNP particles (He and Smith, 2009). Not surprisingly,
we found that a high proportion of these proteins map into
the nucleus and intracellular ribonucleoprotein complex. This
last observation is consistent the extensive literature identifying
prion-like sequences as drivers of liquid–liquid phase separation
in membrane-less cellular compartments (Patel et al., 2015;
Banani et al., 2017).

Our data reveal that human prion-like proteins are
multifunctional proteins involved in important regulatory
processes. Indeed, 50% of the proteins in our dataset carry
at least two different Pfam domains. As expected from the
molecular functions in which these proteins are involved, the
most statistically enriched domains correspond to RNA and
DNA binding domains such as the canonical RRM, the Zn finger
domain, the forkhead domain, or the helicase domain. All of
them present in well-characterized transcription factors and
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RNPs. These are evolutionary conserved domains in which,
because of their functional relevance, genetic mutations are often
linked to disease (King et al., 2012; Cascarina and Ross, 2014).

We assessed the expression of genes coding for prion-like
proteins for each human tissue, to try to rationalize why,
so far, these proteins have been mostly related to neurological
diseases. Human prion-like protein expression was not restricted
to nervous tissue but ubiquitously spread among tissues; also,
they are not especially abundant in the brain, relative to other
organs of the human body. This suggests that they play a
physiological role in different cellular types, although it raises
the question of why most prion-like proteins related diseases are
tissue-specific. This situation is not unique for prion-like proteins
but common to other proteins involved in neurodegenerative
disorders, i.e., a-synuclein the protein responsible for Parkinson’s
disease, is abundantly expressed in both the cerebral cortex and
the bone marrow, but only aggregates in the brain (Spillantini
et al., 1997; Barbour et al., 2008). The protein quality control
machinery has an active role in managing protein misfolding
and aggregation. Cellular aging impacts cell homeostasis and
leads to proteostatic-compromised cells in which misfolding
and aggregation events cannot be compensated (Aguzzi and
Altmeyer, 2016). It has been proposed that the low efficacy of
replacing dying neurons, relative to other cells types, could be
one of the underlying reasons why the malfunction of prion-
like proteins is more often associated to neurological conditions.
One important finding here is that many of the human prion-
like proteins that have been convincingly associated to disease are
among the most expressed polypeptides in the dataset. This fits
very well with the so-called “life at the edge” hypothesis, which
states that, because protein aggregation is extremely dependent
on concentration, abundant proteins are, on the average, at
highest risk of misfolding and aggregation (Tartaglia et al., 2007).

Independently of their tissue distribution, what becomes clear
from the analysis of the OMIM and DisGeNet databases is that
human prion-like proteins are strongly connected to disease. Two
complementary properties might explain, at least in part, this
strong association. First, the propensity of PrLDs to establish
intermolecular interactions together with the presence of regions
with significant amyloid propensity, exposed to solvent within
large disordered regions, impose an inherent risk to aggregate
to these polypeptides. In fact, genetic mutations that increase
the aggregation propensity of PrLDs have been shown to be
directly associated with disease (Harrison and Shorter, 2017).
Second, according to the “centrality-lethality rule” (Jeong et al.,
2001), the highest the number of interactions for a protein is,
the largest is the impact of its disruption on cell function. Thus,
the high connectivity of prion-like proteins networks might well

account for their strong link to human diseases. Importantly,
KEGG pathway enrichment analysis of the prion-like proteins
interactome allowed us to uncover a highly significant association
with two previously undescribed set of devastating pathological
processes: cancer and viral infections.

Overall, despite the present study constitutes only a first
theoretical approach to the function of human prion-like
proteins, our results indicate that this subproteome exert
important regulatory functions in different biological pathways,
thanks to both their protein-protein and protein-nucleic acids
binding capabilities, two properties that seem to be favored by
their modular architecture. The analysis suggests that in the
forthcoming years, we can expect the discovery of a connection
between prion-like proteins malfunction and other pathologies
apart from neurological disorders.
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